Network elements such as switches, routers, and the like introduce variable and unpredictable delays in packet traffic, including IEEE 1588 precision time protocol (PTP) traffic. The present invention provides network independent devices which wrap legacy network elements and provide IEEE 1588 network element delay transparency. This transparency may be provided in a distributed fashion by wrapping the network elements with cooperating smart interface converters (hereafter SIC).
Standard interface converters are pluggable building blocks used in many networking devices such as switches, hubs, routers, and the like, and are used to convert high speed signals from a first medium to a second medium. As an example, one popular type of standard interface converter known as a GBIC converts signals from optical to electrical form; optical signals carried on fiber optic cables being used to communicate over the network, and electrical signals being used within the device housing the GBIC. Other forms convert signals from twisted-pair copper conductors used in high-speed networks to electrical signals suitable for the network device.
A smart interface converter (SIC) is a standard interface converter with additional logic allowing it to process packets on the fly. This additional logic may include the ability to query the status of the SIC, perform internal tests, and/or perform data capture and analysis. The SIC device also adds the ability to inject data packets into the high speed data stream, and to modify the contents of data packets on the fly. Further details of SIC devices are described in detail in “A Method of Creating Low-Bandwidth Channel within a Packet Stream,” application Ser. No. 10/688,340, filed Oct. 17, 2003, the entire disclosure of which is hereby incorporated by reference.
A first embodiment of the present invention is shown in
IEEE 1588 master clock 100 communicates 110 to smart interface converter (SIC) 120. SIC 120 communicates with network elements 130, which may be one or more switches, routers, or the like. SIC 140 also communicates with network elements 130, and communicates 150 with IEEE 1588 slave clock 160. SIC 120, a designated master clock for out of band local clock synchronization with other SIC devices, also sends timing signals via out of band channel 170 to SIC 140. Communications paths 110 and 150 are preferably Ethernet links. Out of band channel 170 may be a coaxial cable, or other signaling medium such as a fiber optic link, free radiating optical link, or RF link. SIC 120 and SIC 140 pass packet traffic bidirectionally. While
Referring to the timing diagram in
In an alternative embodiment, rather than modifying FOLLOW UP and DELAY RES packets, packets containing the necessary timestamps and sequence ID information between the SICs. As an example, rather than have SIC 120 modify the FOLLOW UP packet with timestamp T1, SIC 120 could send a packet containing the proper sequence ID and the T1 timestamp to SIC 140. Then Sic 140 could calculate network element delays for the SYNC/DELAY REQ packets, and pass this data to IEEE 1588 slave 160.
In order to provide accurate timestamping, SICs 120 and 140 synchronize their local clocks with each other via out of band channel 170. In one embodiment, a coaxial cable is used. An optical cable may be used, or free-radiating signals such as RF or optical signals may be used. If SIC 120 and 140 are co-located, for example in the same enclosure, channel 170 may be a simple electrical connection or a trace on a printed circuit board interconnecting the devices.
One of the SIC devices, SIC 120 in the example shown, is designated as a master for clock synchronization sends a periodic strobe pulse to synchronize the frequencies of other SIC device clocks. In addition, on a periodic basis such as once per second or some defined interval, a special strobe signal is sent out to indicate a time boundary condition. Upon receiving the special strobe signal, the slave SIC devices adjust their local clocks to the appropriate time boundary accordingly. As an example, in a given implementation SIC 120 sends out a strobe pulse every 1.6 microseconds. This periodic strobe allows other SIC devices to synchronize their clock frequencies. Once per second SIC 120 sends out a special strobe which instructs the other SIC devices to set the fractional seconds portion of their local clocks to zero. This process insures that SIC device clocks are synchronized both in terms of frequency and time.
While the out of band clock synchronization signal is shown in
In an alternate embodiment, SIC 120 and SIC 140 may not only be co-located, but may share logic. In such an embodiment, for example where SIC 120 and 140 share the same clock generation circuitry, the use of an out of band channel to synchronize SIC clocks is not necessary. This would be the case, for example, if multiple SIC devices were implemented on one FPGA. Such an embodiment is shown in
An additional embodiment of the present invention is shown in
IEEE 1588 master clock 300 communicates 310 with SIC 320 which acts as an IEEE 1588 slave clock. SIC 330 acts as a IEEE 1588 master clock as it communicates 350 between network 330 and IEEE 1588 slave clock 360.
Using IEEE 1588 protocols, SIC 320 synchronizes its internal clock with that of IEEE master 300. SIC 340 acts as IEEE 1588 master clock, with IEEE 588 slave clock 360 synchronizing its clock to SIC 340.
SIC 320 synchronizes SIC 340's clock by sending periodic synch pulses via out of band link 370. SIC 320 also injects a special EPOCH packet into the datastream through network element 330 directed to SIC 340. SIC 340 uses this packet to synchronize its EPOCH. SIC 320 sends a special pulse via out of band link 370 to indicate to SIC 340 that the follow up EPOCH packet will have EPOCH data related to this event.
In an embodiment where SIC 320 and SIC 340 are co-located or share processing circuitry, such as shown in
While the embodiments of the present invention have been illustrated in detail, it should be apparent that modifications and adaptations to these embodiments may occur to one skilled in the art without departing from the scope of the present invention as set forth in the following claims.