1. Field of the Invention
The present invention relates to an assembly for regulating the volume of flow of molten plastic material from an extruder to a die having multiple flow passages.
2. Brief Description of Related Developments
In certain circumstances it is necessary to supply multiple passages of an extrusion die with molten plastic material. This is accomplished in many instances by providing separate extruders for the inlet of each of the multiple passages. This may be cumbersome where there are closely adjacent multiple passages and unnecessary where several of the flow passages are intended to use the same material.
It is an object of this invention to provide an inlet manifold connected to a single extruder which is constructed to split the outflow of the extruder into multiple extrusion passages of an extrusion die assembly.
Multiple passages are generally used to feed multiple extrusion channels which extrude separate products, concentric layers, or other configurations. In such circumstances, it is sometimes difficult to maintain an even flow volume in adjacent passages because of uneven temperature distribution and other factors. This may result in an imbalance in output. This imbalance can cause problems in post extrusion processing.
It is the purpose of this invention to provide a manifold which divides a single feed flow into multiple channels and includes an adjustable throttle valve to regulate the flow volume in the extrusion passages supplied by the extruder. A manifold of this type is described in U.S. Pat. No. 6,971,865 which issued on Dec. 6, 2005, the disclosure of which is incorporated herein in its entirety.
It is another purpose of this invention to construct a means for conveniently adjusting the valve position to accurately regulate the flow of plastic.
An input manifold is constructed with an inlet for receiving molten plastic material from an extruder. The inlet splits the flow into several flow passages, at least two, to supply flowing plastic to the extrusion passages of a die assembly. The extrusion passages direct the flowing plastic to the die outlets of the assembly. The manifold is constructed having spaced adjacent upstream and downstream sections. The manifold sections have aligned passages for receiving and transmitting the flowing plastic. Each passage of the downstream section is constructed with a stationery valve stem positioned along the axis of the passage and having a conically shaped upstream facing surface.
A valve body is constructed to be mounted in each of the passages and includes an axial channel. The valve body is mounted to slidably engage the aligned passages of both the upstream and downstream sections, thereby bridging the gap between the manifold sections. The downstream end of the valve body channel is constructed with a conical valve seat to receive the upstream facing surface of the valve stem. The valve body slides within the manifold to adjust the valve opening, thereby regulating the flow of plastic in the passages. The outer surface of each of the valve bodies is constructed with a flange for engaging a bias spring. The bias spring is constrained between the valve body flange and a portion of the manifold to exert a force on the valve body tending to move the valve body into the open position.
The downstream manifold section may be attached to the die assembly by screws with the valve stems in place within the manifold section passages. The valve bodies are assembled by positioning the valve body assembly so that the valve bodies fit into the passages of the downstream manifold section. The upstream manifold section is positioned to receive the valve bodies.
In order to adjust the position of the valve bodies relative to the valve seat, a lever arm is mounted in the manifold for pivotal movement about a fulcrum positioned intermediate its length. An inner portion of the lever arm engages the valve body flange to cause axial movement of the valve body against the bias spring. Axial movement of the valve body will adjust the clearance between the valve stem and the valve seat and thereby regulate the flow volume in a particular passage. The adjustment levers are actuated by screws located at the outer end of the adjustment lever. The screws extend through the lever and engage a portion of the manifold to provide a pivot force tending to rotate the inner end of the lever against the bias spring in the throttling direction.
The manifold assembly of this invention is explained in more detail below with reference to the accompanying drawing, in which:
a is an enlarged sectional view of the manifold of
b is an enlarged sectional view of the valve mechanism shown in
a is a sectional view of a Belleville washer stack, as used in an embodiment of the manifold of
b is a sectional view of a Belleville alternative washer stack, as used in an embodiment of the manifold of
c is a top view of the Belleville washer stack of
To illustrate the construction of this invention, an extrusion system 101 is shown in
The manifold 106 is constructed of sections 110, and 111 through which the flow passages 108 and 109 extend. The upstream section 110 connects to extruder feed 102 at inlet 107 and serves to divide the flow of plastic into two streams in passages 108 and 109. The manifold sections 110 and 111 are connected by means of a pair of valve bodies 112 and 113, which, as shown in
As best shown in
The valve assembly 130 of passage 108, as shown in
Valve body flange 131 is constructed in valve bodies 112 and 113 and extends radially outward to provide a surface to capture spring 134 and to engage the inner end 135 of lever 132.
A pair of levers 132 is mounted on downstream manifold section 111 for pivotal motion about a fulcrum formed by attachment pin 136. Pin 136 is positioned centrally on the lever 132 with inner and outer portions of lever 132 extending on either side of pin 136. The inner end of lever 132 engages an upper surface of flange 131 and provides a force on the valve bodies tending to move the valve bodies axially against spring 134. As shown in the figures, motion of the valve bodies 112 and 113 downward tends to close the valve elements and restrict the flow of plastic in the flow passages 108 and 109. Upward motion will tend to separate the valve elements and open the passages. It should be noticed that the movements of the valve action can be oriented in most any direction depending on the packaging requirement of a particular extrusion application.
A spring 134 is mounted to engage the lower surface of flange 131 and exert a force that biases the valve bodies 112 and 113 towards the opening direction. As shown, clockwise pivotal motion of lever 132 will oppose the motion of spring 134. Spring 134 may be constructed as a coil spring in one embodiment. In another embodiment spring 134 may be constructed as shown in
In order to position the valve bodies 112 and 113 to accommodate the desired flow requirements, adjustment screw 133 is mounted through a transverse bore 137 in the outer end 138 of lever 132. Transverse bore 137 is threaded to engage screw 133 and allow for movement of screw 133 through lever 132. As shown in
In this manner a means of providing multiple flow passages from a single plastic feed is constructed having a convenient mechanism for accurately adjusting the flow rate in the multiple flow passages independently.
In the above description, it should be understood that the die assemblies shown are for illustration only and do not form part of this invention which can be used in a wide variety of applications in which there is a need to provide a regulated flow from a single extruder to multiple extrusion channels.
Number | Name | Date | Kind |
---|---|---|---|
3901636 | Zink et al. | Aug 1975 | A |
4081231 | Herrington | Mar 1978 | A |
4395217 | Benadi' | Jul 1983 | A |
6971865 | Prue | Dec 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070184142 A1 | Aug 2007 | US |