With reference to
The internal cooling system 102 has an electronic component source plate 108 that is thermally coupled to the electronic component 106 to draw heat away from the electronic component 106. The thermal interface layer 110a is a material that improves heat exchange by substantially eliminating air gaps that might otherwise occur between the source plate 108 and the electronic component 106. The air gaps might otherwise occur due to irregularities in the surfaces of the source plate 108 and/or the electronic component 106. As examples, the thermal interface layer 110a may be a thermally conductive grease, thermally conductive elastomer, thermally conductive tape, or other thermally conductive material.
The fluid carrying lines 112 are coupled between the source plate 108 and the internal cooling system heat rejector plate 114 in order to transfer heat from the source plate 108 to the heat rejector plate 114. The fluid carrying lines 112 may carry any type of fluid. Heat is transferred to the fluid when it is thermally coupled with the source plate 108. The heated fluid flows to the heat rejector plate 114 where heat is exchanged from the fluid to the heat rejector plate 114. The cooled fluid then returns to the source plate 108. The fluid carrying lines 112 are part of an active liquid cooling loop, in accordance with one embodiment. The fluid carrying lines 112 are part of a passive phase change loop, in accordance with another embodiment. Example embodiments of these loops are discussed herein.
The external cooling system 104 has a loop comprising a fluid distribution unit 118, external fluid carrying lines 122, and an external cooling system cold plate 116, in this embodiment. The external fluid carrying lines 122 may carry any type of fluid. The fluid distribution/cooling unit 118 comprises a refrigeration unit, in one embodiment. The fluid distribution/cooling unit 118 provides cooling fluid to the cold plate 116 via the external fluid carrying lines 122. When the fluid is thermally coupled with the cold plate 116, heat is transferred from the cold plate 116 to the fluid. The fluid then returns to the distribution/cooling unit 118 to remove heat from the fluid. Therefore, heat is removed from the cold plate 116.
In accordance to another embodiment, the fluid distribution/cooling unit 118 includes a refrigeration unit. In accordance to an alternative embodiment, the external cooling system 104 does not comprise a complete loop. For example, the external cooling system 104 may input cold water from ordinary water lines in the building, deliver the water to the cold plate 116 via the fluid lines 122, and dump the heated water.
The two cooling systems 102, 104 are thermally coupled to each other. In particular, the heat rejector plate 114 is thermally coupled to the cold plate 116. A thermal interface material 110b improves heat exchange by substantially eliminating air gaps. However, the heat rejector plate 114 and cold plate 116 form a separable heat exchange unit. Thus, the two cooling systems 102, 104 can be separated without disconnecting any of the fluid carrying lines 112, 122 in the system 100. This in turn means that the internal cooling system 102 can be removed from the chassis to service electronic components without disconnecting any of the fluid carrying lines 112, 122. The electronic components that are serviced may be the electronic component 106 that is cooled by the internal cooling system 102 or other components that are not cooled by the internal cooling system 102.
The module 200 has an internal cooling system. So as to not obscure the drawing, only a portion of the internal cooling system is depicted in
Thus, the module 200 in
The heat rejector plates 114 are thermally coupled with cold plates 116 that are attached to the chassis 222. The cold plates 116 are part of an external cooling system (not fully depicted in
The module 200 has an injector/ejector handle 220 that is used to help remove and replace the module 200 from the chassis 222. The module 200 has a mechanism that facilitates forcing each heat rejector plate 114 to be thermally coupled with its respective cold plate 116, in accordance with an embodiment of the present invention. In one embodiment, the handle 220 is mechanically coupled to a plate coupler 242 to control the position of the heat rejector plate 114. In particular, the position of the heat rejector plate 114 is set to a first position such that when inserting the module 200 into the chassis 222 the module 200 moves freely. After the module 200 is inserted into the chassis 222, the handle 220 is adjusted to cause the plate coupler 242 to force the heat rejector plate 114 and the cold plate to be thermally coupled. For example, when first slid into the chassis 222, there may be a small air gap between the heat rejector plate 114 and the cold plate 116. The plate coupler 242, in response to movement of the handle 220, forces the heat rejector plate 114 to have physical contact with the cold plate 116, and therefore, to cause an efficient thermal coupling to be formed.
The internal cooling system can be physically attached to the module 200 by, for example, a fastener. Attaching the internal cooling system to the module 200 allows a good thermal coupling between the internal cooling system and the electronic components that are cooled by the cooling system. When removing the module 200 from the chassis 222, the internal cooling system is removed from the chassis 222 with the internal cooling system still attached to the components that it cools. However, if desired, once the module 200 has been removed from the chassis 222, the internal cooling system can be physically separated from the components that it cools without disconnecting any fluid carrying lines by unfastening the internal cooling system from the module 200. The module 200 also has electronic components 118 that are not cooled by the internal cooling system.
In step 302, the internal cooling system 102 is removed from the chassis, to thermally de-coupling the heat rejector plate 114 from the cold plate 116, without de-coupling any of the fluid lines (112, 122) in the system 100. That is, none of the external fluid lines 122 and none of the internal fluid lines 112 need to be disconnected to service electronic components. As an example, removing the internal cooling system 102 is achieved by removing the module 200 that has the internal cooling system residing thereon.
In step 304, one or more electronic components on the module 200 are serviced with the internal fluid cooling system 102 removed from the chassis. The electronic components may be components on the module 200 other than those that are cooled by the internal cooling system. However, the electronic components that are cooled may also be serviced. In this case, the internal cooling system may be un-fastened from the module 200 to allow servicing of the electronic components.
In step 306, the internal fluid cooling system 102 is placed back into the chassis, to thermally couple the heat rejector plate 114 to the cold plate 116. For example, the module 200 is slid back into the chassis and a mechanism is used to cause the heat rejector plate 114 and the cold plate 116 to be thermally coupled. Therefore, electronic components can be serviced without disconnecting any fluid lines 112, 122.
The heat rejector plates 114a, 114b are thermally coupled with each respective cold plate 116 to cool the electronic components. The cold plates 116 are coupled to a chassis (not depicted in
The heat rejector plates 114 and the cold plates 116 form a separable heat exchange unit. Therefore, the internal cooling system can be removed from the chassis (not depicted in
The fluid lines 412 are heat pipes, in one embodiment. Heat pipes are hollow cylinders filled with a fluid that vaporizes when the fluid is thermally coupled with the electronic component (e.g., CPU or other component), providing the electronic component is sufficiently hot. The fluid in the vapor phase flows to one of the heat rejector plates 114, where the fluid returns to the liquid phase due to transferring heat to the heat rejector plate 114. The cooled fluid then flows back to the end of the heat pipe that is thermally coupled with source plate 425. Thus, the heat pipes provide a phase change loop for the fluid. Further, the fluid in the heat pipes is able to exchange a great deal of heat even if there is a small temperature difference between the source plate 425 and the heat rejector plate 114. The fluid lines 412 are thermosyphon, in accordance with another embodiment. Similar to heat pipes, thermosyphon is a cooling technology with no moving parts within pipes. However, thermosyphon operates with a different principle than heat pipes. Heat pipes operation is based on capillary force, whereas thermosyphon operation is based on gravity force only.
The fluid lines 412 are embedded in the source plate 425, which may be formed of a material with a high heat conductivity. For example, the source plate 425 may be copper; however, other materials may be used.
While
The fluid line 462 is embedded in the source plate 425, which is a material with high heat conductivity. The source plate 425 is thermally coupled to the various electronic components (e.g., components 402, CPU 422). For example, the source plate 425 may be thermally coupled to the electronic components 402, 422. While
Referring again to
The heat rejector plate 114c and the cold plate 116 form a separable heat exchange unit, such that the internal cooling system 401 can be removed from the chassis (not depicted in
At this point, it should be noted that although the invention has been described with reference to specific embodiments, it should not be construed to be so limited. Various modifications may be made by those of ordinary skill in the art with the benefit of this disclosure without departing from the spirit of the invention. Thus, the invention should not be limited by the specific embodiments used to illustrate it but only by the scope of the claims and the equivalents thereof.