The present invention relates to multiprocessor systems, and more particularly to maintaining coherency between an Input/Output device and a multitude of processing units.
Advances in semiconductor fabrication technology have given rise to considerable increases in microprocessor clock speeds. Although the same advances have also resulted in improvements in memory density and access times, the disparity between microprocessor clock speeds and memory access times continues to persist. To reduce latency, often one or more levels of high-speed cache memory are used to hold a subset of the data or instructions that are stored in the main memory. A number of techniques have been developed to increase the likelihood that the data/instructions held in the cache are repeatedly used by the microprocessor.
To improve performance at any given operating frequency, microprocessors with a multitude of cores that execute instructions in parallel have been developed. The cores may be integrated within the same semiconductor die, or may be formed on different semiconductor dies coupled to one another within a package, or a combination of the two. Each core typically includes its own level-1 cache and an optional level-2 cache.
A cache coherency protocol governs the traffic flow between the memory and the caches associated with the cores to ensure coherency between them. For example, the cache coherency protocol ensures that if a copy of a data item is modified in one of the caches, copies of the same data item stored in other caches and in the main memory are invalidated or updated in accordance with the modification.
As is known, an Input/Output (I/O) device is adapted to interface between a network or a peripheral device, such as a printer, storage device, etc., and a central processing unit (CPU). The I/O device may, for example, receive data from the peripheral device and supply that data to the CPU for processing. The controlled hand-off of data between the CPU and the I/O device is usually based on a model, such as the well known producer/consumer model. In accordance with this model, the I/O device writes the data into a main memory and subsequently sends a signal to inform the CPU of the availability of the data. The signal to the CPU may be issued in a number of different ways. For example, a write operation carried out at a separate memory location may be used as such as a signal. Alternatively, a register disposed in the IO device may be set, or an interrupt may be issued to the CPU to signal the availability of the data.
In systems implementing the non-posted write protocol, no signal is sent to the CPU until the I/O device is notified that all the I/O write data is visible to the CPU. In systems implementing the posted write protocol, the IO device has no knowledge of when the I/O write data are made visible to the CPU. Systems supporting the posted-write protocol are required to adhere to a number of rules, as set forth in the specification for Peripheral Component Interconnect (PCI). One of these rules requires that posted I/O write data become visible to CPUs in the same order that they are written by the I/O device. Another one of these rules requires that when the CPU attempts to read a register disposed in an IO device, the response not be delivered to the CPU until after all previous I/O write data are made visible to the CPU. Read and write requests from a CPU to an IO device are commonly referred to as Memory-Mapped IO (MMIO) read and write requests, respectively.
In systems that support I/O coherency, write operations may take different paths to the memory. For example, one write operation may be to a coherent address space that requires updates to the CPUs' caches, while another write operation may be to a non-coherent address space that can proceed directly to the main memory, rendering compliance with the above rules difficult. Similarly, in such systems, responses to I/O read requests may not follow the same path as the write operations to the memory. Accordingly, in such systems, satisfying the second rule also poses a challenging task.
A method of processing write requests in a computer system, in accordance with one embodiment of the present invention, includes in part, issuing a non-coherent I/O write request, stalling the non-coherent I/O write request until all pending coherent I/O write requests issued prior to issuing the non-coherent I/O write request are made visible to all processing cores, and delivering the non-coherent I/O write request to a memory after all the pending coherent I/O write requests issued prior to issuing the non-coherent I/O write request are made visible to all processing cores.
A central processing unit, in accordance with another embodiment of the present invention, includes, in part, a multitude of processing cores and a coherence manager adapted to maintain coherence between the multitude of processing cores. The coherence manager is configured to receive non-coherent I/O write requests, stall the non-coherent I/O write requests until all pending coherent I/O write requests issued prior to issuing the non-coherent I/O write requests are made visible to all of the processing cores, and deliver the non-coherent I/O write requests to an external memory after all the pending coherent I/O write requests issued prior to issuing the non-coherent write request are made visible to all processing cores.
In one embodiment, the coherence manager further includes a request unit, an intervention unit, a memory interface unit and a response unit. The request unit is configured to receive a coherent request from one of the cores and to selectively issue a speculative request in response. The intervention unit is configured to send an intervention message associated with the coherent request to the cores. The memory interface unit is configured to receive the speculative request and to selectively forward the speculative request to a memory. The response unit is configured to supply data associated with the coherent request to the requesting core.
A method of handling Input/Output requests, in accordance with one embodiment of the present invention includes, in part, incrementing a first count in response to receiving an I/O write request, incrementing a second count if the I/O write request is detected as being a coherent I/O write request, incrementing a third count if I/O the write request is detected as being a non-coherent I/O write request, setting a fourth count to a first value defined by the first count in response to receiving an MMIO read response, setting a fifth count to a second value defined by the second count in response to receiving the MMIO read response, setting a sixth count to a third value defined by the third count in response to receiving the MMIO read response, decrementing the first count in response to incrementing the second count or the third count, decrementing the second count when the detected coherent I/O write request is made visible to all processing cores, decrementing the third count when the detected non-coherent I/O write request is made visible to all processing cores, decrementing the fourth count in response to decrementing the first count as long as the fourth count is greater than a predefined value (e.g., 0), decrementing the fifth count in response to decrementing the second count as long as the fifth count is greater than the predefined value, incrementing the fifth count if the second count is incremented and while the fourth count is not equal to a first predefined value, decrementing the sixth count in response to decrementing the third count as long as the sixth count is greater than the predefined value, incrementing the sixth count if the third count is incremented and while the fourth count is not equal to the first predefined value, and transferring the MMIO read response to a processing unit that initiated the MMIO read request when a sum of the fourth, fifth and sixth counts reaches a second predefined value.
In one embodiment, the first value is equal to the first count, the second value is equal to the second count, and the third value is equal to said third count. In one embodiment, the first and second predefined values are zero. In one embodiment, the method of handling Input/Output requests further includes storing the MMIO read response in a first buffer, and storing the MMIO read response in a second buffer. In one embodiment, the fourth, fifth and sixth counters are decremented to a third predefined value before being respectively set to the first, second and third values if a second MMIO read response is present in the second buffer when the first MMIO read response is stored in the second buffer. The third predefined value may be zero. In one embodiment, if a sum of the fourth, fifth and sixth counts is equal to a third predefined value when the MMIO read response is stored in the first buffer, the MMIO read response is transferred to a processing unit that initiated the MMIO read request. In one embodiment, the third predefined value is zero.
A central processing unit, in accordance with one embodiment of the present invention, includes in part, first, second, third, fourth, fifth, and sixth counters as well as a coherence block. The first counter is configured to increment in response to receiving a I/O write request and to decrement in response to incrementing the second or third counters. The second counter is configured to increment if the I/O write request is detected as being a coherent I/O write request and to decrement when the detected coherent I/O write request is made visible to all processing cores. The third counter is configured to increment if the I/O write request is detected as being a non-coherent I/O write request and to decrement when the detected non-coherent I/O write request is made visible to all processing cores. The fourth counter is configured to be set to a first value defined by the first counter's count in response to receiving an MMIO read response. The fourth counter is configured to decrement in response to decrementing the first counter as long as the fourth counter's count is greater than e.g., zero. The fifth counter is configured to be set to a second value defined by the second counter's count in response to receiving the MMIO read response. The fifth counter is configured to decrement in response to decrementing the second counter as long as the fifth counter's count is greater than, e.g., zero. The fifth counter is further configured to increment in response to incrementing the second counter if the fourth counter's count is not equal to a first predefined value. The sixth counter is configured to be set to a third value defined by the second counter's count in response to receiving an MMIO read response. The sixth counter is configured to decrement in response to decrementing the third counter as long as the sixth counter's count is greater than, e.g., zero. The sixth counter is further configured to increment in response to incrementing the third counter if the fourth counter's count is not equal to the first predefined value. The coherence block is configured to transfer the MMIO read response to a processing unit that initiated the MMIO read request when a sum of the fourth, fifth and sixth counts reaches a second predefined value.
In one embodiment, the first value is equal to the first counter's count, the second value is equal to the second counter's count, and the third value is equal to the third counter's count. In one embodiment, the first and second predefined values are zero. In one embodiment, the central processing unit further includes, in part, a first buffer adapted to store the response to the I/O read request, and a second buffer adapted to receive and store the response to the I/O read request from the first buffer.
In one embodiment, the fourth, fifth and sixth counters are decremented to a third predefined value before being respectively set to the first, second and third counters' counts if an MMIO read response is present in the second buffer at the time the first MMIO read response stored in the second buffer. In one embodiment, the third predefined value is zero. In one embodiment, the central processing unit further includes a first buffer adapted to store the MMIO read response, and a block configured to transfer the MMIO read response the first buffer to a processing unit that initiated the MMIO read request if a sum of the counts of the fourth, fifth and sixth counters is equal to a third predefined value when the MMIO read response is stored in the first buffer.
A central processing unit, in accordance with one embodiment of the present invention, includes in part, a multitude of processing cores, an Input/Output (I/O) coherence unit adapted to control coherent traffic between at least one I/O device and the multitude of processing cores, and a coherence manager adapted to maintain coherence between the plurality of processing cores. The coherence manager includes, in part, a request unit configured to receive a coherent request from one of the multitude of cores and to selectively issue a speculative request in response, an intervention unit configured to send an intervention message associated with the coherent request to the multitude of cores, a memory interface unit configured to receive the speculative request and to selectively forward the speculative request to a memory, a response unit configured to supply data associated with the coherent request to the requesting cores, a request mapper adapted to determine whether a received request is a memory-mapped I/O request or a memory request, a serializer adapted to serialize received requests, and a serialization arbiter adapted so as not to select a memory mapped input/output request for serialization by the serializer if a memory input/output request serialized earlier by the serializer has not been delivered to the I/O coherence unit.
A method of handling Input/Output requests in a central processing unit includes, in part, a multitude of processing cores, an Input/Output coherence unit adapted to control coherent traffic between at least one I/O device and the multitude of processing cores, and a coherence manager adapted to maintain coherence between the multitude of processing cores. The method includes identifying whether a first request is a memory-mapped Input/Output request, serializing the first request, attempting to deliver the first request to the Input/Output coherence unit if the first request is identified as a memory-mapped Input/Output request, identifying whether a second request is a memory-mapped Input/Output request, and disabling serialization of the second request if the second request is identified as being a memory-mapped I/O request and until the first request is received by the Input/Output coherence.
In accordance with one embodiment of the present invention, a multi-core microprocessor includes, in part, a cache coherence manager that maintains coherence among the multitude of microprocessor cores, and an I/O coherence unit that maintains coherent traffic between the I/O devices and the multitude of processing cores of the microprocessor. In accordance with one aspect of the present invention, the I/O coherence unit stalls non-coherent I/O write requests until it receives acknowledgement that all pending coherent I/O write requests issued prior to the non-coherent I/O write requests have been made visible to the processing cores. In accordance with another aspect of the present invention, the I/O coherence unit ensures that MMIO read responses are not delivered to the processing cores until after all previous I/O write requests are made visible to the processing cores. In accordance with yet another aspect of the present invention, in order to prevent deadlock conditions that may occur as a result of enforcing the requirement that MMIO read responses be ordered behind I/O write requests, the determination as to whether a request is a memory request or an MMIO request is made prior to serializing that request.
Each processing core 110i is adapted to perform a multitude of fixed or flexible sequence of operations in response to program instructions. Each processing core 110i may conform to either CISC and/or RISC architectures to process scalar or vector data types using SISD or SIMD instructions. Each processing core 110i may include general purpose and specialized register files and execution units configured to perform logic, arithmetic, and any other type of data processing functions. The processing cores 1101, 1102, 1103 and 1104, which are collectively referred to as processing cores 110, may be configured to perform identical functions, or may alternatively be configured to perform different functions adapted to different applications. Processing cores 110 may be single-threaded or multi-threaded, i.e., capable of executing multiple sequences of program instructions in parallel.
Each core 105i is shown as including a level-1 (L1) cache. In other embodiments, each core 110i may include more levels of cache, e.g., level 2, level 3, etc. Each cache 115i may include instructions and/or data. Each cache 115i is typically organized to include a multitude of cache lines, with each line adapted to store a copy of the data corresponding with one or more virtual or physical memory addresses. Each cache line also stores additional information used to manage that cache line. Such additional information includes, for example, tag information used to identify the main memory address associated with the cache line, and cache coherency information used to synchronize the data in the cache line with other caches and or with the main system memory. The cache tag may be formed from all or a portion of the memory address associated with the cache line.
Each L1 cache 115i is coupled to its associated processing core 110i via a bus 125i. Each bus 125i includes a multitude of signal lines for carrying data and/or instructions. Each core 105i is also shown as including a cache control logic 120i to facilitate data transfer to and from its associated cache 115i. Each cache 115i may be fully associative, set associative with two or more ways, or direct mapped. For clarity, each cache 115i is shown as a single cache memory for storing data and instructions required by core 105i. Although not shown, it is understood that each core 105i may include an L1 cache for storing data, and an L1 cache for storing instructions.
Each cache 115i is partitioned into a number of cache lines, with each cache line corresponding to a range of adjacent locations in shared system memory 300. In one embodiment, each line of each cache, for example cache 1151, includes data to facilitate coherency between, e.g., cache 1151, main memory 300 and any other caches 1152, 1153, 1154, intended to remain coherent with cache 1151, as described further below. For example, in accordance with the MESI cache coherency protocol, each cache line is marked as being modified “M”, exclusive “E”, Shared “S”, or Invalid “I”, as is well known. Other cache coherency protocols, such as MSI, MOSI, and MOESI coherency protocols, are also supported by the embodiments of the present invention.
Each core 105i is coupled to a cache coherence manager 200 via an associated bus 135i. Cache coherence manager 200 facilitates transfer of instructions and/or data between cores 105i, system memory 300, I/O units 310, 320 and optional shared L2 cache 305. Cache coherency manager 200 establishes the global ordering of requests, sends intervention requests, collects the responses to such requests, and sends the requested data back to the requesting core. Cache coherence manager 200 orders the requests so as to optimize memory accesses, load balance the requests, give priority to one or more cores over the other cores, and/or give priority to one or more types of requests over the others.
In response to a coherent intervention request received from request unit 205, intervention unit 210 issues an intervention message via output ports 240. A hit will cause the data to return to the intervention unit via input ports 245. Intervention unit 250 subsequently forwards this data to response unit 215 via output ports 250. Response unit 215 forwards this data to the requesting (originating the request) core via output ports 265. If there is a cache miss and the read request is not performed speculatively, intervention unit 210 requests access to this data by sending a coherent read or write request to memory interface unit 220 via output ports 255. A read request may proceed without speculation when, for example, a request memory buffer disposed in request unit 205 and adapted to store and transfer the requests to memory interface unit 220 is full.
Memory interface unit 220 receives non-coherent read/write requests from request unit 205, as well as coherent read/write requests and writeback requests from intervention unit 210. In response, memory interface unit 220 accesses system memory 300 and/or higher level cache memories such as L2 cache 305 via input/output ports 255 to complete these requests. The data retrieved from memory 300 and/or higher level cache memories in response to such memory requests is forwarded to response unit 215 via output port 260. The response unit 215 returns the data requested by the requesting core via output ports 265. As is understood, the requested data may have been retrieved from an L1 cache of another core, from system memory 300, or from optional higher level cache memories.
Referring to
I/O write requests are received by I/O coherence unit 325 and transferred to coherence manager 200 in the order they are received. Coherence manager 200 provides acknowledgement to I/O coherence unit (hereinafter alternatively referred to as IOCU) 325 when the write data is made visible to processing cores 110i. Non-coherent I/O write requests are made visible to all processing cores after they are serialized. Coherent I/O write requests are made visible to all processing cores after the responses to their respective intervention messages are received. IOCU 325 is adapted to maintain the order of I/O write requests. Accordingly, if coherent I/O write requests are followed by non-coherent I/O write requests, IOCU 325 does not issue the non-coherent I/O write requests until after all previous coherent I/O write requests are made visible to all processing cores by coherence manager 200, as described in detail below.
Requests from I/O devices (hereinafter alternatively referred to as I/Os) are delivered to request serializer 350 via request mapper unit 360. Requests from the CPU cores 105 are also received by request serializer 350. Request serializer 350 serializes the received requests and delivers them to request handler 356. MMIO requests originated by the processing cores are transferred to IOCU 325 and subsequently delivered to the I/O device that is the target of the request.
The path from the request mapper unit 360 to the request serializer 350 is a first-in-first-out path. Accordingly, I/O requests, such as I/O write requests maintain their order as they pass through IOCU 325. However, depending on whether the I/O requests are coherent or non-coherent, they may take different paths through the CM 200. Non-coherent I/O write requests are transferred to the memory via memory interface 220 and are made visible to the processing cores after being received by request handler 356. Coherent I/O write requests, on the other hand, are transferred to intervention unit 210, which in response sends corresponding intervention messages to the processing cores to query their respective L1 and/or L2 caches. If there is a cache hit, the corresponding cache line(s) is invalidated at which time the I/O write data is made visible to cores 105i. Accordingly, a coherent I/O write request often experiences an inherently longer path delay than a non-coherent I/O write request.
Assume an I/O device issues a coherent I/O write request that is followed by a non-coherent I/O write request. As described above, because of the differential path delays seen by the I/O coherent and non-coherent write requests, in the absence of present invention described herein, the non-coherent I/O write request may become visible to the CPU cores before the coherent I/O write requests; this violates the rule that requires the write data be made visible to the CPUs in the same order that their respective write requests are issued by the I/O devices.
To ensure that I/O write data are made visible to the processing cores in the same order that their respective I/O write requests are issued, IOCU 325 keeps track of the number of outstanding (pending) coherent I/O write requests. As is discussed below, IOCU 325 includes a request mapper 360 that determines the coherency attribute of I/O write requests. Using the coherency attribute, IOCU 325 stalls non-coherent I/O write requests until it receives acknowledgement from CM 200 that all pending coherent I/O write requests have been made visible 406 to the processing cores.
Referring to
IOCU 325 is shown as including, in part, a read response capture buffer (queue) 380, a read response holding queue 388, a multitude of write counters, namely an unresolved write counter 372, a coherent request write counter 374, and a non-coherent request write counter 376, collectively and alternatively referred to herein as write counters, as well as a multitude of snapshot counters, namely an unresolved snapshot counter 382, a coherent request snapshot counter 384, and a non-coherent snapshot counter 386, collectively and alternatively referred to herein as snapshot counters.
Upon receiving an I/O write request via I/O request register 370, unresolved write counter 372 is incremented. Request mapper unit I/O 360 also receives the I/O write request from I/O request register 370 and determines the coherence attribute of the I/O write request. If the I/O write request is determined as being a coherent I/O write request, unresolved write counter 372 is decremented and coherent request write counter 374 is incremented. If, on the other hand, the I/O write request is determined as being a non-coherent I/O write request, unresolved write counter 372 is decremented and non-coherent request write counter 374 is incremented. Coherent request counter 374 is decremented when CM 200 acknowledges that an associated coherent I/O write request is made visible to the requesting core. Likewise, non-coherent request counter 376 is decremented when CM 200 acknowledges that an associated non-coherent I/O write request is made visible to the requesting core.
The sum of the counts in the write counters at a time when a MIMO read response is received represents the number of pending I/O write requests that must be made visible to all processing cores before that MIMO read response is returned to the requesting core. This sum is replicated in the snapshot counters at the time the MIMO read response is received by (i) copying the content, i.e., count, of unresolved write counter 372 to unresolved snapshot counter 382, (ii) copying the count of coherent request write counter 374 to coherent request snapshot counter 384, and (iii) copying the count of non-coherent request write counter 376 to non-coherent snapshot counter 386.
The snapshot counters are decremented whenever the write counters are decremented until the counts of the snapshot counters reach a predefined value (e.g., zero). So long as unresolved snapshot counter 382's count is greater than the predefined value, unresolved snapshot counter 382 is decremented when unresolved write counter 372 is decremented. So long as coherent request snapshot counter 384's count is greater that the predefined value, coherent request snapshot counter 384 is decremented when coherent request write counter 372 is decremented. Likewise, so long as non-coherent request snapshot counter 386's count is greater that the predefined value, non-coherent request snapshot counter 386 is decremented when non-coherent request write counter 382 is decremented. Furthermore, snapshot counters 384 and 386 are incremented when snapshot counter 382 is non-zero, i.e., the snapshot counters are waiting for some I/O write requests to become resolved, and an unresolved I/O write request becomes resolved, i.e., when either counter 374 or 376 is incremented. When the counts of the snapshot counters reach predefined values (e.g., zero), the MMIO read response stored in the MMIO read response holding queue 388 is delivered to the requesting core.
A response to an MMIO read request is first received and stored in read response capture queue 380. Such a response is subsequently retrieved from read response capture queue (RRCQ) 380 and loaded in read response holding queue (RRHQ) 388. If RRHQ 388 is empty when it receives the new read response, then unresolved snapshot counter 382's count is set equal to write counter 372's count; coherent request snapshot counter 384's count is set equal to coherent request write counter 374's count; and non-coherent snapshot counter 386's count is set equal to non-coherent request write counter 376's count. So long as their respective counts remain greater than the predefined value, the snapshot counters are decremented at the same time their associated write counters are decremented. Furthermore, snapshot counters 384 and 386 are incremented when snapshot counter 382 is non-zero, i.e., the snapshot counters are waiting for some I/O write requests to become resolved, and an unresolved I/O write request becomes resolved, i.e., when either counter 374 or 376 is incremented. The response to the MMIO read request remains in RRHQ 388 until all 3 snapshot counters are decremented to predefined values (e.g., zero). At that point, all previous I/O write requests are complete and the response to the MMIO read request is dequeued from RRHQ 388 and delivered to the CM 200.
If RRHQ 388 includes one or more MMIO read responses at a time it receives a new MMIO read response, because at that time the snapshot counters 382, 384 and 386 are being used to count down the number of pending I/O write requests that are ahead of such earlier MMIO read responses, the snapshot counters are not loaded with the counts of the write counters. When the snapshot counters reach predefined counts (e.g., 0), the earlier MMIO read response is dequeued and delivered to its respective requesters. The new MMIO read response then moves to the top of the queue and the snapshot counters are loaded with the values of their corresponding write counters. The response that is now at the top of the RRHQ 338 is not delivered to the requesting core until after the counts of the snapshot registers 382, 384, and 386 reach predefined value of, e.g., zero.
When a MIMO read response is received, a fourth counter receives the count of the first counter, a fifth counter receives the count of the second counter, and a sixth counter receives the count of the third counter 614. So long as its count remains greater than a predefined value (e.g. zero), the fourth counter is decremented whenever the first counter is decremented. So long as its count remains greater than the predefined value, the fifth counter is decremented whenever the second counter is decremented. So long as its count remains greater than a predefined value the sixth counter is decremented whenever the third counter is decremented 616. The fifth counter's count is incremented if the second counter's count is incremented while the fourth counter's count is not zero. Likewise, the sixth counter's count is incremented if the third counter's count is incremented while the fourth counter's count is not zero. When the sum of the counts of the fourth, fifth and sixth counters reaches a predefined value (such as zero) 618, the MMIO read response is delivered to the requesting core 620.
In some embodiments, only responses to MMIO read requests that target I/O device registers are stored in the buffers in order to satisfy the ordering rules. MMIO read requests to memory type devices (e.g., ROMs) are not subject to the same ordering restrictions and thus do not have to satisfy the ordering rules. Referring to
In some embodiments, when an MMIO read response is loaded into the read response capture queue 380, a “no-writes-pending” bit is set if at that time unresolved write counter 372, coherent request write counter 374, and non-coherent request write counter 376 have predefined counts (e.g., zero). When the “no-writes-pending” bit is set and the RRHQ 388 is empty, then the MMIO read response is sent to CM 200 via signal line A using multiplexer 392.
In accordance with another embodiment of the present invention, in order to prevent deadlock conditions that may occur as a result of enforcing the requirement that MMIO read responses be ordered behind I/O write requests, the determination as to whether a request is a memory request or an MMIO request is made prior to serializing that request.
Assume that a core has issued a number of MMIO read requests to an I/O device causing the related IOCU 325 buffers to be full. Assume that a number of I/O write requests are also pending. Assume further that one of the cores issues a new MMIO read request. Because the IOCU 325 read request queues are assumed to be full, IOCU 325 cannot accept any new MMIO read requests. Since the pending MMIO read requests are assumed as being behind the I/O write requests, the responses to the MMIO read requests cannot be processed further until all previous I/O write requests are completed to satisfy the ordering rules. The I/O write requests may not, however, be able to make forward progress due to the pending MMIO read requests. The new MMIO request therefore may cause the request serializer 325 to stall, thereby causing a deadlock.
Register 360 disposed in coherence manager 200 is used to determine whether IOCU 325 can accept new MMIO requests. Serialization arbiter 352 is adapted so as not to select an MMIO request from a processing core so long as register 360 is set indicating that a serialized MMIO request is still present in coherence manager 700 and has not yet been delivered to IOCU 325. When the serialized MMIO request is delivered to IOCU 325, register 360 is reset to indicate that a new MMIO request may be serialized.
Computer 1200 typically includes components such as one or more general purpose processors 1600, and memory storage devices, such as a random access memory (RAM) 1700 and non-volatile memory 1800. Non-volatile memory 1800 can include floppy disks; fixed or removable hard disks; optical storage media such as DVD-ROM, CD-ROM, and bar codes; non-volatile semiconductor memory devices such as flash memories; read-only-memories (ROMS); battery-backed volatile memories; paper or other printing mediums; and networked storage devices. System bus 1900 interconnects the above components. Processors 1600 may be a multi-processor system such as multi-processor 100 described above.
RAM 1700 and non-volatile memory 1800 are examples of tangible media for storage of data, audio/video files, computer programs, applet interpreters or compilers, virtual machines, and embodiments of the present invention described above. For example, the above described embodiments of the processors of the present invention may be represented as computer-usable programs and data files that enable the design, description, modeling, simulation, testing, integration, and/or fabrication of integrated circuits and/or computer systems. Such programs and data files may be used to implement embodiments of the invention as separate integrated circuits or used to integrate embodiments of the invention with other components to form combined integrated circuits, such as microprocessors, microcontrollers, system on a chip (SoC), digital signal processors, embedded processors, or application specific integrated circuits (ASICs).
Programs and data files expressing embodiments of the present invention may use general-purpose programming or scripting languages, such as C or C++; hardware description languages, such as VHDL or Verilog; microcode implemented in RAM, ROM, or hard-wired and adapted to control and coordinate the operation of components within a processor or other integrated circuit; and/or standard or proprietary format data files suitable for use with electronic design automation software applications known in the art. Such program and data files when stored in a tangible medium can cause embodiments of the present invention at various levels of abstraction. Programs and data files can express embodiments of the invention at various levels of abstraction, including as a functional description, as a synthesized netlist of logic gates and other circuit components, and as an integrated circuit layout or set of masks suitable for use with semiconductor fabrication processes. These programs and data files can be processed by electronic design automation software executed by a computer to design a processor and generate masks for its fabrication. Those of ordinary skill in the art will understand how to implement the embodiments of the present invention in such programs and data files.
Further embodiments of computer 1200 can include specialized input, output, and communications subsystems for configuring, operating, simulating, testing, and communicating with specialized hardware and software used in the design, testing, and fabrication of integrated circuits.
Although some exemplary embodiments of the present invention are made with reference to a processor having four cores, it is understood that the processor may have more or fewer than four cores. The arrangement and the number of the various devices shown in the block diagrams are for clarity and ease of understanding. It is understood that combinations of blocks, additions of new blocks, re-arrangement of blocks, and the like fall within alternative embodiments of the present invention. For example, any number of I/Os, coherent multi-core processors, system memories, L2 and L3 caches, and non-coherent cached or cacheless processing cores may also be used.
It is understood that the apparatus and methods described herein may be included in a semiconductor intellectual property core, such as a microprocessor core (e.g. expressed as a hardware description language description or a synthesized netlist) and transformed to hardware in the production of integrated circuits. Additionally, the embodiments of the present invention may be implemented using combinations of hardware and software, including micro-code suitable for execution within a processor.
The above embodiments of the present invention are illustrative and not limitative. Various alternatives and equivalents are possible. The invention is not limited by the type of integrated circuit in which the present disclosure may be disposed. Nor is the invention limited to any specific type of process technology, e.g., CMOS, Bipolar, BICMOS, or otherwise, that may be used to manufacture the various embodiments of the present invention. Other additions, subtractions or modifications are obvious in view of the present invention and are intended to fall within the scope of the appended claims.