The invention pertains to the field of Variable Camshaft Timing (VCT) devices. More particularly, the invention pertains to a mechanism for locking the position of the variable cam timing device.
Variable Camshaft Timing (VCT) devices may use a lock pin to fix the timing between the camshaft and the crankshaft without Engine Control Unit (ECU) input. VCT devices may use a spring to maintain lock pin engagement. When a command is given for the VCT device to alter the timing, engine oil pressure may be used to overcome the spring force and retract the lock pin, allowing the VCT device to phase.
Under certain engine conditions, when the VCT device is locked, hydraulic and mechanical inputs on the VCT device may cause the lock pin to unlock, resulting in uncommanded phasing between the camshaft and crankshaft. The un-commanded unlock and resulting uncontrolled phasing of the VCT device can cause decreased engine efficiency and other engine related issues.
To combat the uncommanded phasing between the camshaft and crankshaft due to the lock pin unlocking, the lock pin of the present invention has a pressure area in the locking direction, which utilizes engine oil pressure to create a net force in the lock direction to maintain the VCT device in the locked position.
A lock pin with multiple diameters is provided within a VCT device. The lock pin default position is a locked position in which a nose of the lock pin engages a pin pocket in an end plate which engages the engine timing drive, preventing relative movement between a rotor (fixed to the camshaft) and the end plate engaging with the timing drive. When the lock pin is commanded to unlock by the ECU, engine oil pressure is directed to the nose of the lock pin and the lock pin retracts from the pin pocket resulting in an unlocked condition or position in which relative movement between the rotor and the end plate is allowed.
The lock pin may be “T” shaped with two distinct diameters. The lock pin is received in a bore of the rotor that has multiple diameters that create a dynamic hydraulic seal with the lock pin. A first area (Area A) of the lock pin is present on the nose or top of the first head end of the lock pin that is received by a pin pocket in a plate of the VCT phaser or device. A second area (Area B) is present on the underside of the head end of the lock pin.
The lock pin may be “1” shaped with three distinct diameters with the smallest diameter being in the middle of two larger diameters. The lock pin is received in a bore of the rotor that has multiple diameters that create a dynamic hydraulic seal with the lock pin. The first area (Area A) of the lock pin is present on the nose or top of the first head end of the lock pin that is received by a pin pocket in a plate of the VCT phaser. The second area (Area B) is present on the underside of the head end of the lock pin. The third area (Area C) is present opposite the second area at the second end of the lock pin. The first area (A) is greater than the second area (B) and the second area (B) is greater than the third area (C). The second area (B) and the third area (C) of the lock pin form a hydraulic chamber, with the second area (B) being perpendicular to the locking direction of the lock pin and the third, smaller area (C) being perpendicular to an unlocking direction. Pressure applied to a hydraulic chamber formed between the second area (B) and the third area (C) results in a force imbalance, inducing the lock pin to move to the locked position or remain in the locked position and therefore, a net positive force is present in the locking direction when this hydraulic chamber is pressurized. The first area (A) is preferably larger than the second (B) and third areas (C) so that a single oil pressure source is able to overcome the locking force to unlock when commanded by the ECU.
Engine oil provided to the hydraulic chamber formed between the second and third areas prevents the pin from the unlocking, and moves the lock pin towards the locked position when the pin is unlocked. Therefore, unequal pressure areas of the lock pin are used to move the lock pin to a locked position and maintain the locked position until the ECU commands the lock pin to unlock and directs oil pressure to the noise of the lock pin corresponding to the first area.
In an alternate embodiment, the lock pin is “T”-shaped.
The first end 100a of the lock pin 100 is received within a pin pocket 101a of the end plate 101 of the phaser. Oil pressure in the pin pocket 101a may by controlled by the ECU for venting to relock, or pressurizing to unlock the lock pin 100 by moving the nose of the lock pin 100.
The first end 100a of the lock pin 100 has an Area A 102 and is a top surface of the top line of the “I” or first land 100c. The under surface of the top line of the “I” forms the second Area B 103. The top surface of the bottom line of the “I” or second land 100d forms the third Area C 104. Area B 103 and Area C 104 are connected by a reduced diameter 106 of the lock pin 100, so that Area B 103 and Area C 104 can move together as a unit. The surface of Area A 102 is greater than the surface of Area B 103. The surface of Area B 103 is greater than the surface of Area C 104. The first land 100c and the second land 100d each have a different diameter, with the first land 100c being received within the first diameter 109a of the stepped bore 109 and the second land 100d being received within the second diameter 109b of the stepped bore 109 of the rotor 105. A hydraulic chamber 108 is formed between the second Area B 103, the third Area C 104, the reduced diameter 106 of the lock pin 100, and the stepped bore 109 of the rotor 105. The second Area B 103 is perpendicular to the locking direction of the lock pin 100 and the third, smaller Area C 104 is perpendicular to the unlocking direction. Pressure applied to the hydraulic chamber 108 formed between the second Area B 103 and the third Area C 104 results in a force imbalance inducing the lock pin 100 to move to the locked position or remain in the locked position.
The lock pin 100 has a locked position in which the first end 100a of the lock pin 100 engages a pin pocket 101a in an end plate 101 of the phaser, preventing relative movement between a rotor 105 and an endplate 101 of the VCT phaser. The lock pin 100 also has an unlocked position in which relative movement between the rotor 105 and the end plate 101 is allowed.
The unequal pressure Areas A-C allow the position of the lock pin 100 to be controlled using pressure supplied to the first end 100a of the lock pin 100 and pressure to a common port or chamber 108 from the engine source oil. When the first end 100a of the lock pin 100 is vented through vent 107, the lock pin 100 will be held in the locking position due to a net force generated from engine source oil. When oil pressure is commanded to the nose of the lock pin 100a by the ECU, the lock pin 100 will overcome the force in the locking direction and move to an unlocked position.
Referring to
Internal combustion engines have employed various mechanisms to vary the relative timing between the camshaft and the crankshaft for improved engine performance or reduced emissions. The majority of these variable camshaft timing (VCT) mechanisms or devices use one or more “vane phasers” on the engine camshaft (or camshafts, in a multiple-camshaft engine). As shown in the figures, vane phasers have a rotor 105 with one or more vanes, mounted to the end of the camshaft, surrounded by a housing assembly with the vane chambers into which the vanes fit. The housing's outer circumference may form the sprocket, pulley or gear accepting drive force through a chain, belt, or gears, usually from the crankshaft, or possibly from another camshaft in a multiple-cam engine. The housing assembly preferably includes the end plates 101.
Engine oil pressure is provided to the hydraulic chamber 108 from the control valve (not shown) through a passage 121 in the center bolt 120. There is a net positive area in the locking direction (direction towards the pin pocket 101a of the end plate 101) since Area B 103 is greater than Area C 104. The pressure of the fluid on Area B 103 causes the first end 100a of the lock pin 100 to move towards and engage the pin pocket 101a of the end plate 101. With the net positive area in the locking direction, the lock pin 100 is prevented from unlocking due to engine conditions. The pin pocket 101a is vented 107 to atmosphere through the center bolt 120. The pressure in the hydraulic chamber 108 is equal to the engine oil pressure.
The first end 200a of the lock pin 200 has an Area A 202 and is a top surface of the top line of “T” or first land 200c. The under surface of the top line of the “T” forms the second Area B 203. The horizontal line of the “T” may be land 200c and the vertical line may be land 200d. The lock pin 200 has a locked position in which the first end 200a of the lock pin 200 engages a pin pocket 101a in an end plate 101 of the phaser, preventing relative movement between a rotor 105 and an end plate 101 of the VCT phaser and an unlocked position in which relative movement between the rotor 105 and the end plate 101 is allowed. It should be noted that Area A 202 corresponds to
Referring to
The length of the lock pin 100, 200 and the length of the lands may vary. The depth of the pin pocket 101a may vary. The number of common supply ports to the hydraulic chamber 108, 208 may vary.
A lock pin spring can be added to the second end 100b, 200b of the lock pin 100, 200 in the locking direction to ensure that at low oil pressures, the lock pin 100, 200 does not become unlocked. However, the lock pin spring is not necessary for the lock pin to move between the locked or unlocked position.
The lock pin 100, 200 of the present invention may be used on all hydraulic VCT devices. It is particularly useful for inducing a force in the locking direction if a different mechanical solution is insufficient for keeping the phaser locked. This invention can be used alone to control a lock pin function (lock/unlock/relock) or in combination with a lock pin spring or other mechanical solution.
It should be noted that one of the advantages of the present invention is that a much higher force may be generated in the locking direction than is available from a spring in the same package (for example, greater than 11N vs. 2N spring force in the locking direction). The lock pin of the present invention can be combined with a spring so that with very low oil pressures and high cam torques (typically in high temperature conditions), the VCT phaser will not unlock. At low temperatures with high oil pressures and high cam torques the oil pressure and resulting net force on chamber 108, 208 is robust at preventing uncommanded unlock.
The force of the hydraulic fluid in the hydraulic chamber 108, 208 on the areas of the lock pin will vary according to engine supply oil pressure. As a result in conditions that may otherwise cause the lock pin to unlock when uncommanded, the lock pin will remain locked due to the net force on chamber 108, 208. The conditions that can cause an uncommanded unlock occur primarily during conditions where the oil pressure is high and the benefit of this invention is maximized. The spring and its spring force do not vary with pressure or temperature.
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/048148 | 8/23/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/039308 | 3/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2130618 | Gnavi | Sep 1938 | A |
5797361 | Mikame | Aug 1998 | A |
5924395 | Moriya et al. | Jul 1999 | A |
6443112 | Kinugawa | Sep 2002 | B1 |
6505586 | Sato | Jan 2003 | B1 |
6745735 | Smith | Jun 2004 | B2 |
8356583 | Smith | Jan 2013 | B2 |
8360022 | Ozawa et al. | Jan 2013 | B2 |
8631744 | Fujiwaki et al. | Jan 2014 | B2 |
8893677 | Smith | Nov 2014 | B2 |
9022000 | Kanai | May 2015 | B2 |
9080475 | Kobayashi et al. | Jul 2015 | B2 |
9127575 | Fischer et al. | Sep 2015 | B2 |
20030196625 | Smith | Oct 2003 | A1 |
20030217717 | Pierik et al. | Nov 2003 | A1 |
20070017463 | Mott et al. | Jan 2007 | A1 |
20070245994 | Methley | Oct 2007 | A1 |
20080251042 | Hayase et al. | Oct 2008 | A1 |
20110017156 | Smith | Jan 2011 | A1 |
20110168114 | Kobayashi | Jul 2011 | A1 |
20120255509 | Lichti | Oct 2012 | A1 |
20130104820 | Watanabe | May 2013 | A1 |
20140224198 | Morehead | Aug 2014 | A1 |
20150027393 | Noguchi | Jan 2015 | A1 |
20160010515 | Snyder | Jan 2016 | A1 |
20160024979 | Busse | Jan 2016 | A1 |
20160084120 | Sato | Mar 2016 | A1 |
20160222835 | Narita | Aug 2016 | A1 |
20170130619 | Zschieschang | May 2017 | A1 |
20170292415 | Sato | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
1495344 | May 2004 | CN |
102008059196 | Jun 2010 | DE |
102014205568 | Mar 2014 | DE |
2012061233 | May 2012 | WO |
2015041280 | Sep 2014 | WO |
Entry |
---|
International Search Report for PCT/US2017/048148 dated Dec. 1, 2017. |
Number | Date | Country | |
---|---|---|---|
20190203617 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62378748 | Aug 2016 | US |