1. Technical Field
The present disclosure is directed to surgical stapling devices and sutures and, in particular, a buttress device used in connection or in combination with a surgical instrument for ensuring that an optimal amount of tissue compression is applied to tissue for an optimal formation of staples and sutures. Even more particularly, the present disclosure is directed to a buttress device that provides a visual indication to the surgeon that the optimal amount of tissue compression has been reached, and that it is the proper time to apply the surgical element.
2. Description of the Related Art
Anastomosis is the surgical joining of separate hollow organ sections. Typically, an anastomotic procedure follows surgery in which a diseased or defective section of hollow tissue is removed. Thereafter, the procedure has the steps that the remaining end tissue sections are to be joined. Depending on the desired anastomotic procedure, the end sections may be joined by either circular, end-to-end, end-to-side, or side-to-side organ reconstruction methods.
In a known circular anastomosis procedure, two ends of organ sections are joined by a stapling device. The stapling device can drive a circular array of staples through the end of each organ section. The device can simultaneously core any tissue interior of the driven circular array of staples to free a tubular passage. Many examples for performing circular anastomosis of hollow organs are described in U.S. Pat. Nos. 6,959,851, 6,053,390, 5,588,579, 5,119,983, 5,005,749, 4,646,745, 4,576,167, and 4,473,077, which are incorporated by reference herein in their entirety.
Typically, these devices include an elongated shaft having a handle portion at a proximal end thereof to effect actuation of the device. The device also has a staple holding component disposed at a distal end thereof. An anvil assembly including an anvil rod with an attached anvil head is mounted to the distal end of the device. The anvil is adjacent a staple holding component. Opposed end portions of tissue of the hollow organ(s) to be stapled are clamped between the anvil head and the staple holding component. The clamped tissue is stapled by driving one or more staples having a predetermined size from the staple holding component. In this manner, the ends of the staples pass through the tissue and are deformed by the anvil head. An annular knife is advanced to core tissue within the hollow organ. In this manner, the knife frees a tubular passage within the organ.
Surgical stapling devices for performing circular anastomosis have also been used to treat internal hemorrhoids in the rectum. During the use of a circular stapling device for hemorrhoid treatment, the anvil head and the staple holding component of the surgical stapling device are inserted through the anus and into the rectum with the anvil head and the staple holding component in an open or un-approximated position. Thereafter, a suture is used to pull the internal hemorrhoidal tissue and/or mucosal tissue towards the anvil rod. Next, the anvil head and the staple holding component are approximated to clamp the hemorrhoidal tissue and/or mucosal tissue between the anvil head and the staple holding component. The stapling device is fired to remove the hemorrhoidal tissue and/or mucosal tissue and staple the cut tissue. Sutures are also known in the art to connect or join tissue. Although the use of circular anastomosis staplers for hemorrhoid treatment has many benefits often, a surgeon will encounter, over the course of a surgical procedure, one or more different types of tissue in the body for which to apply a surgical element such as a staple.
Non-circular stapling devices are also known in the art. In endoscopic or laparoscopic procedures, surgery is performed through a small incision or through a narrow cannula inserted through a small entrance wound in the skin. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, endoscopic surgical stapling devices have been developed and are disclosed in, for example, U.S. Pat. No. 5,040,715 (Green, et al.); U.S. Pat. No. 5,307,976 (Olson, et al.); U.S. Pat. No. 5,312,023 (Green, et al.); U.S. Pat. No. 5,318,221 (Green, et al.); U.S. Pat. No. 5,326,013 (Green, et al.); U.S. Pat. No. 5,332,142 (Robinson, et al.); and U.S. Pat. No. 6,241,139 (Milliman et al.), the entire contents of each of which are incorporated herein by reference. These non-circular or linear stapling devices are useful for gastrointestinal or bariatric surgery and include a staple cartridge and an anvil for applying titanium surgical staples into the body to join or connect tissue sections to one another.
Some other tissue types include cardiac tissue, colorectal tissue, gastrointestinal tissue, and pulmonary tissue. In these different types of tissues, there may be a number of different other types of classes of such tissue, such as ischemic tissue, or diseased tissue, thick tissue, tissue treated with medicines or compounds, diabetic tissue, as well as numerous others. However, one of ordinary skill in the art should appreciate that the present disclosure is not limited to diseased tissue.
It is desired to ensure proper formation of the respective surgical element (such as the array of staples) into such tissue. It has been observed that with certain types of tissue such as ischemic tissue, or diabetic tissue an amount of compression can be applied to the tissue for an optimal time period to assist the instrument.
However, further compression for a time period (after an optimal time period) is not favored. In the surgical environment, it is difficult to visually appreciate the optimal amount of compression that should be applied to the various tissue types, and also it is difficult to visually appreciate the optimal time period for tissue compression. It should be appreciated that tissue compression is not limited to diseased tissue, and it is envisioned that compression may be applied to other instances where non-diseased tissue is encountered in the surgical procedure to ensure a positive surgical outcome.
Accordingly, a continuing need exists in the art for a device that provides an indication to the surgeon that a threshold compression has been reached and that the surgical element should be applied to the tissue (such as a staple). A continuing need exists in the art for a device that is used in connection with a surgical instrument that can act as an intermediary between the instrument and the tissue so the tissue is optimally compressed by the intermediary for proper formation of the surgical element such as a staple without damaging the tissue. There is also a need for a material that can support thin diseased tissue during stapling so the compression cannot damage the tissue. There is also a need in the art for a device that can reinforce a staple line and to redistribute the pressure gradient that forms the staple line more evenly over an area of the healthy or diseased tissue.
According to a first aspect of the present disclosure, there is provided a surgical indicator to indicate the proper formation of a surgical element. The indicator has a member having a modulating property. The member modulates to a first condition when no stress is applied, modulates to another second condition when a stress is applied. The modulating property is configured to provide an indication when compressed to a predetermined compression stress level. The predetermined compression stress level indicates an optimal tissue compression of the tissue type. The indication is a tissue state that is optimal for the formation of the surgical element for the predetermined tissue type.
The indication is not limited to a pre-firing indication and can also be an indication of a post firing condition. The substrate may remain connected to the operative site at the conclusion of the firing of the surgical instrument. Thus, the substrate having the indication remains on the substrate, and the surgeon can inspect the indication at any time after the firing. The substrate can thus also provide an indication of the compression that was applied to the tissue at the firing at a time period long after that firing of the instrument.
According to another aspect of the present disclosure there is provided an apparatus for determining an optimal amount of tissue compression prior to the insertion of a surgical element into the tissue. The apparatus has a substrate made from a predetermined material. The predetermined material has an initial color when no stress is applied to the substrate. The predetermined material also has second color when a predetermined compression stress is applied to the substrate. The second color indicates a proper time in order to fire a surgical element into tissue.
According to yet another aspect of the present disclosure there is provided an apparatus for supporting tissue during compression prior to the insertion of a surgical element into the tissue. The apparatus has a substrate made from a predetermined material. The predetermined material has a thickness and a predetermined stress-strain profile. The predetermined stress-strain profile is complementary to a stress-strain profile of the tissue to permit the substrate to support the tissue when the surgical element is delivered into the tissue. The substrate provides hemostasis control of the tissue when the surgical element is delivered into the tissue. The substrate can be made of collagen, degradable polymers, or polysaccharides. In one embodiment, the substrate may have multiple layers or be a composite material having a support layer and a web layer. The substrate may have a collagen support layer and a web that provides support and resiliency to the collagen support layer.
According to a further aspect of the present disclosure there is provided a method of determining an optimal amount of compression of tissue. The method provides an indication to the surgeon of the optimal compression and a time to fire a surgical element into tissue. The method has the steps of applying a pressure sensitive film to tissue. In another alternative embodiment, the method may have the steps of applying a pressure sensitive foam, a film having particles, a gel, an adhesive or a combination thereof to tissue as a diagnostic device to provide the indication. The pressure sensitive film is configured to provide an indication when compressed to a predetermined compression stress level. The film is tuned such that the predetermined compression stress level indicates the optimal tissue compression of the tissue type. The method has the steps of compressing the pressure sensitive film and the tissue and firing the instrument when the pressure sensitive film provides a visual indication of the optimal compression.
According another aspect of the present disclosure there is provided a method of determining an optimal amount of compression of tissue to provide an indication to the surgeon of the optimal compression and a time to fire a surgical element into tissue. The method has the step of applying a substrate having a dye filled sac having a reservoir. The sac is configured to burst or rupture when compressed to a predetermined compression stress level. The sac is configured to yield when the predetermined stress level is the optimal tissue compression of the tissue type. The method also has the step of compressing the substrate together with the tissue and firing the instrument when the dye is released from the sac. The dye can be a colorant, or a pigment, or further include a biochemical probe all of which may be colored or emit color upon excitation by low energy radiation.
In one embodiment, the substrate may have a dye filled sac that has a certain color. The colored dye will be released from the sac once the sac ruptures and permit the surgeon to visually appreciate that the optimal compression has been reached. In another embodiment, the sac may have a predetermined chemical in the sac. Once the predetermined compression is reached, the predetermined chemical is released and can react with the substrate or another material to change color once the sac ruptures. This chemical reaction permits the surgeon to instantly visually appreciate that the optimal compression has been reached.
In yet another embodiment of the present disclosure, the substrate may be formed with a plurality of liquid crystals. The liquid crystals are made with the substrate and can be cast in place when the substrate is manufactured. In one embodiment, the liquid crystals are cast into a polymeric material and the polymeric substrate is extruded from a die. The liquid crystals have a predetermined initial state and a second state when compressed with the optimal amount of compression. Once the predetermined compression is reached in the procedure and applied to the substrate having the plurality of liquid crystals, the liquid crystals can change an optical property of at least one of the liquid crystals and the substrate in response to the compression to provide the indication. This indication permits the surgeon to instantly visually appreciate that the optimal compression has been reached.
In still another embodiment of the present disclosure, the substrate may be formed with a plurality of microspheres. The microspheres are manufactured with the substrate to include a material. In one embodiment, the microspheres have a size that is of an order smaller relative to the sacs of the previous embodiment. Once the predetermined compression is reached in the procedure and applied to the substrate having the microspheres, the microspheres can rupture to release their contents and provide an indication in response to the compression. This indication permits the surgeon to instantly visually appreciate that the optimal compression has been reached.
In still a further embodiment of the present disclosure, the substrate may be formed with a plurality of nano-spheres. The nano-spheres are manufactured with the substrate to include a material in a lumen formed in each of the nano-spheres. In one embodiment, the nano-spheres have a minuscule size relative to the sacs of the previous embodiment. Once the predetermined compression is reached in the procedure and applied to the substrate having the nano-spheres, the nano-spheres can rupture to release their contents and provide an indication in response to the compression. This indication permits the surgeon to instantly visually appreciate that the optimal compression has been reached. Each of the nano-spheres can rupture at different stress gradients to provide a number of different indications depending on the specific encountered compression in the procedure.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
Embodiments of the presently disclosed buttress materials will be described herein below with reference to the accompanying drawing figures wherein like reference numerals identify similar or identical elements. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail.
Referring now to
Stress (σ) is defined as the force (f) divided by the contact area (A) of the loading platen.
The strain is derived from the stretch (λ) and is equal to 1 minus the stretch (λ). As shown in
In one embodiment, the buttress material 10 is made to have substantially the same stress-strain profile as the tissue with which it is to be used or having substantially the same modulus and profile as shown in
The stiffness of the polymer is controlled to have substantially the same stress-strain profile as the tissue. In one embodiment, the polymer has modified structural fibers to have substantially the same stress-strain profile as the tissue. Alternatively, if the buttress material 10 is a composite structure or is a multilayered structure, one of the layers of the buttress material 10 may include a mesh or mesh like material in order to provide support to the composite or multi-layered structure. In another embodiment, the polymer has modified structural fibers that are controlled by a degree of cross-linking of the fibers to have the substantially same stress-strain profile as the tissue. In yet another embodiment, the polymer may simply be selected from a number of existing polymers to substantially match the stress-strain profile as the tissue. One of skill in the art should appreciate that the surgeon would apply the surgical element through the tissue sections to join the tissue sections together and would also join the surgical element through the buttress material 10 shown in
A movable platen and a stationary platen may have numerous configurations to apply compression to the tissue, however for the purposes of illustration, the compression to the tissue T is applied from a surgical stapler as shown in
Some surgeons will use sutures instead of staples when treating ischemic tissues. Accordingly, the present disclosure provides for a material to support and reinforce the tissue in order to apply a surgical instrument through the tissue with proper formation of the surgical element to ensure a proper surgical outcome.
Thus, by compressing the tissue, the surgeon has an amount of buttress material 10 having a complementary compressive property relative to the tissue T. The buttress material 10 reinforces the tissue T when applying compression to the tissue. Referring to
In another embodiment, shown in
In another embodiment, shown in
Again, when compressing the tissue T, the surgeon has an amount of buttress material 10″ to reinforce the tissue T when applying the compression to the tissue T. In this embodiment, the buttress material 10″ is more rigid than the tissue T. As opposed to the embodiment of
Referring now to
However, in this embodiment each mechanically tuned buttress material 200 provides the surgeon with a visual indication of a threshold amount of compression that is to be applied to the tissue for a predetermined time period. Once the visual indication is communicated, the surgeon will visually know that it is the proper time to implant the surgical element in the tissue. The surgeon will be provided with an indication that it is time for joining the two tissue sections together and thus will release the tissue after firing the instrument and no longer apply any further compression to the tissue. Thus, the mechanically tuned buttress material 200 provides for an optimal compression of tissue prior to introducing the surgical element into tissue.
It should be appreciated that with the buttress material 200 fixed to the tissue, the buttress material 200 may be inspect later long after the firing of the instrument in post operative care. The surgeon may inspect the tissue adjacent the buttress material 200 to ensure healing of the tissue, and that the proper amount of compression was applied to ensure a positive surgical outcome.
The substrate 202 can be made from a polymer. The polymer can be the same as or different from the polymers listed above for the buttress material 10, and may include the previously discussed diagnostic capability. As indicated previously, the polymers can include liquid crystal polymers, conducting polymers, fluorescent polymers, actuating polymers, anti-fluorescent polymers, and any combinations thereof. Some of the polymers forming the substrate 202 may have other mechanical properties that can provide the indication exclusive of any stress applied to the polymer. The polymer itself can include one or more mechanical properties that can contribute to providing the indication that include a molecular weight, a polydispersity index, a thermal property or history, a monomer structure, a monomer selection, a cross linking density, a viscoelasticity property of the polymer, or a stability of the polymer. Various configurations are possible and within the present disclosure.
The substrate 202 may be made from any suitable flexible material that can be bent, or wrapped around tissue without damaging the tissue or abrading the tissue. The substrate 202 is made from a biocompatible material, and can be readily applied and removed from the inner tissues of the body such as gastrointestinal tissue, cardiac tissue, colonic tissue, small intestinal tissue, large intestinal tissue and pulmonary tissue without abrading the tissue, and/or harming the tissue.
The substrate 200 has a distal surface 204 that contacts the tissue and also has an opposite proximal surface 206. In one embodiment, the substrate 202 may be made from a pressure sensitive film. In another embodiment, the substrate 202 may be made from a pressure sensitive gel, pressure sensitive foam, a material having a number of particles, or adhesives and any combinations thereof. Once an optimal amount of stress is applied to the substrate 202, the substrate 202 will modulate to provide a visual indication to the surgeon that a certain compression threshold has been achieved. The visual indication may be a change in one or more optical properties of the substrate 202 or a change in a visual state from a first condition to another second different condition.
In one embodiment, the change in a visual state to provide the indication may be from translucent condition of the substrate 200 to an opaque condition of the substrate 200. In another embodiment, the change in the visual state may be from a first color to a second color. Various configurations are possible. In one embodiment, the indication may be from one initial color to a second color as shown in
In another embodiment, the substrate 202 is not made from a pressure sensitive film and instead has a number of sacs 208 shown in
Referring to
The predetermined material is a dye 214 that is in the inner lumen 212. The dye 214 may be a suture dye and is non-toxic and an amount of the dye 214 may enter the body without any toxic effect or harm to the tissue. The predetermined material may alternatively be a fluorescent dye, an ultraviolet dye, a visible dye, a pigment, or a color additive. In one embodiment, each individual sac 208 is set in advance in relation to a tissue type such as gastrointestinal tissue, cardiac tissue, pulmonary tissue, or muscle so the sacs 208 will all yield when a certain amount of compressive force is placed on the substrate 202 that matches the tissue type.
In one embodiment, the dyes 214 may be any ultra-violet visible dye (food colorant, etc) or probes such as fluorescent or infrared (IR)/near-IR probes. These probes may require a predetermined amount of excitation energy for emission. Further, the polymer composing the substrate or the particles could be prepared from, or functionalized with, the above mentioned “probe” molecules, in that the polymer provides both the mechanical and visualization properties. Some probes include a fluorescent probe, FTI flourescein, fluorescein isothiocyanate (FITC) and tetramethylrhodamine isothiocyanate (TRITC) probes, rhodamine, DAPI, a molecular probe such as a “nuclear yellow” probe, an acridine orange probe, DRAQ™ and SYTOX® nuclear labels, propidium iodide and other fluorophores with similar absorption and emission spectra.
Referring now to
Alternatively, if the surgeon does not see or hear the indication, the surgeon will be provided with an alternative or false indication. The surgeon will know that the substrate 202 is not being applied with a compressive force in either a uniform manner or that an insufficient compressive force is being applied to the tissue T. In this instance, the surgeon can reorient the instrument, and attempt again to apply the surgical element at the desired site.
Moreover, if the surgeon after repeated attempts does not see the indication, surgeon will know that the substrate 202 is not being applied with a compressive force in either a uniform manner or that an insufficient compressive force is being applied to the tissue T. In this instance, the surgeon may then apply another different type of surgical element, such as a suture at the desired site.
Referring now to
Referring now to
In yet another embodiment of the present disclosure, the substrate 202 shown in
It should be appreciated that with the substrate 202 fixed to the tissue, this allows the surgeon to inspect the tissue later or post firing or long after the firing of the instrument such as in post operative care. The surgeon may inspect the tissue adjacent the substrate 202 to ensure healing of the tissue, and that the proper amount of compression was applied to ensure a positive surgical outcome.
It should be appreciated that the sacs 208 may be formed with various sizes. In still another embodiment of the present disclosure as shown in
The microspheres 211 could be prepared from polymers including lactones, polyalkylene oxides, polyorthoesters, polyphosphazenes, vinyl polymers including polymethylmethacrylate, acrylic acid, methacrylic acid, styrene sulfonic acid, polyvinyl pyrrolidones, hydroxyethyl methacrylates, sulfopropyl acrylates, vinyl lipids and phospholipids, and vinyl copolymers, proteins (collagen, albumin, casein, gelatin, lactoferrin, synthetic/recombinant, etc.), polysaccharides (hyaluronic acid, carboxy methyl cellulose, heparin sulfate, dextran, chitosan, alginates, methyl cellulose, functionalized derivatives (amino, carboxy, hydroxy, sulfonated, fluorinated), etc.), polyesters, polyamines, polyanhydrides, polyhydroxy alkoanates, polyether esters, polymer drugs, or any combinations thereof.
In still a further embodiment of the present disclosure shown as
In yet another embodiment of the present disclosure shown as
In yet a further embodiment of the present disclosure, the substrate 202 may have a marking or identification I on the proximal surface 206 to indicate a specific tissue condition for the tissue type. For example, for gastrointestinal tissue there may are several different substrates 202 with each having sacs 208 that will yield differently when a predetermined amount of compression is applied for different diseased or tissue types such as diabetic tissue. In one embodiment, the sacs 208 may yield at a first compressive force suitable for diabetic gastrointestinal tissue. The proximal surface 206 may provide such an indication I.
The sacs 208 in another embodiment may yield at a second compressive force that is different than the first compressive force and be suitable for ischemic gastrointestinal tissue. The proximal surface 206 will provide another indication I′ such as “ischemic gastrointestinal tissue” as shown in
The sacs 208 in other embodiments may yield at compressive forces suitable for various disease types, such as ischemic tissue, diabetic tissue, tissue exposed to specific prescribed medicine(s), soft tissue, thick tissue, or specific diseased tissue for all tissue types including but not limited to gastrointestinal tissue, pulmonary tissue, cardiac tissue, abdominal tissue, colonic tissue or any other known animal or human tissue.
It should be appreciated that the sacs 208 of the substrate 202 will not simply become leaky upon being compressed, but instead burst open to instantly provide the visual indication to the surgeon that the optimal compression from the instrument is reached. The sacs 208 may have a quantity of matter in the inner lumen 212 to assist with the bursting so as to come open or rupture suddenly when the optimal compressive load is applied to the substrate 202, especially from an internal pressure of the sac 208.
Referring to
It should be further appreciated that the sacs 208 further will burst open widely in order for the material being disposed in the sacs 208 to leak from the sacs 208 so as to become visible in a readily manner. The contents of the sacs 208 have little resistance to flow and a low viscosity. The contents leak from the sacs 208 and from the substrate 202 and on to the tissue once the predetermined compressive force is achieved in a readily manner. In this manner, the surgeon will immediately after the bursting visually appreciate a change in color at the desired site (or confined in the substrate 202) and the surgeon will then know to apply the surgical element upon seeing the indication.
The substrate 202 may be bendable without the sacs 208 bursting so as to be wrapped around the desired tissue site. In one embodiment, the substrate 202 may be arranged independent of the apparatus for applying a surgical element. The substrate 202 may be disposed in a suitable dispenser in a roll or laterally in a sealed box ready for surgical usage as shown in
In another embodiment, two sheets of substrate 202 may be applied to a first side of the tissue, and then another opposite second side of the tissue. The jaws of the surgical instrument may be fashioned around the tissue and two sheets of the substrate 202 for compression. In still another embodiment, alternatively the substrate 202 may be arranged directly fixed on or through a slot in the jaws 22, 24 of a surgical instrument and connected to a suitable rolled dispenser adjacent to the instrument. Thereafter, the jaws 22, 24 may be compressed around the tissue and the substrate 202 to determine the optimal amount of compression. Thereafter, a portion of the substrate 202 formed in a roll may have a perforation (not shown). The used portion of the roll of the substrate 202 may be removed after the surgical element is introduced into tissue simply by tearing at the perforation.
It should be appreciated that the visualization of the color change may occur under natural lighting, or be observed under fluorescent lighting conditions. In one embodiment, the dye 214 may be visualized under a fluorescent light or at a predetermined wavelength such as 488 nm. In one embodiment, the surgeon can wear lenses or goggles to facilitate viewing the dye 214 and to assist with locating a proper staple line in order to introduce the surgical staples. Various configurations are possible and are within the present disclosure.
The substrate 202 may be applied dry to the tissue site, or with a suitable gel or lubricating agent. In one embodiment, the surgeon may apply lubrication such as VASOLINE™, or KY JELLY™, or another suitable gel such as maltodextran that permits the substrate 202 to be tacked down and remain on the tissue during compression.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments.
The instant patent application claims priority to U.S. Provisional Patent Application Ser. No. 60/764,451 and U.S. Provisional Patent Application Ser. No. 60/764,449 both to Michael A. Soltz filed on Feb. 2, 2006 which are both herein incorporated by reference in their entirety. The instant patent application also incorporates by reference U.S. patent application Ser. No. 11/409,154 to Michael A. Soltz entitled “Method and System to Determine an Optimal Tissue Compression Time to Implant a Surgical Element” filed contemporaneously with the instant patent application.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3124136 | Usher | Mar 1964 | A |
3469439 | Roberts et al. | Sep 1969 | A |
3748758 | Wilchusky | Jul 1973 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4452245 | Usher | Jun 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4576167 | Noiles | Mar 1986 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4646745 | Noiles | Mar 1987 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5005749 | Aranyi | Apr 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5119983 | Green et al. | Jun 1992 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5314471 | Brauker et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5392979 | Green et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5474967 | Komatsu et al. | Dec 1995 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5752965 | Francis et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5895412 | Tucker | Apr 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6959851 | Heinrich | Nov 2005 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7717313 | Bettuchi et al. | May 2010 | B2 |
7722642 | Williamson, IV | May 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7776060 | Mooradian | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban | May 2011 | B2 |
7967179 | Olson | Jun 2011 | B2 |
7988027 | Olson | Aug 2011 | B2 |
8011550 | Aranyi | Sep 2011 | B2 |
8016177 | Bettuchi | Sep 2011 | B2 |
8016178 | Olson | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8062330 | Prommersberger | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8123766 | Bauman | Feb 2012 | B2 |
8123767 | Bauman | Feb 2012 | B2 |
8146791 | Bettuchi | Apr 2012 | B2 |
8157149 | Olson | Apr 2012 | B2 |
8157151 | Ingmanson | Apr 2012 | B2 |
8167895 | D'Agostino | May 2012 | B2 |
8192460 | Orban | Jun 2012 | B2 |
8210414 | Bettuchi | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli | Jul 2012 | B2 |
8235273 | Olson | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8256654 | Bettuchi | Sep 2012 | B2 |
8257391 | Orban | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8348126 | Olson | Jan 2013 | B2 |
8348130 | Shah | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371491 | Huitema | Feb 2013 | B2 |
8371492 | Aranyi | Feb 2013 | B2 |
8371493 | Aranyi | Feb 2013 | B2 |
8393514 | Shelton, IV | Mar 2013 | B2 |
8408440 | Olson | Apr 2013 | B2 |
8413871 | Racenet | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros | Jun 2013 | B2 |
8453909 | Olson | Jun 2013 | B2 |
8453910 | Bettuchi | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. | Jul 2013 | B2 |
8479968 | Hodgkinson | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger | Jul 2013 | B2 |
8511533 | Viola | Aug 2013 | B2 |
8512402 | Marczyk | Aug 2013 | B2 |
8529600 | Woodard, Jr. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban | Oct 2013 | B2 |
8556918 | Bauman | Oct 2013 | B2 |
8561873 | Ingmanson | Oct 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess | Nov 2013 | B2 |
8616430 | Prommersberger | Dec 2013 | B2 |
8631989 | Aranyi | Jan 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8684250 | Bettuchi | Apr 2014 | B2 |
20020016626 | DiMatteo et al. | Feb 2002 | A1 |
20020019187 | Carroll et al. | Feb 2002 | A1 |
20020028243 | Masters | Mar 2002 | A1 |
20020052622 | Rousseau | May 2002 | A1 |
20020091397 | Chen | Jul 2002 | A1 |
20020133236 | Rousseau | Sep 2002 | A1 |
20020138152 | Francis et al. | Sep 2002 | A1 |
20020151911 | Gabbay | Oct 2002 | A1 |
20020165559 | Grant et al. | Nov 2002 | A1 |
20020165562 | Grant et al. | Nov 2002 | A1 |
20020165563 | Grant et al. | Nov 2002 | A1 |
20020177859 | Monassevitch et al. | Nov 2002 | A1 |
20030059463 | Lahtinen | Mar 2003 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030065346 | Evens et al. | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030088256 | Conston et al. | May 2003 | A1 |
20030105510 | DiMatteo et al. | Jun 2003 | A1 |
20030114866 | Ulmsten et al. | Jun 2003 | A1 |
20030120284 | Palacios | Jun 2003 | A1 |
20030167064 | Whayne | Sep 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030183671 | Mooradian et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20040034377 | Sharkawy et al. | Feb 2004 | A1 |
20040092960 | Abrams et al. | May 2004 | A1 |
20040093029 | Zubik et al. | May 2004 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040116945 | Sharkawy et al. | Jun 2004 | A1 |
20040142621 | Carroll et al. | Jul 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040172048 | Browning | Sep 2004 | A1 |
20040209059 | Foss | Oct 2004 | A1 |
20040215214 | Crews et al. | Oct 2004 | A1 |
20040215219 | Eldridge et al. | Oct 2004 | A1 |
20040215221 | Suyker et al. | Oct 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20050021053 | Heinrich | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050143756 | Jankowski | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050228446 | Mooradian et al. | Oct 2005 | A1 |
20050245965 | Orban et al. | Nov 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060085034 | Bettuchi | Apr 2006 | A1 |
20060135992 | Bettuchi | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178683 | Shimoji et al. | Aug 2006 | A1 |
20060212050 | D'Agostino et al. | Sep 2006 | A1 |
20060212069 | Shelton | Sep 2006 | A1 |
20060271104 | Viola et al. | Nov 2006 | A1 |
20060273135 | Beetel | Dec 2006 | A1 |
20070026031 | Bauman et al. | Feb 2007 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070049953 | Shimoji et al. | Mar 2007 | A2 |
20070123839 | Rousseau et al. | May 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070203509 | Bettuchi | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080110959 | Orban et al. | May 2008 | A1 |
20080125812 | Zubik et al. | May 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080161831 | Bauman et al. | Jul 2008 | A1 |
20080161832 | Bauman et al. | Jul 2008 | A1 |
20080169327 | Shelton et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080200949 | Hiles | Aug 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090030452 | Bauman et al. | Jan 2009 | A1 |
20090043334 | Bauman et al. | Feb 2009 | A1 |
20090076510 | Bell et al. | Mar 2009 | A1 |
20090076528 | Sgro | Mar 2009 | A1 |
20090078739 | Viola | Mar 2009 | A1 |
20090095791 | Eskaros et al. | Apr 2009 | A1 |
20090095792 | Bettuchi | Apr 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090277947 | Viola | Nov 2009 | A1 |
20090287230 | D'Agostino et al. | Nov 2009 | A1 |
20100012704 | Tarinelli Racenet et al. | Jan 2010 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100249805 | Olson et al. | Sep 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110046650 | Bettuchi | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120273547 | Hodgkinson et al. | Nov 2012 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130105548 | Hodgkinson | May 2013 | A1 |
20130105553 | Racenet | May 2013 | A1 |
20130112732 | Aranyi | May 2013 | A1 |
20130112733 | Aranyi | May 2013 | A1 |
20130153633 | Casasanta | Jun 2013 | A1 |
20130153634 | Carter | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153638 | Carter | Jun 2013 | A1 |
20130153639 | Hodgkinson | Jun 2013 | A1 |
20130153640 | Hodgkinson | Jun 2013 | A1 |
20130181031 | Olson | Jul 2013 | A1 |
20130193186 | Racenet | Aug 2013 | A1 |
20130193190 | Carter | Aug 2013 | A1 |
20130193191 | Stevenson | Aug 2013 | A1 |
20130193192 | Casasanta | Aug 2013 | A1 |
20130209659 | Racenet | Aug 2013 | A1 |
20130221062 | Hodgkinson | Aug 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130240601 | Bettuchi | Sep 2013 | A1 |
20130240602 | Stopek | Sep 2013 | A1 |
20130277411 | Hodgkinson | Oct 2013 | A1 |
20130306707 | Viola | Nov 2013 | A1 |
20130310873 | Prommersberger | Nov 2013 | A1 |
20130327807 | Olson | Dec 2013 | A1 |
20140012317 | Orban | Jan 2014 | A1 |
20140021242 | Hodgkinson | Jan 2014 | A1 |
20140027490 | Marczyk | Jan 2014 | A1 |
20140034704 | Ingmanson | Feb 2014 | A1 |
20140048580 | Merchant | Feb 2014 | A1 |
20140061280 | Ingmanson | Mar 2014 | A1 |
20140061281 | Hodgkinson | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1 99 24 311 | Nov 2000 | DE |
199 24 311 | Nov 2000 | DE |
0 594 148 | Apr 1994 | EP |
0 327 022 | Apr 1995 | EP |
0 667 119 | Aug 1995 | EP |
1 064 883 | Jan 2001 | EP |
1 064883 | Jan 2001 | EP |
1 256 317 | Nov 2002 | EP |
1 520 525 | Apr 2005 | EP |
1 621 141 | Feb 2006 | EP |
1 702 570 | Sep 2006 | EP |
1 759 640 | Mar 2007 | EP |
1 815 804 | Aug 2007 | EP |
1 825 820 | Aug 2007 | EP |
1 929 958 | Jun 2008 | EP |
1 994 890 | Nov 2008 | EP |
2 005 894 | Dec 2008 | EP |
2 005 895 | Dec 2008 | EP |
2 008 595 | Dec 2008 | EP |
2 090 231 | Aug 2009 | EP |
2 090 244 | Aug 2009 | EP |
2 090 252 | Aug 2009 | EP |
2 198 787 | Jun 2010 | EP |
2 236 098 | Oct 2010 | EP |
2 311 386 | Apr 2011 | EP |
2 462 880 | Jun 2012 | EP |
2 517 637 | Oct 2012 | EP |
2 620 106 | Jul 2013 | EP |
2 630 922 | Aug 2013 | EP |
2 644 125 | Oct 2013 | EP |
09 054043 | Feb 1997 | JP |
2000-166933 | Jun 2000 | JP |
2002-202213 | Jul 2002 | JP |
2002 202213 | Jul 2002 | JP |
2002202213 | Jul 2002 | JP |
2006 028202 | Feb 2006 | JP |
07-124166 | May 2007 | JP |
WO 9005489 | May 1990 | WO |
WO 9516221 | Jun 1995 | WO |
WO 9516221 | Jun 1995 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9701989 | Jan 1997 | WO |
WO 9713463 | Apr 1997 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9945849 | Sep 1999 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2006023578 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2008057281 | May 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2010075298 | Jul 2010 | WO |
WO 2011143183 | Nov 2011 | WO |
WO 2012044848 | Apr 2012 | WO |
Entry |
---|
Japanese to English Machine translation of JP 2002202213 A from the Japanese Patent Office Website. Sep. 18, 2013. |
European Search Report for corresponding European Patent Application—EP07002328—Date of Mailing Sep. 27, 2007 (4 pages). |
International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages. |
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages. |
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages. |
International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and mailed on Jul. 13, 2012; 8 pages. |
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages. |
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages. |
International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and mailed on Jan. 12, 2012; 3 pages. |
International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages. |
International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and mailed on Jan. 11, 2007; 10 pages. |
International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and mailed on Mar. 23, 2007; 8 pages. |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and mailed on Jun. 26, 2008; 2 pages. |
International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and mailed on Jul. 23, 2008; 5 pages. |
International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and mailed on Mar. 24, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and mailed on Jul. 20, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and mailed on Oct. 12, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and mailed on Dec. 16, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and mailed on Feb. 15, 2011; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and mailed on Apr. 4, 2011; 4 pages. |
Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages. |
Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and mailed May 31, 2013; 8 pages. |
Extended European Search Report corresponding to EP 07 00 5812.5, completed May 13, 2013 and mailed May 29, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; 8 pages. |
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and mailed Jun. 13, 2013; 7 pages. |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages. |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp). |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp). |
Number | Date | Country | |
---|---|---|---|
20070179528 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60764451 | Feb 2006 | US | |
60764449 | Feb 2006 | US |