The invention is generally related to the use of shackles used to lift and lower equipment and more particularly to a means of releasing the equipment from the shackles.
In the offshore oil and gas industry, it is routinely necessary to lower equipment to the sea floor or to specific levels of structures underwater. Because of the water depths involved, as deep as 5,000 feet or deeper, it is often unsafe and impractical to use divers. At these depths, use of an ROV (Remotely Operated Vehicle) is preferred for underwater operations.
In the past it has been common to use a hydraulic shackle pin release mechanism that enabled shackles to be removed from equipment underwater without substantial outside assistance. The hydraulic release mechanism can be remotely activated by an ROV, thus allowing surface vessels to lower equipment and disengage the attached rigging without the support of divers.
As seen in the prior art drawing of
Another issue with the hydraulic release mechanism is the potential for leakage which could pose an environmental hazard.
The present invention addresses the shortcomings of the art and eliminates the need for a hydraulic release mechanism. What is provided is a mechanically releasable shackle pin and shackle arrangement that is readily operated by an ROV and is not affected by the hydrostatic pressures encountered at depth. A shackle body having two ends has a shackle pin received through bores at one end of the shackle body. A shackle nut threaded on the shackle pin secures the shackle pin in an installed position through the bores in the shackle body. An anti-rotation link plate is attached to the shackle body. The anti-rotation link plate extends to one end of the side plate. The shackle pin extends through bores at one end of the shackle body and the anti-rotation link plate and is secured in its installed position by a shackle nut threaded on the shackle pin. Means for preventing rotation of the shackle nut and loss of the shackle nut is provided on the anti-rotation link plate such that the shackle pin can be removed by a remotely operated tool on an ROV at depth to release a load without the need for hydraulics on the shackle assembly. The shackle pin is provided with a special plate arrangement designed to allow the shackle pin to be gripped and rotated by a remotely operated tool on an ROV.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming part of this disclosure. For a better understanding of the present invention, and the operating advantages attained by its use, reference is made to the accompanying drawings and descriptive matter, forming a part of this disclosure, in which a preferred embodiment of the invention is illustrated.
In the accompanying drawings, forming a part of this specification, and in which reference numerals shown in the drawings designate like or corresponding parts throughout the same:
The invention is generally directed to a shackle arrangement that provides for the mechanical gripping, rotation, and removal of a shackle pin from a shackle arrangement, means for capturing the shackle nut to prevent loss, and means for preventing rotation of the shackle nut during rotation of the shackle pin. The invention may be practiced with the different embodiments illustrated in
As seen in the embodiment of
Main side plates 12a, b are spaced apart by spacers 20 placed between the plates 12a, b. Each main side plate 12a, b is provided with bores therethrough sized to receive the bolts or studs 14, 16, and shackle pin 18. Stud 14 is received through the bores in the main side plates 12a, b and its spacer 20 and secured in place with nuts 28.
Stud 16 is received through the bores in the main side plates 12a, b and its spacer 20 and secured in place by nuts 30. It is seen in
While parts 14 and 16 are shown as studs, it should be understood that a bolt may also be used for each of these parts.
The shackle pin 18 is received through the bores in the main side plates 12a, b and the anti-rotation link plate 22. The shackle pin 18 is threaded through shackle nut 32. The shackle pin 18 is preferably provided with a plate or washer 36 engaged with the shackle pin 18 and designed to receive the shackle pin 18 such that the plate or washer 36 is captured between the head 19 of the shackle pin 18 and the side plate 12a. The plate or washer 36 is provided with rigidly attached surfaces 36a, b that capture the head 19 to allow rotation of the shackle pin 18 by an ROV tool and removal of the shackle pin 18 by the ROV tool to release the load. The result is that the certified original shackle pin head is not modified but can be gripped by a suitable tool on an ROV (Remotely Operated Vehicle) for turning the shackle pin 18.
Means 24 for preventing rotation of shackle nut 32 and retaining shackle nut 32 is attached to the anti-rotation link plate 22 and is comprised of a plurality of side walls 34 perpendicular to the anti-rotation link plate 22 that envelope the shackle nut 32 without physically altering the shackle nut 32. As seen in
While the anti-rotation link plate 22 is illustrated as being secured to the main plates 12a, b by a stud or bolt and nut, it should be understood that any suitable means of securing the anti-rotation plate 22 in place may be used such as welding or making the anti-rotation link plate 22 integral with the side plate.
In another embodiment of the invention, as indicated above, it is also possible to adapt a pre-existing shackle 42 to perform in the same manner as described above. As seen in
In operation, as best seen in
While specific embodiments and/or details of the invention have been shown and described above to illustrate the application of the principles of the invention, it is understood that this invention may be embodied as more fully described in the claims, or as otherwise known by those skilled in the art (including any and all equivalents), without departing from such principles.
Number | Name | Date | Kind |
---|---|---|---|
620914 | Griffith | Mar 1899 | A |
962733 | Beltz | Jun 1910 | A |
2097465 | Morrison | Nov 1937 | A |
2435336 | Belvel | Feb 1948 | A |
4221252 | Bruce | Sep 1980 | A |
4307567 | Archer | Dec 1981 | A |
5046881 | Swager | Sep 1991 | A |
7393033 | Bisso, IV | Jul 2008 | B1 |
7540140 | Diaz et al. | Jun 2009 | B1 |