Mechanism for releasably engaging an implantable medical device for implantation

Information

  • Patent Grant
  • 9713427
  • Patent Number
    9,713,427
  • Date Filed
    Tuesday, March 31, 2015
    9 years ago
  • Date Issued
    Tuesday, July 25, 2017
    7 years ago
Abstract
An apparatus for releasably engaging an implantable medical device during delivery includes an elongate, tubular body having an open distal end a plurality of deflectable jaw members extending distally from the distal end of the body and terminating in distal tip portions, and an actuating member slidably disposed within the body and including a distal end portion operable to prevent inward deflection of the jaw members when positioned proximate the distal tip portions. The jaw members are adapted to releasably engage an engagement feature of the implantable medical device.
Description
TECHNICAL FIELD

The present invention relates to medical devices and methods for anchoring implantable medical devices in the body. In particular, the present invention is a mechanism for use with a delivery system for releasably engaging an implantable medical device during delivery and deployment.


BACKGROUND

Medical devices are known that can be implanted within a patient's body for monitoring one or more physiological parameters and/or for providing therapeutic functions. For example, sensors or transducers can be placed in the body for monitoring a variety of properties, such as temperature, blood pressure, strain, fluid flow, chemical properties, electrical properties, magnetic properties, and the like. In addition, medical devices can be implanted that perform one or more therapeutic functions, such as drug delivery, cardiac pacing, defibrillation, electrical stimulation, and the like.


One parameter of particular interest is blood pressure. One or more implantable pressure sensing modules can be used in conjunction with cardiac rhythm management (CRM) devices to facilitate optimization of CRM device settings. In such systems, the pressure sensing module is delivered transvenously to a target vessel (e.g., the pulmonary artery) and anchored in the vessel using various fixation techniques. Accurate placement of the sensing module is an important factor in accurately and reliably measuring the desired parameter. Additionally, under some circumstances, it becomes necessary to re-position an implantable sensor module after initial deployment or, alternatively, to remove the sensor from the patient entirely.


Thus, a need exists for apparatus and methods for accurately delivering and deploying implantable medical devices within a patient's body. In particular, there is a need for a mechanism for releasably engaging an implantable sensor to facilitate accurate deployment of the sensor at a desired implantation site.


SUMMARY

The present invention, in one embodiment, is an apparatus for releasably engaging an implantable medical device during delivery, the implantable medical device including an engagement feature. The device comprises an elongate, tubular body having an open distal end, a plurality of deflectable jaw members extending distally from the distal end of the body and terminating in distal tip portions, and an actuating member slidably disposed within the body. The jaw members are adapted to releasably engage the engagement feature of the implantable medical device. The actuating member includes a distal end portion operable to prevent inward deflection of the jaw members when positioned proximate the distal tip portions.


In another embodiment, the present invention is a system comprising an elongate catheter having an inner lumen, an implantable sensor sized to be slidably received within the lumen, the sensor having a proximal portion including an engagement feature, and a retaining element movable within the lumen. The retaining element includes an elongate, tubular body having an open distal end, a plurality of deflectable jaw members extending distally from the distal end of the body and terminating in distal tip portions, and an actuating member slidably disposed within the body. The jaw members are adapted to releasably engage the engagement feature of the implantable medical device. The actuating member includes a distal end portion operable to prevent inward deflection of the jaw members when positioned proximate the distal tip portions.


In yet another embodiment, the present invention is a method for delivering an implantable medical device including an aperture. The method comprises releasably engaging the implantable medical device by inserting jaw members of a retaining element through the aperture in the implantable medical device such that the jaw members engage an inner surface of the aperture, the jaw members extending distally from an elongate, tubular body of the retaining element. The method includes next advancing an actuating member through the body and positioning a distal end portion of the actuating member at a location proximate the distal tip portions of the jaw members to prevent inward deflection of the jaw members. The method further includes next positioning the implantable medical device as desired, retracting the actuating member to a location proximal to the jaw members, and retracting the body relative to the implantable medical device to retract the jaw members from the aperture.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a delivery system for delivering an implantable medical device, which in the illustrated embodiment is an implantable sensor assembly, to an implantation site within a pulmonary artery of a heart according to one embodiment of the present invention.



FIG. 2 is a partial cutaway perspective view of the distal portion of the delivery system of FIG. 1.



FIGS. 3-5 are partial cross-sectional views of the distal portions of an inner member and a retaining element of the delivery system of FIG. 1.



FIG. 6 is a partial cutaway view of a distal portion of an implantable sensor delivery system according to another embodiment of the present invention.



FIGS. 7-10 are perspective views illustrating a sensor assembly being deployed using the implantable sensor assembly delivery system of FIG. 6.



FIGS. 11-13 illustrate a distal portion of an alternative retaining element according to another embodiment of the present invention.





While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION


FIG. 1 shows a delivery system 10 for delivering an implantable medical device, which in the illustrated embodiment is an implantable sensor assembly 12, to a target implantation site within a pulmonary artery 16 of a heart 20 according to one embodiment of the present invention. As shown, the heart 20 generally includes a superior vena cava 22, a right atrium 24, a right ventricle 26, a ventricular septum 28, a right ventricular outflow tract 30, a left ventricle 32 and a left atrium 34. As shown, the right ventricular outflow tract 30 leads to the pulmonary artery 16, which is separated from the right ventricle by a pulmonary artery valve 38.


The delivery system 10 is sized (i.e., has a length and diameter) to navigate the patient's vasculature to the target implantation site from a location external to the patient's body. In the illustrated embodiment, the delivery system 10 enters the heart 20 through the superior vena cava 22, and extends through the right atrium 24 and the right ventricular outflow tract 30 to deliver the implantable sensor assembly 12 in the main pulmonary artery 16. In such an embodiment, the delivery system 10 may be transvenously advanced to the heart 20 by any methods known in the art. For example, as is well known, the delivery system 10 may enter the patient's vasculature system through a percutaneous incision into the left subclavian vein, the left auxiliary vein, the left internal or external jugular vein, the left brachiocephalic vein, or through a femoral approach. In various embodiments, the delivery system 10 may be used to deliver an implantable sensor assembly 12 to a branch of the pulmonary artery 16 (e.g., the right or left pulmonary artery, not shown). In other embodiments, the delivery system 10 may be used to deliver an implantable sensor assembly to other areas of the patient's vasculature.


As shown in FIG. 1, the delivery system 10 includes a flexible, elongate outer catheter 40, a flexible, elongate inner member 44 disposed within the outer catheter 40, and a flexible, elongate retaining element 48 disposed within the inner member 44 and releasably engaged with the sensor assembly 12. The outer catheter includes a proximal end 56 and a distal end 60. As will be appreciated, the outer catheter 40 includes at least one lumen (not shown in FIG. 1) through which the inner member 44 is disposed. As will be explained in detail below, the delivery system 10 and other embodiments of the present invention, advantageously provide accurate control over the implantation location of the sensor assembly 12. Additionally, the delivery systems of the present invention allow the physician to re-position and re-deploy the sensor assembly 12 if necessary or desired.


The outer catheter 40 and the inner member 44 are movable relative to each other, and the retaining element 48 is movable relative to the inner member 44, to deploy the sensor assembly 12 at the target implantation site. In the illustrated embodiment, the delivery system 10 includes a control mechanism 64 on the proximal end 56 of the outer catheter 40 and which is operatively coupled to at least the inner member 44. The control mechanism 64 is operable to allow a physician to control relative movement of at least the outer catheter and inner member 40, 44, and in some embodiments, the retaining element 48, for delivery and deployment of the sensor assembly 12. The control mechanism 64 may include any mechanism or structure known or later developed for controlling the relative longitudinal and/or rotational movement of inner and outer catheters of a dual catheter system. In one exemplary embodiment, the control mechanism 64 includes a thumbwheel operatively coupled to the inner member 44 to permit the physician to slide the inner member 44 within the outer catheter 40.


The outer catheter 40 can be any catheter known in the art or later developed for accessing a target implantation location in a patient's vasculature. As will be appreciated, the particular design and construction, including materials, of the outer catheter 40 is determined based on the needs of the patient, and in particular, the selected implantation location for the implantable sensor assembly 12. In one embodiment, the outer catheter 40 is a catheter configured for accessing the pulmonary artery 16 or a branch thereof. In one embodiment, the outer catheter 40 can be advanced to the pulmonary artery 16 over a guidewire positioned therein through a Swan Ganz procedure, in which a balloon catheter is inserted into the venous system and floated with the blood flow into and through the heart 20 out to the pulmonary artery 16.


As shown in FIG. 1, the sensor assembly 12 includes an implantable sensor 70 and an anchor 74 coupled to the sensor 70. As will be discussed in more detail below, the anchor 74 is an expandable structure configured to assume a collapsed configuration for transvenous delivery of the sensor assembly 12 to the desired implantation location through the delivery system 10, and an expanded configuration, illustrated in FIG. 1, in which the anchor 74 engages an inner surface 76 of the pulmonary artery 16.


The sensor 70 may be configured to perform one or more designated functions, which may include taking one or more physiological measurements. The sensor 70 may be configured to measure any known physiologic parameters such as, for example, blood pressure, temperature, blood or fluid flow, strain, electrical, chemical, or magnetic properties within the body. The specific parameters to be measured, and thus the implantation site for the sensor assembly 12, are determined based on the particular therapeutic needs of the patient. In one exemplary embodiment, the sensor 70 may be configured to measure blood pressure in the pulmonary artery 16 (e.g., as illustrated in FIG. 1). In one embodiment, the sensor 70 may further be adapted to store and/or transmit blood pressure data to another implanted device (e.g., a cardiac rhythm management device such as a pacemaker, not shown) and/or a device (e.g., a monitor or programmer) located external to the patient's body.


In various embodiments, the sensor 70 is configured to communicate with other devices, such as an external device or another implantable medical device (e.g., a pacemaker and/or defibrillator) via a wireless communication link. Various types of wireless communication circuitry are well known in the art, and the specific type and/or style of wireless communication that can be used is not limited. For example, ultrasonic waves, acoustic communications, radio frequency communications, and the like may be used. In one embodiment, the sensor 70 includes an acoustic transmitter/receiver configured for acoustic telemetry.



FIG. 2 is a perspective view of the distal portion of the delivery system 10 showing a partial cutaway of the inner member 44, and further showing the implantable sensor assembly 12 releasably coupled to the retaining element 48 for delivery of the sensor assembly 12. As shown in FIG. 2, the outer catheter 40 includes a lumen 84 sized to slidably receive the inner member 44, and terminates in a distal opening 88. As further shown in FIG. 2, the inner member 44 includes a distal end portion 92 in the form of a sheath having a distal opening 96 and an inner diameter and length sized to receive the sensor assembly 12 so as to maintain the anchor 74 of the sensor assembly 12 in a collapsed configuration during delivery.


As can further be seen in FIG. 2, the retaining element 48 includes a body 102 having a distal end 106, a plurality of deflectable jaw members 110 extending distally from the distal end 106, and a tubular actuating member 114 (shown in cutaway view to illustrate the body 102) slidably disposed over the body 102. The jaw members 110 operate as a sensor engagement structure for releasably engaging a portion of the sensor 70. As will be explained in more detail below, the jaw members 110 are naturally biased radially outwardly in an undeflected state, and the actuating member 114 is configured to force the jaw members 110 radially inward so as to engage the sensor assembly 12 by clamping onto the sensor assembly 12.


In the illustrated embodiment, the sensor 70 includes a hub 116 at its proximal end. As shown, the hub 116 is configured to mate with the jaw member 110 to promote positive coupling of the retaining element 48 and the sensor 70. In other embodiments, a different engagement feature may be included on the sensor 12. In other embodiments, the hub 116 or other engagement feature may be omitted.


In various embodiments, the retaining element 48 may include different sensor engagement structures. For example, in one embodiment, the retaining element 48 may include an elongated tether having a hook at its distal end, which hook is adapted to engage an aperture or loop on the sensor 70. Other embodiments may incorporate still other sensor engagement structures. In still other embodiments, the retaining element 48 is simply a solid or tubular structure (i.e., lacks the jaw members 110 and actuating member 114), and can be used to push the sensor assembly 12 distally and/or resist proximal displacement of the sensor assembly 12.


The inner member 44 and the retaining element 48 are dimensioned so as to extend proximally from the implantation location (e.g., a location within the pulmonary artery 16 as shown in FIG. 1) to or near the proximal end 56 of the outer catheter 40. Additionally, as shown in FIG. 2, the outer catheter 40 can be retracted proximally relative to the inner member 40, or alternatively, the inner member 44 (with the sensor assembly 12 retained therein) can be advanced distally relative to the outer catheter 40, such that the sensor assembly 12 may be deployed from the distal opening 96 of the inner member 40 without interference from the outer catheter 40.


The outer catheter 40 is sized to accommodate the selected implantable sensor assembly 12 (or other implantable device), and as will be appreciated, has a length sufficient to transvenously deliver the sensor assembly 12 to the desired implantation site through a percutaneous access site such as described above. In various exemplary embodiments, the outer catheter 40 may range in size from a 6 French to a 20 French guide catheter. In some embodiments, for example, where the sensor assembly 12 is configured for implantation in the pulmonary artery 16, the outer catheter 40 may range in size from 10 French to 16 French.


The inner member 44 may be made from substantially the same or identical materials as the outer catheter 40. In some embodiments, the inner member 44 may be made substantially from a braided composite tubing as is known in the art for catheters and the like. In some embodiments, the distal end portion 92 of the inner member 44 may be made from a relatively low durometer material such as, for example, low-durometer Pebax. In other embodiments, the inner surface of the distal end portion 92 may include a biocompatible, lubricious coating to facilitate relative displacement of the inner member 44 and the sensor assembly 12 without undue friction.


The materials selected for the retaining element 48 are not of particular significance. In some embodiments, the body 102 and/or the actuating member 114 may be made from a metal (e.g., stainless steel) or a polymeric material. In some embodiments, the jaw members 110 may be made from materials exhibiting shape memory and/or superelastic properties, such as, for example, Nitinol or any of a number of other shape memory alloys or polymers. In some embodiments, the retaining element 48 may include a radio-opaque marker at or near its distal end.



FIGS. 3-5 are partial cross-sectional views of the distal portions of the inner member 44 and the retaining element 48 illustrating the deployment of the sensor assembly 12 from the inner member 44 according to one embodiment of the present invention. It will be appreciated that the outer catheter 40 has already been retracted proximally relative to the inner member 44, such as is shown in FIG. 2. As shown in FIG. 3, the sensor assembly 12 is initially fully retained within the distal end portion 92 of the inner member 40, with the anchor 74 in the collapsed configuration. As further shown in FIG. 3, the actuating member 114 of the retaining element 48 is positioned at least partially over the jaw members 110, thereby clamping the jaw members 110 onto the proximal hub 116 of the sensor 70. As explained above, however, in other embodiments, the jaw members 110 may engage other engagement features of the sensor assembly 12. Alternatively, the engagement feature may be omitted, and the jaw members may engage other portions of the sensor assembly 12 (e.g., the housing of the sensor 70 or a portion of the anchor 74).


In FIG. 4, the inner member 44 has been moved proximally relative to the sensor assembly 12 so as to release the sensor assembly 12 (or at a minimum, the anchor 74) from the distal end portion 92 of the inner member 44. With the inner member 44 so positioned, the anchor 74 is permitted to expand to an expanded configuration for frictionally engaging an inner surface of the target vessel (e.g., the pulmonary artery, see FIG. 1) to secure the sensor assembly 12 therein. The anchor 74 may be a self-expanding anchor having a stent-like structure similar to known cardiovascular stents. Alternatively, the anchor 74 may be expandable by other means (e.g., by a balloon). In various embodiments, the anchor 74 may be any of the anchoring structures disclosed in co-pending and commonly assigned U.S. patent application Ser. No. 11/216,738 entitled “DEVICES AND METHODS FOR POSITIONING AND ANCHORING IMPLANTABLE SENSOR DEVICES” filed Aug. 31, 2005, and U.S. Provisional Patent Application No. 60/844,821 entitled “ANCHOR FOR AN IMPLANTABLE SENSOR” filed Sep. 15, 2006. The contents of the foregoing pending applications are incorporated herein by reference for all purposes.


As shown in FIG. 4, the retaining element 48 can remain coupled to the sensor assembly 12 after deployment of the anchor 74 from the distal end portion 92 of the inner member 44. This permits the sensor assembly 12 to be repositioned to another location within the target vessel, or another area of the patient's vasculature, if desired. For example, it may be desirable to perform various diagnostic tests on the sensor 70 to confirm that it is functioning properly and/or that the chosen implantation location is suitable. Alternatively, or additionally, the physician may wish to confirm that the sensor assembly 12 is sufficiently secured at the implantation site before releasing the retaining element 48. In particular, where the anchor 74 is one of the re-positionable anchor structures disclosed in co-pending and commonly assigned U.S. Provisional Patent Application No. 60/844,821 entitled “ANCHOR FOR AN IMPLANTABLE SENSOR”, the sensor assembly 12, including the anchor 74, can be retracted within the distal end portion 92 of the inner member 44 by pulling proximally on the retaining element 48 while holding the inner member 44 in place. The inner member 44, with the sensor assembly 12 retained therein, can then be re-positioned within the target vessel, and the sensor assembly 12 re-deployed as described above. Alternatively, the inner member 44 may be retracted back within the outer catheter 40 (see FIG. 2), and the entire delivery system can be re-located to a different target implantation site, or can be removed from the patient entirely.



FIG. 5 illustrates the sensor assembly 12 after being de-coupled from the retaining element 48. As shown in FIG. 5, with the actuating member 114 retracted proximally, the jaw members 110 are allowed to resume their undeflected configuration and disengage from the hub 116.



FIG. 6 is a partial cutaway view of a distal portion of an implantable sensor delivery system 210 and an implantable sensor assembly 212 coupled thereto according to another embodiment of the present invention. As shown in FIG. 6, the delivery system 210 includes an elongate outer catheter 240, an elongate inner member 244, and an elongate retaining element 248. As further shown in FIG. 6, like the sensor assembly 12 described above, the sensor assembly 212 includes a sensor element 270 and an anchor portion 274. In the illustrated embodiment, the sensor 270 includes a proximal portion 275 releasably engaged by and received by the inner member 244.


As shown, the outer catheter includes a lumen 284 sized to slidably receive the inner member 244, and terminates in a distal opening 288. The outer catheter 240 may be of substantially the same construction as the outer catheter 40 described above. In the illustrated embodiment, the outer catheter 240 includes a radio-opaque end portion 289, which may optionally include an atraumatic tip. In other embodiments, the radio-opaque portion 289 is omitted.


As further shown in FIG. 6, the inner member 244 is generally tubular and includes a distal end portion 292 including a socket 294 having a distal opening 296 and an inner diameter and length sized to receive and frictionally engage at least a portion, (i.e., in the illustrated embodiment, the proximal portion 275) of the sensor 270. Thus, unlike the distal end portion 92 of the inner member 44 described above, the distal end portion 292 is not sized to receive the entire sensor assembly 212, and in particular, the anchor portion 274 of the sensor assembly 212. Rather, in the embodiment illustrated in FIG. 6, the anchor portion 274 is retained in its collapsed configuration for delivery by the outer catheter 240. The outer catheter 240 and/or the inner member 244 may include at or near their proximal ends (not shown) a control mechanism similar or identical to those described above in connection with the delivery system 10.


In one embodiment, the sensor proximal end portion 275 may be held within the socket 294 by an interference fit. In such embodiments, the inner diameter of the socket 294 may be sized to be from about 0.002 inches to about 0.004 inches smaller than the outer diameter of the sensor proximal end portion 275, to ensure sufficient frictional engagement of the sensor 270 during delivery. In another embodiment, a relatively weak adhesive bond may be utilized to releasably retain the sensor proximal end portion 275 within the socket 294.


As shown, the retaining element 248 is disposed within the generally tubular inner member 244, and like the retaining element 48 described above, is adapted to releasably engage the sensor assembly 212. Thus, it will be appreciated that the retaining element 248 may be substantially the same or identical in design and/or function as the retaining element 48 described above. For example, in one embodiment, the retaining element 248 may have the same sensor engagement structure (e.g., deflectable jaw members) as the retaining element 48. Similarly, as will further be appreciated, the sensor 270, or in some embodiments, another portion of the sensor assembly 212, may include an engagement feature similar to the hub 116 of the sensor 70. In still other embodiments, the retaining element 248 may include no distal mechanism (such as the jaw members 110 of the retaining element 48), and may simply allow the physician to push the sensor assembly 212 distally, or alternatively, to resist proximal displacement of the sensor assembly 212. In short, any structure or mechanism capable of releasably engaging and retaining the sensor assembly 212 during delivery and deployment can be incorporated into the retaining element 248.



FIGS. 7-10 illustrate the sensor assembly 212 being deployed using the implantable sensor assembly delivery system 210 according to one embodiment of the present invention. For the purpose of this description only, the anchor 274 is not shown in FIGS. 7-10. It is emphasized that the sensor assembly 212 shown in FIGS. 7-10, however, may also include the anchor 274, which may be a self-expanding anchor similar or identical to those described above with respect to the anchor 74.


As shown in FIG. 7, the distal end portion 292 can be displaced distally with respect to the outer catheter 240. This can be accomplished by maintaining the outer catheter 240 in place and distally advancing the inner member 244 (e.g., by use of a control mechanism operatively coupled to one or both of the outer catheters 240 and the inner member 244). Alternatively, or additionally, the inner member 244 may be held in place while the outer catheter 240 is retracted proximally. In either case, the sensor assembly 212 can be deployed out of the distal opening 288 with the proximal portion 275 of the sensor 270 retained within the socket 294 of the inner member 244. It will be appreciated that the anchor 274 (not shown) may then be expanded, or will self-expand, upon being deployed from the distal opening 288 of the outer catheter 240.



FIGS. 8-9 illustrate the delivery system 210 with the sensor assembly 212 displaced distally from the distal opening 296 of the socket 294, with the retaining element 248 still releasably coupled to the sensor 270. Such displacement can be accomplished, for example, by maintaining the sensor assembly 212 in position using the retaining element 248 and simultaneously retracting the inner member 244 (e.g., by operating a control mechanism such as a thumbwheel, not shown, coupled to the inner member 244). Alternatively, or additionally, and particularly if the anchor (not shown) has not yet significantly engaged with the target vessel tissue, the inner member 244 may be maintained in position while the retaining element 248, and accordingly, the sensor assembly 212, are pushed in the distal direction. As shown in FIG. 9, the inner member 244 can, in some embodiments, be fully retracted within the outer catheter 240 with the retaining element still coupled to the sensor 270.



FIG. 10 illustrates the delivery system 210 with the retaining element 248 fully disengaged and de-coupled from the sensor assembly 212 and partially retracted back within the inner member 244 and outer catheter 240. In the illustrated embodiment, the retaining element 248 is shown to be substantially similar to the retaining element 48 above, and includes an inner body member 402 including a plurality of distal jaw members 410, and an outer actuating member 414 disposed over the body member 402 for causing the jaw members 410 to engage the sensor 270. Again, however, any structure or mechanism capable of releasably engaging and retaining the sensor assembly 212 as necessary for the particular deployment technique used can be incorporated into the retaining element 248.


As previously discussed, the outer catheter 240, the inner member 244, and/or the retaining element 248 may, in various embodiments, be of substantially the same or identical construction as the outer catheter 40, the inner member 44, and the retaining element 48 described above. In some embodiments, all or part of the distal end portion 292, including the socket 294, may be of a relatively low durometer material, e.g., low durometer Pebax, as compared to other portions of the inner member 244. Such configurations advantageously promote positive engagement of the sensor proximal end portion 275 within the socket 294, yet still permit the sensor 270 to be released from the socket 294 without requiring undue force.



FIGS. 11-13 illustrate a distal portion of an alternative retaining element 448 coupled to a sensor 470 according to another embodiment of the present invention. As shown in FIGS. 11-13, the retaining element 448 includes a generally tubular, elongate body 502 having a distal end 506, a pair of deflectable jaw members 510 extending distally from the distal end 506 and each terminating in a distal tip portion 511, and an actuating member 514 slidably disposed within the body 502 and including a distal end portion 515. As shown, the actuating member 514 is dimensioned such that the distal end portion 515 can be positioned at a location at least proximate the distal tips of the jaw members 510. As can perhaps be best seen in FIGS. 11-12, the jaw members 510 are configured to be radially deflectable (as indicated by the arrows in FIG. 12), and the actuating member 514 operates to prevent such deflection when positioned substantially as shown in FIG. 11. In the illustrated embodiment, the retaining element 448 includes two jaw members 510 positioned approximately 180 degrees apart. In other embodiments, the retaining element 448 may include three or more jaw members 510, which may be substantially equally spaced apart about the circumference of the body 502.


As shown, the jaw members 510 are configured to frictionally engage an engagement feature of the sensor 470 (or other implantable medical device), which engagement feature in the illustrated embodiment is a yoke 516 having a pair of lateral arms 517, 518, and a cross member 519 extending there between. As can perhaps be best seen in FIG. 13, the cross member 519 includes a through aperture 520 for receiving the jaw members 510. The jaw members 510 can be deflected inward to facilitate their insertion through the aperture 520 (as indicated by the arrows in FIG. 12). In the illustrated embodiments, the distal tip portions 511 of the jaw members 510 are chamfered or otherwise radiused to further facilitate their insertion through the aperture 520, although this is not a requirement.


When inserted through the aperture 520 as shown in FIGS. 11-12, the jaw members 510 bear upon and frictionally engage the inner surface of the aperture 520, thus coupling the retaining element 448 to the sensor 470. The distal end portion 515 of the actuating member 514, when inserted through the body 502 to a location at least near the distal tip portions 511 of the jaw members 510, operates to prevent inward deflection of the jaw members 510, thus maintaining positive frictional engagement with the inner surface of the aperture 520. In the illustrated embodiment, the distal tip portions 511 of the jaw members 510 are enlarged to further prevent the jaw members 510 from backing out of the aperture 520.


In other embodiments, the jaw members 510 may normally be biased inwardly (as indicated by the arrows in FIG. 12), and the distal end portion 510 operates, when positioned proximate the distal tip portions 511, to deflect the jaw members 510 outwardly to bear upon the inner surface of the aperture 520.


The dimensions of the retaining element 448 are selected based on the size of the sensor 470 and the delivery system in which the sensor 470 is deployed. In exemplary embodiments, the outer diameter of the body 502 may be from about 0.014 inches to about 0.025 inches, although these sizes are in no way exclusive.


The retaining element 448 and its constituent components may be made from any materials known in the art or later developed for use in guide wires, stylets, and the like. Such materials include any number of biocompatible metals, alloys, composites, and polymeric materials. The jaw members 510 may be made integrally with the body 502, or alternatively, may be attached to the distal end 506 by methods known in the art (e.g., welding, adhesives). In some embodiments, the jaw members 510 may advantageously be made from materials having shape memory and/or superelastic properties, including shape memory polymers and alloys such as Nitinol.


In operation, the jaw members 510 can be inserted through the aperture 520 by deflecting the jaw members 510 inward, with the actuating member 514 located substantially as shown in FIG. 11. Where, for example, the distal tip portions 511 of the jaw members 510 are chamfered, such deflection can be accomplished simply by pushing the jaw members 510 through the aperture 520. In other embodiments, a standard tool (not shown) such as surgical forceps and the like may be used to deflect the jaw members 510 inwardly.


Next, the actuating member 514 may be advanced distally such that the distal end portion 515 is positioned at a location sufficient to prevent inward deflection of the jaw members 510 (see FIG. 11). It will be appreciated that the actuating member 514 need not be advanced fully beyond the jaw members 510 as shown in FIG. 11.


To de-couple the retaining element 448 from the yoke 516, the actuating member 514 can be retracted proximally relative to the body 502 (e.g., by pulling on a proximal end, not shown, of the actuating member 514 while holding the body 502 in position), to a location substantially as shown in FIG. 12. If the sensor 470 is sufficiently secured in place (e.g., by an anchoring device), the body 502 may then be retracted, and the jaw members 510 can deflect inwardly as the body 502 is retracted relative to the sensor 470. Alternatively, a tube or similar structure (not shown) may be positioned over the body 502 to push against the cross member 519 as the body 502 is retracted.


Although the retaining element 448 and the yoke 516 are shown and described as being used to releasably engage an implantable sensor, it is emphasized that they may also advantageously be used in combination with other implantable medical devices (e.g., stents, drug delivery devices, etc.).


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.

Claims
  • 1. An apparatus for releasably engaging an implantable medical device, the apparatus comprising: a tubular body having an open distal end;a plurality of deflectable jaw members coupled to the distal end of the body and extending distally from the distal end of the body and terminating in distal tip portions, the jaw members adapted to releasably engage the implantable medical device; andan actuating member slidably disposed within the body and including a distal end portion configured to deflect the plurality of deflectable jaw members.
  • 2. The apparatus of claim 1, wherein the actuating member is movable within the body and dimensioned to extend distally beyond the distal tip portions of the plurality of jaw members.
  • 3. The apparatus of claim 1, wherein the plurality of deflectable jaw members are configured to releasably engage the implantable medical device by frictionally engaging the inner surface of the aperture of the implantable medical device.
  • 4. The apparatus of claim 1, wherein the actuating member is configured to prevent inward deflection of the jaw members when positioned proximate the distal tip portions.
  • 5. The apparatus of claim 4, wherein the plurality of deflectable jaw members are biased inwardly with respect to the distal end of the body.
  • 6. The apparatus of claim 5, the distal end portion of the actuating member is further configured to force the plurality of jaw members outwardly when positioned proximate the distal tip portions.
  • 7. The apparatus of claim 1, wherein the plurality of jaw members are biased inwardly.
  • 8. The apparatus of claim 7, wherein the plurality of deflectable jaw members deflect in response to movement of the actuating member proximate to the distal end portion.
  • 9. The apparatus of claim 1, wherein the tubular body is made from a material selected from the group consisting of stainless steel, shape memory polymers, and shape memory alloy, and the plurality of jaw members are made from Nitinol.
  • 10. A system comprising: an elongate catheter having an inner lumen;an implantable medical device sized to be slidably received within the lumen, the implantable medical device having a proximal portion including an engagement feature; anda retaining element movable within the lumen and including: a tubular body having an open distal end;a plurality of deflectable jaw members coupled to the distal end of the body and extending distally from the distal end of the body and terminating in distal tip portions, the jaw members adapted to releasably engage the implantable medical device; andan actuating member slidably disposed within the body and including a distal end portion configured to deflect the plurality of deflectable jaw members.
  • 11. The apparatus of claim 10, wherein the implantable medical device comprises an engagement feature, and the plurality of deflectable jaw members are configured to releasably engage the engagement feature of the implantable medical device.
  • 12. The apparatus of claim 11, wherein the implantable medical device comprises an anchor.
  • 13. The apparatus of claim 12, wherein the retaining element is configured to retract the implantable medical device, including the anchor, within the inner lumen in response to pulling proximally on the retaining element.
  • 14. The apparatus of claim 11, wherein the engagement feature includes an aperture sized to at least partially receive the jaw members and having an inner surface, and wherein the jaw members are adapted to frictionally engage the inner surface.
  • 15. The apparatus of claim 10, wherein the implantable device is a sensor configured to sense at least one of blood pressure, temperature, blood or fluid flow, strain, electrical, chemical, and magnetic properties within a patient's body.
  • 16. The apparatus of claim 10, wherein the implantable device is configured to store and transmit blood pressure data.
  • 17. The apparatus of claim 16, further comprising another implantable device, and the first recited implantable device is configured to store and transmit blood pressure data to the other implantable device.
  • 18. An apparatus comprising: a tubular body having an open distal end;a plurality of deflectable jaw members coupled to the distal end of the body and extending distally from the distal end of the body and terminating in distal tip portions, the jaw members adapted to releasably engage an implantable medical device; andan actuating member slidably disposed within the body and including a distal end portion configured to deflect the plurality of deflectable jaw members in response to movement of the actuating member proximate to the distal end portion.
  • 19. The apparatus of claim 18, wherein the implantable medical device comprises an engagement feature, and the plurality of deflectable jaw members are configured to releasably engage the engagement feature of the implantable medical device.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a continuation application of U.S. application Ser. No. 14/212,873, filed Mar. 14, 2014, now U.S. Pat. No. 9,026,229, issued May 5, 2015, entitled “MECHANISM FOR RELEASABLY ENGAGING AN IMPLANTABLE MEDICAL DEVICE FOR IMPLANTATION” which is a continuation of U.S. application Ser. No. 11/855,501, filed Sep. 14, 2007, now U.S. Pat. No. 8,676,349, issued Mar. 18, 2014, entitled “MECHANISM FOR RELEASABLY ENGAGING AN IMPLANTABLE MEDICAL DEVICE FOR IMPLANTATION” which claims priority under 35 U.S.C. §119 to U.S. Provisional Application 60/844,948, filed Sep. 15, 2006, entitled “MECHANISM FOR RELEASABLY ENGAGING AN IMPLANTABLE MEDICAL DEVICE FOR IMPLANTATION” all of which are incorporated herein by reference in their entireties.

US Referenced Citations (259)
Number Name Date Kind
2463533 Harrison et al. Mar 1949 A
3805796 Davies et al. Apr 1974 A
3874388 King et al. Apr 1975 A
4256115 Bilitch Mar 1981 A
4391124 Drost et al. Jul 1983 A
4407296 Anderson Oct 1983 A
4485813 Anderson et al. Dec 1984 A
4492107 Sandhu Jan 1985 A
4672976 Kroll Jun 1987 A
4836204 Landymore et al. Jun 1989 A
4846191 Brockway et al. Jul 1989 A
4886065 Collins, Jr. Dec 1989 A
4900303 Lemelson Feb 1990 A
4917089 Sideris Apr 1990 A
4966148 Millar Oct 1990 A
5040538 Mortazavi Aug 1991 A
5218965 Ring Jun 1993 A
5284138 Kujawski Feb 1994 A
5303207 Brady et al. Apr 1994 A
5334217 Das Aug 1994 A
5411551 Winston et al. May 1995 A
5415630 Gory et al. May 1995 A
5433736 Nilsson Jul 1995 A
5438554 Seyed-Bolorforosh et al. Aug 1995 A
5451235 Lock et al. Sep 1995 A
5509900 Kirkman et al. Apr 1996 A
5601600 Ton Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5634936 Linden et al. Jun 1997 A
5656036 Palmaz Aug 1997 A
5662711 Douglas Sep 1997 A
5704352 Tremblay et al. Jan 1998 A
5725552 Kotula et al. Mar 1998 A
5733249 Katzin et al. Mar 1998 A
5733294 Forber et al. Mar 1998 A
5733313 Barreras et al. Mar 1998 A
5749909 Schroeppel et al. May 1998 A
5772669 Vrba Jun 1998 A
5775331 Raymond et al. Jul 1998 A
5776168 Gunderson Jul 1998 A
5800497 Bakels et al. Sep 1998 A
5824053 Khosravi et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5855563 Kaplan et al. Jan 1999 A
5860923 Lenker et al. Jan 1999 A
5891154 Loeffler Apr 1999 A
5967980 Ferre et al. Oct 1999 A
5967986 Cimochowski et al. Oct 1999 A
5967989 Cimochowski et al. Oct 1999 A
5995876 Kruse et al. Nov 1999 A
6002969 Machek et al. Dec 1999 A
6015386 Kensey et al. Jan 2000 A
6015387 Schwartz et al. Jan 2000 A
6030413 Lazarus Feb 2000 A
6033366 Brockway et al. Mar 2000 A
6053873 Govari et al. Apr 2000 A
6056775 Borghi et al. May 2000 A
6076016 Feierbach Jun 2000 A
6077227 Miesel et al. Jun 2000 A
6097984 Douglas Aug 2000 A
6106464 Bass et al. Aug 2000 A
6140740 Porat et al. Oct 2000 A
6159156 Van Bockel Dec 2000 A
6179858 Squire et al. Jan 2001 B1
6193745 Fogarty et al. Feb 2001 B1
6214025 Thistle et al. Apr 2001 B1
6231516 Keilman et al. May 2001 B1
6236889 Soykan et al. May 2001 B1
6239724 Doron et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6246898 Vesely et al. Jun 2001 B1
6277078 Porat et al. Aug 2001 B1
6278790 Davis et al. Aug 2001 B1
6309350 VanTassel et al. Oct 2001 B1
6328669 Imanishi et al. Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6331163 Kaplan Dec 2001 B1
6379308 Brockway et al. Apr 2002 B1
6409674 Brockway et al. Jun 2002 B1
6416474 Penner et al. Jul 2002 B1
6432050 Porat et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6447522 Gambale et al. Sep 2002 B2
6472991 Schulman et al. Oct 2002 B1
6475170 Doron et al. Nov 2002 B1
6486588 Doron et al. Nov 2002 B2
6522926 Kieval et al. Feb 2003 B1
6527780 Wallace et al. Mar 2003 B1
6543272 Vitek Apr 2003 B1
6585763 Keilman et al. Jul 2003 B1
6592553 Zhang et al. Jul 2003 B2
6628989 Penner et al. Sep 2003 B1
6645143 VanTassel et al. Nov 2003 B2
6660021 Palmer et al. Dec 2003 B1
6685638 Taylor et al. Feb 2004 B1
6689056 Kilcoyne et al. Feb 2004 B1
6699186 Wolinsky et al. Mar 2004 B1
6702847 DiCarlo Mar 2004 B2
6730108 Van Tassel et al. May 2004 B2
6738671 Christophersom et al. May 2004 B2
6743173 Penner et al. Jun 2004 B2
6746404 Schwartz Jun 2004 B2
6747916 Fleury et al. Jun 2004 B1
6755855 Yurek et al. Jun 2004 B2
6764446 Wolinsky et al. Jul 2004 B2
6783499 Schwartz Aug 2004 B2
6800060 Marshall Oct 2004 B2
6840956 Wolinsky et al. Jan 2005 B1
6855115 Fonseca et al. Feb 2005 B2
6868288 Thompson Mar 2005 B2
6890303 Fitz May 2005 B2
6899729 Cox et al. May 2005 B1
6904308 Frisch et al. Jun 2005 B2
6920347 Simon et al. Jul 2005 B2
6926670 Rich et al. Aug 2005 B2
6934573 Glukhovsky et al. Aug 2005 B1
6950690 Meron et al. Sep 2005 B1
6958034 Iddan Oct 2005 B2
6970742 Mann et al. Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6984205 Gazdzinski Jan 2006 B2
7001329 Kobayashi et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7011671 Welch Mar 2006 B2
7024248 Penner Apr 2006 B2
7033322 Silver Apr 2006 B2
7035684 Lee Apr 2006 B2
7039453 Mullick et al. May 2006 B2
7060038 Letort et al. Jun 2006 B2
7064472 Pelrine et al. Jun 2006 B2
7065409 Mazar Jun 2006 B2
7065709 Ellis et al. Jun 2006 B2
7076305 Imran et al. Jul 2006 B2
7083822 Brightbill Aug 2006 B2
7116352 Yaron Oct 2006 B2
7118529 Glukhovsky et al. Oct 2006 B2
7118531 Krill Oct 2006 B2
7131986 Sirhan et al. Nov 2006 B2
7160258 Imran et al. Jan 2007 B2
7181261 Silver et al. Feb 2007 B2
7198603 Penner et al. Apr 2007 B2
7211045 Dala-Krish et al. May 2007 B2
7273457 Penner Sep 2007 B2
7283874 Penner Oct 2007 B2
7308319 Lovett et al. Dec 2007 B2
7338512 McGuckin, Jr. et al. Mar 2008 B2
7347868 Burnett et al. Mar 2008 B2
7392094 Zhang et al. Jun 2008 B2
7437193 Parramon et al. Oct 2008 B2
7452334 Gianchandani et al. Nov 2008 B2
7477946 Tockman et al. Jan 2009 B2
7555351 Zhang et al. Jun 2009 B2
7572228 Wolinsky et al. Aug 2009 B2
7655022 Simpson et al. Feb 2010 B2
7744542 Piaget et al. Jun 2010 B2
7780694 Palmer et al. Aug 2010 B2
7801626 Moser Sep 2010 B2
7850708 Pal Dec 2010 B2
7890188 Zhang et al. Feb 2011 B2
7930031 Penner Apr 2011 B2
8057399 Greenland et al. Nov 2011 B2
8060214 Larson et al. Nov 2011 B2
8204599 Liao et al. Jun 2012 B2
8271093 Von Arx et al. Sep 2012 B2
8577460 Penner Nov 2013 B2
8934972 Penner Jan 2015 B2
9026229 Stalker et al. May 2015 B2
9149193 Wolinsky et al. Oct 2015 B2
20020038135 Connelly et al. Mar 2002 A1
20020045920 Thompson Apr 2002 A1
20020045921 Wolinsky et al. Apr 2002 A1
20020077555 Schwartz Jun 2002 A1
20020077673 Penner et al. Jun 2002 A1
20020123672 Christophersom et al. Sep 2002 A1
20020151816 Rich et al. Oct 2002 A1
20020165601 Clerc Nov 2002 A1
20020169584 Fu et al. Nov 2002 A1
20020183628 Reich et al. Dec 2002 A1
20020188207 Richter Dec 2002 A1
20030036755 Ginn Feb 2003 A1
20030114897 Von Arx et al. Jun 2003 A1
20030139796 Sequin et al. Jul 2003 A1
20030195606 Davidson et al. Oct 2003 A1
20030200031 Kok Oct 2003 A1
20030233095 Urbanski Dec 2003 A1
20040006377 Behm Jan 2004 A1
20040054403 Israel Mar 2004 A1
20040116992 Wardle et al. Jun 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040204744 Penner et al. Oct 2004 A1
20040215228 Simpson et al. Oct 2004 A1
20050080472 Atkinson et al. Apr 2005 A1
20050096702 Denker et al. May 2005 A1
20050109338 Stahmann et al. May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050124875 Kawano et al. Jun 2005 A1
20050136385 Mann et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050149128 Heil et al. Jul 2005 A1
20050149155 Scheiner et al. Jul 2005 A1
20050149156 Libbus et al. Jul 2005 A1
20050154321 Wolinsky et al. Jul 2005 A1
20050165456 Mann et al. Jul 2005 A1
20050182387 Webler Aug 2005 A1
20050203444 Schonenberger et al. Sep 2005 A1
20050209678 Henkes et al. Sep 2005 A1
20050245840 Christopherson et al. Nov 2005 A1
20050265999 Bush et al. Dec 2005 A1
20060009818 Von Arx et al. Jan 2006 A1
20060047205 Ludomirsky et al. Mar 2006 A1
20060064133 Von Arx et al. Mar 2006 A1
20060064134 Mazar et al. Mar 2006 A1
20060064142 Chavan et al. Mar 2006 A1
20060064143 Von Arx et al. Mar 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060089627 Burnett et al. Apr 2006 A1
20060089694 Zhang et al. Apr 2006 A1
20060122522 Chavan et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060142819 Penner et al. Jun 2006 A1
20060149329 Penner Jul 2006 A1
20060149330 Mann et al. Jul 2006 A1
20060178586 Dobak Aug 2006 A1
20060206153 Libbus et al. Sep 2006 A1
20060241735 Tockman et al. Oct 2006 A1
20060259085 Zhang et al. Nov 2006 A1
20060287700 White et al. Dec 2006 A1
20060293741 Johnson et al. Dec 2006 A1
20070049833 Tearney et al. Mar 2007 A1
20070055313 Stahmann et al. Mar 2007 A1
20070060959 Salo et al. Mar 2007 A1
20070129637 Wolinsky et al. Jun 2007 A1
20070156126 Flaherty Jul 2007 A1
20070156205 Larson et al. Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070179583 Goetzinger et al. Aug 2007 A1
20070191904 Libbus et al. Aug 2007 A1
20070208390 Von Arx et al. Sep 2007 A1
20070247565 Sasaki et al. Oct 2007 A1
20070250126 Maile et al. Oct 2007 A1
20070274565 Penner Nov 2007 A1
20070282413 Tockman et al. Dec 2007 A1
20070282415 Tockman et al. Dec 2007 A1
20080071178 Greenland et al. Mar 2008 A1
20080071248 Delgado et al. Mar 2008 A1
20080071339 Stalker et al. Mar 2008 A1
20080108904 Heil May 2008 A1
20080176271 Silver et al. Jul 2008 A1
20080243007 Liao et al. Oct 2008 A1
20080275350 Liao et al. Nov 2008 A1
20080283066 Delgado et al. Nov 2008 A1
20090054793 Nunez et al. Feb 2009 A1
20090171274 Harlev et al. Jul 2009 A1
20090270742 Wolinsky et al. Oct 2009 A1
20100016840 Stahmann et al. Jan 2010 A1
20100210923 Li et al. Aug 2010 A1
20100274302 Armstrong et al. Oct 2010 A1
Foreign Referenced Citations (35)
Number Date Country
0897690 Feb 1999 EP
0928598 Jul 1999 EP
1068836 Jan 2001 EP
1488735 Jun 2007 EP
2333044 Jul 1999 GB
2000507142 Sep 1998 JP
H11089942 Apr 1999 JP
2001061790 Mar 2001 JP
2002515807 May 2002 JP
2004041724 Feb 2004 JP
2006500991 Jan 2006 JP
8303348 Oct 1983 WO
WO9934453 Jul 1999 WO
WO9934731 Jul 1999 WO
0016686 Mar 2000 WO
0059376 Oct 2000 WO
0167989 Sep 2001 WO
0176687 Oct 2001 WO
WO0174278 Oct 2001 WO
0187137 Nov 2001 WO
2004110263 Dec 2004 WO
2004024034 Jan 2005 WO
2005058202 Jun 2005 WO
2005066849 Jul 2005 WO
2005067817 Jul 2005 WO
2006062725 Jun 2006 WO
2007057739 May 2007 WO
2007062299 May 2007 WO
2007082115 Jul 2007 WO
2008002654 Jan 2008 WO
2008034077 Mar 2008 WO
2008057720 May 2008 WO
WO2008060197 May 2008 WO
2008144191 Nov 2008 WO
2009006610 Jan 2009 WO
Non-Patent Literature Citations (11)
Entry
Goodall, Eleanor V. et al., “Position-Seletive Activation of Peripheral Nerve Fibers with a Cuff Electrode”, IEEE Transactions on Biomedical Engineering, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 8, Aug. 1, 1996.
Holmes et al. “SirolimusEluting Stents vs. Vascular Brachytherapy for InStent Restenosis Within BareMetal Stents” JAMA295 (11): 1264-1273 Mar. 15, 2006.
International Search Report and Written Opinion from PCT/US2008/062229, mailed Jan. 5, 2009 7pages.
International Search Report and Written Opinion issued in PCT/US2010/020756, mailed Sep. 27, 2010.
Invitation to Pay Fees and Partial Search Report issued in PCT/US2010/020756, mailed May 12, 2010.
Lanning & Shandas, “Development and Validation of Implantable Sensors for Monitoring Function of Prosthetic Heart Valves: In Vitro Studies”, Medical & Biological Engineering & Computing, Jul. 2003, vol. 41, issue 4, pp. 416-424.
Mullins, C.E. et al., “Implantation of Balloon-Expandable Intravascular Grafts by Catheterization in Pulmonary Arteries and Systemic Veins”, Circulation, 1988, vol. 77, pp. 188-199.
Sheth et al. “Subacute Thrombosis and Vascular Injury Resulting From Slotted-Tube Nitinol and Stainless Steel Stents in a Rabbit Carotid Artery Model” Circulation 1996, 94: 1733-1740.
Stone et al. “Paclitaxel-Eluting Stents vs.Vascular Brachytherapy for In-Stent Restenosis Within Bare-Metal Stents” JAMA 295(11): 1253-1263, Mar. 15, 2006.
Triantaphyllou, Evangelos et al., “Development and Evaluation of Five Fuzzy Multiattribute Decision-Making Methods”, International Journal of Approximate Reasoning 1996; 14:281-310.
Wenaweser et al. “Stent thrombosis following baremetal stent implantation: success of emergency percutaneous coronary intervention and predictors of adverse outcome” European Heart Journal 26: 1180-1187 2005.
Related Publications (1)
Number Date Country
20150201848 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
60844948 Sep 2006 US
Continuations (2)
Number Date Country
Parent 14212873 Mar 2014 US
Child 14674949 US
Parent 11855501 Sep 2007 US
Child 14212873 US