This invention relates to an attachment element for fixation to corporeal tissue and a method of manufacturing the same. Such an attachment element may be used to attach endoluminal prosthesis within arteries, veins and similar lumens. As such, the attachment element would be capable of intraluminal delivery.
A variety of endoluminal prosthesis currently exist which require fixation within corporeal lumens. Examples of such are grafts and stents. Grafts are artificial lumens which replace the natural lumen or reside within the natural lumen and isolate the natural tissue from blood flow.
Stents are semi-rigid tubular structures which may be used to maintain the patency of natural lumens or grafts. By providing scaffolding for the lumen, stents prevent collapse and occlusion. Stents are typically formed either by winding wire into a tubular structure or removing material from a solid tube.
Prior art grafts and stents have described the use of hooks to improve fixation of the prosthesis. These hooks were typically formed of bent wire attached to the prosthesis. The prior art also teaches integrally formed hooks on the prosthesis. These integral hooks are formed to be axially aligned with the prosthesis prior to deployment and forced outwardly upon intraluminal deployment.
What has not been taught by the prior art and was heretofore unknown is an integrally-formed, outwardly predisposed hook for attaching to a corporeal lumen. The present invention satisfies that need.
Briefly and in general terms, the present invention embodies an attachment or anchoring element (i.e., protrusion, hook, barb) for fastening to corporeal tissues and a method of manufacturing the same. The attachment or anchoring element is formed as an integral portion of a metallic frame and has a preset outward bend or curve. The attachment or anchoring element is generally comprised of an elongated member and a pointed end. The pointed end is configured to impinge upon and possibly pierce corporeal tissue, plaque or other debris or disease.
In general, the present invention provides an improved attachment or anchoring element (which will be referred to herein as a hook for convenience) for fixation of endoluminal prosthesis. As such, the hook is configured for intraluminal delivery within a catheter or capsule. The hook and endoluminal prosthesis may then be delivered to a diseased or damaged portion of a corporeal lumen such as an artery or vein. Once delivered the hook may be compressed into or pierce the interior surface of the lumen. When compressed in such a fashion, the hook and prosthesis are securely fastened to the corporeal lumen.
There exists a variety of endoluminal prostheses which would benefit from the superior fixation provided by a hook which embodies the features of the present invention. Once such device, an abdominal aortic graft is used to treat abdominal aortic aneurysms. Such treatment requires the intraluminal delivery of the graft across the aneurysm. Once delivered the graft must be firmly attached to the surrounding tissue of the abdominal aorta. The present invention, in one possible embodiment, may be configured to provide secure leak-proof fixation for abdominal aortic grafts.
The hook may be formed integrally with the endoluminal prosthesis to be secured. It may also be formed separately and attached to the prosthesis by a variety of well-known means. The hook is typically formed from a metallic frame. This frame could be separate from the host prosthesis or be a portion thereof.
The hook is formed by cutting narrow incisions in the frame. These incisions define the elongated member and the pointed end. Laser-cutting is a well-known method of making such incisions. Once the hook is cut it can be bent outwardly such that the pointed end faces the direction in which the corporeal tissue will lie. This bend or curve in the hook may be permanently set by heating. Once set, the hook may be pressed back into the frame and the hook will spring back into the bent position when released due to its resilient nature.
There are a variety of configurations for the hook which are embodied in the present invention. The elongated member may have a constant cross-section throughout its length. It may also have a reducing cross-section near the pointed end. The pointed end may include one or more barbs. One configuration includes a single barb on either side of the pointed end, forming an arrowhead configuration. The pointed end may also be sharpened to further ensure fixation. Multiple hooks may be formed within a single frame. It is possible to form multiple hooks from a single set of incisions. Multiple hooks in opposing directions may provide superior fixation.
Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example the principles of the invention.
As shown in
The hook 20 and frame 22 are configured to secure themselves to corporeal tissue. The pointed end 26 may be compressed onto corporeal tissue such that it impinges into or possibly pierces the tissue. With the curve as shown in
In the compressed configuration, as depicted in
The hook 20 and frame 22 may be attached to or formed as part of an intraluminal endoprosthesis 28. This configuration is depicted in
The hook 20 and frame 22 may also form part of an attachment device 29 for a graft 30. This configuration is shown in
There exists a variety of devices that fit within the definitions of an intraluminal endoprosthesis 28 and a graft 30. Most of theses devices would benefit from the use of the securing devices defined herein. As shown, the same may form part of grafts which primarily replace the natural lumens or isolate them from the blood flow. Stents, which primarily ensure the patency of a lumen by resisting collapse and occlusion, can also benefit from the present invention as would implantable blood clot filters such as those often put in the vena cava.
The addition of the frame 22 and hook 20 of the present invention to existing grafts, stents and filters would provide such devices with superior fixation capability. For grafts the present invention will provide the additional benefit of leak-proof sealing of the graft to the blood vessel.
Endoluminal devices are typically collapsed for intraluminal delivery. Upon delivery to the desired location within the corporeal lumen, these devices are re-expanded. This re-expanding is accomplished in a number of ways. Balloon expansion requires the use of an angioplasty-type balloon catheter, which expands a device located about the balloon. Self-expansion uses the spring forces or super-elastic properties of the compressed device to expand outwardly once released. Shape memory metals have also been used in endoluminal devices to expand upon the addition of energy or chemicals. The expansion forces of any of these methods are sufficient to embed the appropriately placed hook 20 into a corporeal lumen. The frame 22 and hook 20 may be attached to the device such that the hook 20 is disposed radially outwardly from the device. As the device further expands radially outwardly the hook 20 is driven into the tissue of the corporeal lumen. Using several hook 20 and frame 22 combinations around the perimeter of the device ensures the most secure attachment.
Another method of securing the hook 20 allows attachment without relying upon expansion forces. The hook 20 may be impinged into the corporeal lumen by translating the hook 20 and frame 22 axially. Since the elongated member 24 is bent outward as it extends toward the pointed end 26, translating the hook 20 in the opposite direction of the elongated member's extension will force the pointed end 26 deeper into the corporeal lumen. Implanting the hook 20 and frame 22 in a position such that the axial forces of the blood flow are in this same direction will help secure the device over an extended period.
The frame 22 may be a separate device or may be a portion of the endoluminal device to which the hook 20 and frame 22 are a part. The frame 22 may be a small flat plate. Additionally since many endoluminal devices are formed from tubes, the frame 22 may be a portion thereof, that is, the frame 22 may be curved. Within the Figures, the frame 22 is depicted as a small roughly rectangular element with a connection 36 at one end. However, the frame 22 may be of any size or shape, or the frame 22 may be indistinguishable from the components of the endoluminal device from which the frame 22 is formed.
The hook 20 and frame 22 are typically formed of metal. Biocompatible stainless steel and Nitinol (Nickel Titanium Alloy) are particularly suited for this purpose. More exotic materials such as ceramics and plastics may also perform adequately.
The hook 20 may be formed in the frame 22 by first cutting incisions 40 into the frame 22. Preferably these incisions 40 are cut in such a manner as to remove the smallest amount of material from the frame 22 and hook 20, while still allowing for stress relief and freedom of movement of the hook. This preferred method leaves the hook 20 bounded on three sides by a narrow incision 40. This cutting forms the elongated member 24 and the pointed end 26. Laser cutting is a process known in the art which is preferred for making these incisions. To relieve the stresses caused by bending, additional material may be removed at the end of the incisions 40 in the form of cut-outs 52 (shown in
With reference to
Varying the configurations of the incisions 40 made in the frame 22 will provide a variety of configurations of the hook 20. As depicted in
Another configuration depicted in
Another configuration, depicted in
Combining configurations, as depicted in
Another configuration, depicted in
The pointed end 26 of each of these configurations may be sharpened to improve its ability to pierce the corporeal lumen. Material may be removed from either or both the lumen-facing or frame-facing sides of the pointed end 26 to produce a sharper point.
The preferred method of manufacturing the hook 20 and frame 22 includes cutting the hook 20 out of the frame 22 using narrow incisions 40. Several methods of making such incisions 40 in metal are well known. Possible examples are laser cutter, photo-etching and chemical etching.
Once the hook 20 is cut into the frame 22, it may be bent away from the frame 22. This may be accomplished manually by using tweezers to force the pointed end 26 of the hook 20 away from the frame 22. If the hook 20 and frame 22 are formed as part of an endoluminal device, the device may be mounted on a mandel 42 with pins 44 or similar means to force the pointed end 25 of the hook 20 away from the frame 22.
As depicted in
After bending, the hook 20 may be permanently deformed into the curved configuration by heat setting the material. For a Nitinol hook 20 and frame 22 combination heating at 550 degree. C. for ten minutes is sufficient. A ceramic or plastic hook 20 and frame 22 combination might be formed in a bent configuration.
With a permanently deformed hook 20, the hook 20 may still be compressed into alignment with the frame 22 without losing the preset curve. Thus, the hook 20 may be compressed into the frame for intraluminal low-profile delivery, and then deployed in the curved configuration by releasing. This is a significant advantage in producing a fixation device small enough to be delivered intraluminally.
It will be apparent from the foregoing that, while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
This application is a continuation of Ser. No. 11/609,222 filed Dec. 11, 2006, which is a continuation of Ser. No. 10/326,719 filed Dec. 19, 2002, now U.S. Pat. No. 7,147,662, which is a continuation of Ser. No. 09/547,822, filed Apr. 11, 2000, now U.S. Pat. No. 6,517,573, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5102417 | Palmaz | Apr 1992 | A |
5108418 | Lefebvre | Apr 1992 | A |
5167614 | Tessmann et al. | Dec 1992 | A |
5344426 | Lau et al. | Sep 1994 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5397355 | Marin et al. | Mar 1995 | A |
5423885 | Williams | Jun 1995 | A |
5591197 | Orth et al. | Jan 1997 | A |
5593417 | Rhodes | Jan 1997 | A |
5593434 | Williams | Jan 1997 | A |
5681346 | Orth et al. | Oct 1997 | A |
5733325 | Robinson et al. | Mar 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5800526 | Anderson et al. | Sep 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5824054 | Khosravi et al. | Oct 1998 | A |
5836969 | Kim et al. | Nov 1998 | A |
5843117 | Alt et al. | Dec 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5843164 | Frantzen et al. | Dec 1998 | A |
5855802 | Acciai et al. | Jan 1999 | A |
5860999 | Schnepp-Pesch et al. | Jan 1999 | A |
5879381 | Moriuchi et al. | Mar 1999 | A |
5904066 | Lehman | May 1999 | A |
5907893 | Zadno-Azizi et al. | Jun 1999 | A |
5911733 | Parodi | Jun 1999 | A |
5911752 | Dustrude et al. | Jun 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5913897 | Corso, Jr. et al. | Jun 1999 | A |
5916234 | Lam | Jun 1999 | A |
5921995 | Kleshinski | Jul 1999 | A |
6203569 | Wijay | Mar 2001 | B1 |
6217600 | DiMatteo | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6416530 | DeVries et al. | Jul 2002 | B2 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6517573 | Pollock et al. | Feb 2003 | B1 |
6620183 | DiMatteo | Sep 2003 | B2 |
7044134 | Khairkhahan et al. | May 2006 | B2 |
7147662 | Pollock et al. | Dec 2006 | B1 |
Number | Date | Country | |
---|---|---|---|
20100222871 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11609222 | Dec 2006 | US |
Child | 12771625 | US | |
Parent | 10326719 | Dec 2002 | US |
Child | 11609222 | US | |
Parent | 09547822 | Apr 2000 | US |
Child | 10326719 | US |