MECHANISM FOR TRANSMITTING MOVEMENT OF A DEVICE, IN PARTICULAR FOR COSMETIC TREATMENT, ASSOCIATED DEVICE AND METHOD

Information

  • Patent Application
  • 20160324373
  • Publication Number
    20160324373
  • Date Filed
    December 22, 2014
    10 years ago
  • Date Published
    November 10, 2016
    8 years ago
Abstract
This mechanism comprises a driving part (40) suitable for being moved reciprocally in a first direction and a second direction opposite the first direction and at least one part (42) driven by the driving part (40).
Description

The invention relates to a mechanism for transmitting movement of a device, in particular for cosmetic treatment, the mechanism comprising:

    • a driving part suitable for being moved reciprocally in a first direction and in a second direction opposite to the first direction, and
    • at least one driven part driven by the driving part.


Such a mechanism is intended, for example, to be placed in a cosmetic treatment device having at least one mobile member coming into contact with a body surface of a user.


Alternatively, the mechanism can be applied to other devices outside of the cosmetics field, such as, for example, devices using a free wheel, or a free wheel clutch, or conveyor driving systems.


In the cosmetics field, the cosmetic treatment involves, for example, the application of a cosmetic product, and/or a mechanical action on the body surface, such as a massaging, abrasion, friction or tapping action.


The cosmetic product, when it is used, is, for example, a care or makeup product for the body surface. It is particularly in the form of a cream, an emulsion, a liquid and/or a solid.


By “cosmetic product”, in the meaning of this invention, it is generally meant a product as defined in EC Regulation n° 1223/2009 of the European Parliament and the Council of Nov. 30, 2009, relating to cosmetic products.


A mechanism of the aforementioned type is used in a cosmetic treatment device described, for example, in U.S. Pat. No. 7,786,626 or in U.S. Pat. No. 7,320,691.


This device comprises a brush-shaped head, caused to oscillate by an reciprocal rotation movement in a first direction then in a second direction. The head is mounted on a removable tip with respect to a device support.


The support contains a driving motor suitable for generating the oscillation movement that actuates a head driving part.


When the tip is mounted on the support and the driving motor is activated, the head driving part transmits the oscillation movement onto it at a frequency typically between 20 Hz and 1 kHz, preferably between 80 Hz and 200 Hz. Such a device works suitably in order to produce reciprocal oscillation movements. However, its functions can be further improved in order to make its use more practical for the user.


One aim of the invention is to provide a transmission mechanism for a device that increases the functions and possibilities of use of the device.


To this end, the invention relates to a mechanism of the aforementioned type, wherein the mechanism comprises at least one assembly for establishing contact between a driving surface of the driving part and a driven surface of the driven part, the contacting assembly being suitable for driving the driven surface during movement of the driving surface in the first direction, and being suitable for enabling the driving surface to slide over the driven surface during the movement of the driving surface in the second direction.


The mechanism according to the invention can include one or more of the following features, taken alone or in any technically possible combination:

    • the driving part is mounted movable in rotation, in particular oscillating, around an axis of rotation in the first direction, and in the second direction during the reciprocal movement, the driven part being mounted movable in rotation or in translation in the first direction during the reciprocal movement of the driving part;
    • one of the driving and of the driven part comprises a drive shaft, the other of the driving part and of the driven part comprising a sleeve receiving the drive shaft, an outer peripheral surface of the drive shaft forming one of the driven surface or of the driving surface, an inner peripheral surface of the sleeve forming the other of the driving surface or of the driven surface;
    • the driving part is mounted movable in translation along an axis in the first direction and in the second direction during the reciprocal movement, the driven part being mounted movable in translation or in rotation in the first direction during the reciprocal movement of the driving part;
    • the dynamic coefficient of friction between the driving surface and the driven surface in the first direction of movement of the driving part is greater than the dynamic coefficient of friction between the driving surface and the driven surface in the second direction of movement of the driving part;
    • the driving surface and/or the driven surface comprises a plurality of projecting members having a preferred orientation in either the first direction or the second direction;
    • the projecting members comprise fibrous elements, in particular bristles or loops, projecting from the driving surface and/or from the driven surface;
    • the contacting assembly comprises a rough surface region on either the driving surface or the driven surface and an elastic surface region on the other of the driving surface and the driven surface;
    • the mechanism comprises an active assembly for moving the driving part according to an reciprocal movement.
    • the driven part is movable in rotation around an axis of rotation, in the first direction, the driven part having at least one air circulation member.


The invention also relates to a cosmetic treatment device comprising:

    • a support;
    • a member capable of moving with respect to the support, advantageously intended to be applied on a body surface of a user;
    • a transmission mechanism as described above, connecting the support to the mobile member, the mobile member being advantageously capable of moving jointly with the driving part.


The device according to the invention can include one or more of the following features, taken alone or in any technically possible combination:

    • the mobile member is mounted movable in rotation, and advantageously is mounted so as to oscillate with respect to the support around an axis of rotation;
    • the mobile member has an abrasive external surface, the driven part having at least one air circulation member;
    • it comprises a tip, on which the transmission mechanism and the mobile member are mounted, and an active assembly for moving the driving part according to an reciprocal movement, the active movement assembly being received in the support, the tip being removably mounted on the support.


The invention also relates to a method for transmitting movement in a cosmetic treatment device, comprising the following steps:

    • provision of a mechanism as described above;
    • reciprocal movement of the driving part in the first direction and in the second direction;
    • when the driving part moves in the first direction, driving of the driven part by the driving part by contact between the driving surface and the driven surface;
    • when the driving part moves in the second direction, sliding of the driving surface over the driven surface.





The invention will be easier to understand in view of the following description, provided solely as an example, and with reference to the appended drawings, wherein:



FIG. 1 is a front view of a first cosmetic treatment device comprising a transmission mechanism according to the invention;



FIG. 2 is an equivalent view to FIG. 1, the treatment tip comprising the transmission mechanism according to the invention having been removed;



FIG. 3 is a three-quarter front perspective view of the treatment tip comprising the transmission mechanism according to the invention;



FIG. 4 is an exploded view of the different parts forming the treatment tip;



FIG. 5 is a three-quarter front perspective view of a driving part of the transmission mechanism according to the invention;



FIG. 6 is an equivalent view to FIG. 5 of a driven part of the transmission mechanism according to the invention;



FIG. 7 is a top view showing the assembly of the driven part on the driving part;



FIG. 8 is an enlarged view of a detail of the assembly for establishing contact between the driving part and the driven part;



FIG. 9 is an equivalent view to FIG. 8 for an alternative of the transmission mechanism;



FIGS. 10 to 13 are equivalent views to FIG. 8, showing other transmission mechanism alternatives according to the invention;



FIGS. 14 and 15 show another device according to the invention; and



FIGS. 16 and 17 show another mechanism according to the invention.





A first device 10 according to the invention is shown in FIGS. 1 to 9.


The device 10 is intended to perform, in particular, a cosmetic treatment and to come into contact with a body surface of a user in order to apply a cosmetic product, and/or for a mechanical action on the body surface, such as a massaging, abrasion, friction, shearing or tapping action.


The cosmetic product, when used, is, for example, a care or makeup product for the body surface. It is in particular in the form of a cream, an emulsion, a liquid and/or a solid.


In reference to FIG. 1, the device 10 comprises a support 12 suitable for being manually held by a user, a member 14 for contact with the body surface, suitable for performing a reciprocal oscillating movement with respect to the support 12, and an assembly 16 for moving the contact member 14.


The device 10 also includes a transmission mechanism 18 according to the invention, mechanically connected to the contact member 14 and to the movement assembly 16.


Advantageously, in reference to FIGS. 3 and 4, the device 10 also comprises a tip 20 removably mounted on the support 12, the tip 20 bearing the transmission mechanism 18 and the contact member 14.


Returning to FIGS. 1 and 2, the support 12 in this case comprises a hollow case 22 receiving the movement assembly 16. The case 22 defines a sleeve with an axis A-A′, suitable for being handheld by a user of the device 10.


The case 22 defines a housing 24 for insertion of the tip 20, advantageously located at one end of the sleeve.


The movement assembly 16 is housed in the case 22. It comprises an oscillating motor 26, and a movement member 28, visible in FIG. 2, driven by the oscillating motor 26.


The movement member 28 projects partially from the case 22 through the housing 24, advantageously according to a transverse axis B-B′ with respect to axis A-A′.


The oscillating motor 26 is suitable for causing a reciprocal oscillation movement of the movement member 28 at an oscillation frequency advantageously between 100 Hz and 500 Hz.


In this example, the movement member 28 is mounted so as to oscillate with respect to the support 12 about the axis B-B′. It is therefore rotated reciprocally in a first direction S1 and in a second direction S2 about axis B-B′, over a total angular stroke of between 5° and 30°, preferably between 5° and 15°.


The movement member 28 comprises projections 30 for engagement with the transmission mechanism 18, which, in this example, are formed by radial teeth.


In reference to FIG. 4, the contact member 14 comprises a head 32 defining a surface for contact with the body surface of the user and a member 34 for mechanical connection with the transmission mechanism 18.


In this example, the contact member 14 is mounted so as to rotate with respect to the support 12 about axis B-B′. It is oscillated reciprocally in the first direction S1 and in the second direction S2 about axis B-B′.


The moment of inertia of the contact member 14 with respect to axis B-B′ is, for example, greater than 500 g.mm2, and is advantageously less than 1000 g.mm2.


The contact surface is, for example, an abrasive surface capable of producing a superficial abrasion on the body surface, in particular for a peel to remove dead cells, promote uniform penetration of a cosmetic product in the body surface and/or produce microlesions between the epidermis and the dermis.


The microlesions will advantageously induce repair processes in order to form new body tissue.


The abrasive surface is, for example, obtained by a method of soaking a Corindon-type abrasive material deposited on a plastic support covered with epoxy resin.


This optionally makes it possible to develop complex forms of contact members 14.


In reference to FIGS. 4 to 8, the transmission mechanism 18 according to the invention comprises a driving part 40, intended to be mounted on the movement member 28, and a driven part 42 driven by the driving part 40.


The transmission mechanism 18 also comprises an assembly 44 for establishing contact between parts 40, 42 visible in FIGS. 7 and 8.


The driving part 40 is intended to be engaged on the movement member 28 in order to move according to a reciprocal oscillating movement in the first direction S1 and in the second direction S2.


In reference to FIG. 5, the driving part 40 comprises a body 50 for assembly on the movement member 28, and a drive shaft 52 for driving the contact member 14 according to the reciprocal oscillating movement.


The assembly body 50 comprises a base plate 54 with axis B-B′ and a plurality of tabs 55 projecting from the base plate 54 in order to axially hold the driving part 40 on the tip 20. The base plate 54 extends perpendicularly to axis B-B′.


The tabs 55 project axially at the periphery of the base plate 54, mutually defining insertion notches 56 for the engagement projections 30. They are equipped with snap-lock elements 58 suitable for being inserted under a locking surface of the tip 20.


The drive shaft 52 defines an inner hole 60 for receiving the connection member 34, with a shape complementary to that of the connection member 34.


The connection member 34 is thus suitable for being mounted in the hole 60 in order to secure the contact member 14 with the driving part 40 in joint rotation.


The drive shaft 52 projects axially from the base plate 54 opposite the tabs 55.


It externally defines a peripheral driving surface 62 for driving the driven part 42, extending around axis B-B′.


In reference to FIG. 5, the driven part 42 comprises a base 70 and a sleeve 72 for engagement on the drive shaft 52 of the driving part 40.


In the example shown in the figures, the driven part 42 also comprises at least one air circulation member 74 projecting radially from the base 70 around the sleeve 72.


The base 70 revolves about axis B-B′. It has, in this example, a cross-section that converges axially toward the sleeve 72 from its periphery to its center.


The sleeve 72 extends at the center of the base 70 about axis B-B′. It is engaged around the drive shaft 52.


It internally defines a peripheral driven surface 75, suitable for coming into contact with the driving surface 62 by means of the contacting assembly 44.


In this example, the driven part 42 comprises a plurality of air circulation members 74 angularly distributed about axis B-B′.


Each air circulation member 74 forms a blade extending radially from the base 70 to a free end 76. The blade is preferably curved.


According to the invention, the contacting assembly 44 is inserted between the peripheral driving surface 62 and the peripheral driven surface 75 so as to ensure contact between these surfaces 62, 75.


As will be seen below, the contacting assembly 44 is suitable for driving the driven surface 75 during the movement of the driving surface 62 in the first direction S1 of rotation of the driving part 40 about axis B-B′.


It is suitable for allowing the driving surface 62 to slide over the driven surface 75 during the movement of the driving surface in the second direction S2 of rotation of the driving part 40 about axis B-B′.


Advantageously, the dynamic friction coefficient CFD1 between the driving surface 62 and the driven surface 75 in the first direction S1 of rotation of the driving part 40 is greater than the dynamic friction coefficient CFD2 between the driving surface 62 and the driven surface 75 in the second direction S2 of rotation of the driving part 40.


The dynamic friction coefficient is, for example, measured by ISO standard 8295.


Similarly, the static friction coefficient CFS2 between the driving surface 62 and the driven surface 75 in the second direction S2 is lower than the static friction coefficient CFS1 between the driving surface 62 and the driven surface 75 in the first direction S1.


The static friction coefficient is, for example, measured by ISO standard 8295.


The dynamic coefficient CFD1 is, for example, greater than the static coefficient CFS2 and the dynamic coefficient CFD2. The ratio of the static coefficient CFS1 to the dynamic coefficient CFD2 is, for example, greater than 5, and is in particular greater than 10.


As shown in FIG. 8, the contacting assembly 34 advantageously comprises a plurality of projecting members 80 projecting from the driving surface 62 and/or the driven surface 75 selectively in either the first direction S1 or the second direction S2.


Advantageously, the projecting members 80 project from the driving surface 62 selectively in the first direction S1 and/or from the driven surface 75 selectively in the second direction S2.


Preferably, the contacting assembly 44 comprises a plurality of projecting members 80 projecting from the driving surface 62 and a plurality of projecting members 80 projecting from the driven surface 75.1


The projecting members 80 are, for example, formed from fibers. They are, for example, formed by bristles or fiber loops preferentially oriented. Alternatively, the projecting members 80 are formed by a flocking.


The projecting members 80 are, for example, placed on one and/or the other of the surfaces 62, 75 by a surface treatment. Alternatively, they are borne by a support layer that is fixed on the surface 62, 75 receiving them.


Thus, in one embodiment, the projecting members 80 are borne by a baize, fixed by adhesion on the surface 62, 75.


The fibers forming the projecting members 80 are, for example, of synthetic origin, or, by contrast, of natural origin, such as animal hair. Alternatively, the projecting members 80 are formed by macroscopic members, such as scales.


The selective orientation of the projecting members 80 ensures that the movement of the driving surface 62 in the first direction S1 moves the driven surface 75 in the same direction S1.


The selective orientation of the projecting members 80 conversely ensures the sliding of the driving surface 62 over the driven surface 75, without substantially driving S2 of the driven surface 75 when the driving surface 62 moves in the second direction S2.


By “substantial driving” we mean that the driven surface 75 covers less than 10%, and advantageously less than 1% of the stroke in the second direction S2 of the driving surface 62 during a movement of the driving part 40 in the second direction S2.


Thus, when the driving part 40 performing a reciprocal oscillating movement moves in the first direction S1, it actuates the driven part 42 in the first direction S1, by means of the contact between the surfaces 62, 75 and the contacting assembly 44.


By contrast, when the driving part 40 performing a reciprocal oscillating movement moves in the second direction S2, it does not substantially actuate the driven part 42, since the driving surface 62 slides over the driven surface 75.


The driven part 42 therefore moves in the first direction S1 and preferably substantially exclusively in the first direction S1 when the driving part 40 performs a reciprocal movement in the first direction S1 and in the second direction S2.


In the example shown in the figures, the driving part 40 performing a reciprocal oscillating movement in the first direction S1 and in the second direction S2 therefore actuates the contact member 14 according to the same reciprocal oscillating movement, by means of the engagement of the connection member 34 in the drive shaft 52.


Simultaneously, the driving part 40 performing the reciprocal oscillating movement in the first direction S1 and in the second direction S2 actuates the driven part 50, and advantageously the air circulation members 74 that it holds, in the first direction S1 by means of the selective contact between the surfaces 62, 75, connected to one another by the contacting assembly 44.


The transmission mechanism 18 is therefore particularly simple and particularly lightweight, while being very effective for increasing the functions of the treatment device 10.


The size and the weight of the assembly formed by the driving part 40, the driven part 42 and the contact member 14 are advantageously suitable for producing a resonant effect at the frequency of alternation of the movements of the driving part 40.


In reference to FIG. 3 and FIG. 4, the tip 20 comprises a base 90 for assembly in the housing 24 of the support 12, and, in this example, a cap 92 fixed on the base in order to cover the base 90. The base 90 and the cap 92 define an internal housing 94 for receiving the driven part 42.


The assembly base 90 is formed by a ring removably fixed on the support 12 in the housing 24, for example by screwing. It defines an internal surface 98 for holding the driving part 40 in the axial position.


The driving part 40 is mounted so as to rotate in the first direction S1 and in the second direction S2 in the assembly base 90 about axis B-B-′, being kept in translation along axis B-B′ by the assembly base 90.


The cap 92 covers the base 90. It defines a central axial opening 98 through which the contact member 14 extends. This makes the head 32 accessible from the outside, so as to enable its contact with the body surface of the user.


The cap 92 defines a plurality of air circulation windows 100 extending radially outside the stirring members 74.


The housing 94 is defined between the cap 92 and the base 90. It opens axially outwardly through the axial opening 98 and radially outwardly through windows 100.


The housing 94 receives, at least in part, the driving part 40 and receives the driven part 42, advantageously equipped with its air circulation members 74.


Thus, the cap 92, the tip 20 and the air circulation members 74 form an air suction assembly, advantageously capable of aspirating body surface elements detached by the contact member 14.


The operation of the device 10 comprising the transmission mechanism 18 according to the invention will now be described.


Initially, the tip 20 bearing the transmission mechanism 18 and the contact member 14 is reversibly mounted on the support 12 by being placed in the housing 24.


The driving part 40 is engaged on the movement member 28. The engagement projections 30 are inserted into the insertion notches 56 defined between the tabs 55. The driving part 40 is then capable of moving jointly in rotation about axis B-B-′ with the movement member 28.


The connection member 34 of the contact member 14 is received in an inner hole 62 of the drive shaft 52. The contact member 14 is therefore capable of moving jointly in rotation about axis B-B′ with the driving part 40.


The sleeve 72 of the driven part 42 receives the drive shaft 52 of the driving part 40. The driving surface 62 is placed opposite the driven surface 75, the contacting assembly 44 being inserted between the surfaces 62, 75.


When the user wants to use the device 10, he or she controls the movement assembly 16. The motor 26 is activated. The user moves the movement member 28 according to a reciprocal oscillation movement about axis B-B′ in the first direction S1 and in the second direction S2.


The movement member 28 in turn moves the driving part 40, and the contact member 14 according to the same reciprocal oscillation movement about axis B-B′ in the first direction S1 and in the second direction S2.


The contact member 14 comes into contact with the body surface of the user in order to perform a cosmetic treatment on this surface, for example an abrasion of elements of the body surface.


Advantageously, in consideration of the size and weight of the mobile assembly formed by the driving part 40, the driven part 42 and the contact member 14, a resonance is obtained, which produces a particular tactile effect on the body surface.


Simultaneously, each movement of the driving part 40 in the first direction S1 rotates, in the same direction S1, the driven part 42 and advantageously the air circulation members 74, in particular due to the selective orientation of the projecting members 80 on the driving surface 62 and/or on the driven surface 75.


Conversely, each movement of the driving part 40 in the second direction S2 does not rotate, in the same direction S2, the driven part 42, owing to the sliding of the driving surface 62 over the driven surface 75.


The driven part 42 and the air circulation members 14 are therefore rotated about axis B-B′, and preferably exclusively in the first direction S1.


An air suction is produced in the housing 98 of the cap 92, which aspirates the elements of the body surface detached by the contact member 14.


The functions of the device 10 are therefore increased, by means of a transmission mechanism 18 according to the invention having a very simple, inexpensive and nevertheless very effective structure for converting a reciprocal movement in a first direction S1 and in a second direction S2 into a simple movement in the first direction S1.


In an alternative shown in FIG. 9, the contacting assembly 44 comprises projecting members 80 made of fibers on one of the faces of the driving surface 62 or the driven surface 75. The other face comprises a rough surface region 102, suitable for cooperating with the projecting members 80 of the other surface.


The rough region 102 comprises, for example, a roughness R on the same order of amplitude as the diameter of the fibers of the projecting members 80 as measured by ISO standard 12085.


The contacting assembly 44 also comprises an elastic surface region 104 located on the other of the driving surface 62 and the driven surface 75 opposite and in contact with the projecting members 80.


The elastic region 104 comprises, for example, a hardness of less than 75 shore A as measured by ISO standards ISO 868 and 7619.


The local elasticity of the elastic region 104 produces a local deformation of the other of the driving surface 62 and the driven surface 75 when the driving surface 62 actuates the driven surface 75 in the first direction S1. A relaxation of the elastic deformation occurs when the driving surface 62 moves with respect to the driven surface 75 in the second direction S2, preventing the driving of the driven surface 75 by the driving surface 62.


In another alternative, shown in FIG. 10, the driving part 40 moves in translation along an axis B-B′, according to a reciprocal movement in the first direction S1 and in the second direction S2. It rotates the driven part 42 in the first direction S1, without significantly rotating it in the second direction S2.


In another alternative, shown in FIG. 11, the driving part 40 moves in translation along an axis B-B′, according to a reciprocal movement in the first direction S1 and in the second direction S2. It causes translation of the driven part 42 in the first direction S1, without significantly translating it in the second direction S2.


In yet another alternative, shown in FIG. 12, the driving part 40 moves in rotation about an axis B-B′ according to a reciprocal movement in the first direction S1 and in the second direction S2. It causes translation of the driven part 42 in the first direction S1, without significantly translating it in the second direction S2.


In another alternative, shown in FIG. 13, the driving part 40 moves in translation along an axis B-B′, according to a reciprocal movement in the first direction S1 and in the second direction S2.


It comprises a first driving surface 62 and a second driving surface 110 opposite the first driving surface 62 with respect to axis B-B′.


The driven part 42 comprises a first segment 112 opposite the first driving surface 62 and a second segment 114 located opposite the second driving surface 110.


The mechanism 18 comprises a first assembly 44 for establishing contact between the first driving surface 62 and a driven surface located on the first segment 112 and a second assembly 116 for establishing contact between the second driving surface 110 and a driven surface located on the second segment 114.


The first contacting assembly 44 is suitable for driving the first driven surface located on the first segment 112 during the movement of the driving part 40 in the first direction S1 and is suitable for allowing the first driven surface located on the first segment 112 to slide during the movement of the driving part 40 in the second direction S2.


Conversely, the second contacting assembly 116 is suitable for driving the second driven surface located on the second segment 114 during the movement of the driving part 40 in the second direction S2 and is suitable for allowing the second driven surface located on the second segment 114 to slide during the movement of the driving part 40 in the first direction S1.


Advantageously, the first segment 112 and the second segment 114 are connected at their ends and form a closed conveying strip.


Another alternative transmission mechanism 18 according to the invention is shown in FIGS. 14 and 15.


The mechanism 18 comprises a driving part 40 driving a first driven part 42 and a second driven part 120 by means, respectively, of a first contacting assembly 44 and a second contacting assembly 122.


In this example, the first driven part 42 and the second driven part 120 are coaxial with axis B-B′. The second driven part 120 extends around the first driven part 42.


The driving part 40 is reciprocally rotated about an axis B-B′ in a first direction S1 and in a second direction S2.


It defines a first driving surface 62 of the first driven part 42 and a second driving surface 124 of the second driven part 120.


In this example, the first driving surface 62 and the second driving surface 124 extend transversally with respect to axis B-B′ and advantageously revolve about axis B-B′. They are located in this case on the same transverse face 126 of the driving part 40.


Each driving surface 64, 124 is located opposite a corresponding driven surface 75, 128, located respectively on the first driven part 42 and on the second driven part 120.


The first contacting assembly 44 is suitable for driving the first driven surface 75 located on the first part 42 during the movement of the driving part 40 in the first direction S1 and is suitable for allowing the first driven surface located on the first part 42 to slide during the movement of the driving part 40 in the second direction S2.


Conversely, the second contacting assembly 122 is suitable for driving the second driven surface 128 located on the second part 120 during the movement of the driving part 40 in the second direction S2 and is suitable for allowing the second driven surface located on the second part 120 to slide during the movement of the driving part 40 in the first direction S1.


Thus, as shown in FIG. 15, during a reciprocal movement of the driving part 40, the first driven part 42 is rotated, preferably exclusively, in the first direction S1 about axis B-B′, and the second driven part 120 is rotated, preferably exclusively, in the second direction S2 about axis B-B′, opposite the first driven part 42.


In the examples above, the driving part 40 is moved according to a reciprocal oscillating movement in a first direction S1, then in a second direction S2, at a high frequency.


Alternatively, the driving part 40 is moved reciprocally in a first direction S1 during a first phase of use shown, for example, in FIG. 16, then in a second direction S2 during a second phase of use following the first phase, shown, for example, in FIG. 17, without the reciprocal movement necessarily being repetitive, or at a given frequency.


The mechanism 18 of FIGS. 16 and 17 comprises, as above, a driving part 40 driving a first driven part 42 and a second driven part 120 by means, respectively, of a first contacting assembly 44 and a second contacting assembly 122.


In this example, the first driven part 42 and the second driven part 120 are coaxial with axis B-B′, being axially offset along axis B-B′.


The first contacting assembly 44 is suitable for driving a first driven surface located on the first part 42 during the movement of the driving part 40 in the first direction S1 and is suitable for allowing the first driven surface located on the first part 42 to slide during the movement of the driving part 40 in the second direction.


Conversely, the second contacting assembly 122 is suitable for driving a second driven surface located on the second part 120 during the movement of the driving part 40 in the second direction S2 and is suitable for allowing the second driven surface located on the second part 120 to slide during the movement of the driving part 40 in the first direction S1.


When the user wants to rotate the first driven part 42, he or she controls the driving part 40 so that it is driven in the first direction S1, as shown in FIG. 16. The second driven part 120 then remains immobile.


When the user wants to rotate the second driven part 120, he or she controls the driving part 40 so that it is driven in the second direction S2, as shown in FIG. 17, reciprocally with respect to the first direction S1 shown in FIG. 16. The first driven part 42 then remains motionless.

Claims
  • 1. Mechanism for transmitting movement of a device, the mechanism comprising: a driving part suitable for being moved reciprocally in a first direction and in a second direction opposite to the first direction;at least one driven part driven by the driving part;wherein the mechanism comprises at least one assembly for establishing contact between a driving surface of the driving part and a driven surface of the driven part, the contacting assembly being suitable for driving the driven surface during movement of the driving surface in the first direction, and being suitable for enabling the driving surface to slide over the driven surface during the movement of the driving surface in the second direction.
  • 2. Mechanism according to claim 1, wherein the driving part is mounted movable in rotation around an axis of rotation in the first direction, and in the second direction during the reciprocal movement, the driven part being mounted movable in rotation or in translation in the first direction during the reciprocal movement of the driving part.
  • 3. Mechanism according to claim 2, wherein one of the driving part and of the driven part comprises a drive shaft, the other of the driving part and of the driven part comprising a sleeve receiving the drive shaft, an outer peripheral surface of the drive shaft forming one of the driven surface or of the driving surface, an inner peripheral surface of the sleeve forming the other of the driving surface or of the driven surface.
  • 4. Mechanism according to claim 1, wherein the driving part is mounted movable in translation along an axis in the first direction and in the second direction during the reciprocal movement, the driven part being mounted movable in translation or in rotation in the first direction during the reciprocal movement of the driving part.
  • 5. Mechanism according to claim 1, wherein the dynamic coefficient of friction between the driving surface and the driven surface in the first direction of movement of the driving part is greater than the dynamic coefficient of friction between the driving surface and the driven surface in the second direction of movement of the driving part.
  • 6. Mechanism according to claim 1, wherein the driving surface and/or the driven surface comprises a plurality of projecting members having a preferred orientation in either the first direction or the second direction.
  • 7. Mechanism according to claim 6, wherein the projecting members comprise fibrous elements projecting from the driving surface and/or from the driven surface.
  • 8. Mechanism according to claim 1, wherein the contacting assembly comprises a rough surface region on either the driving surface or the driven surface and an elastic surface region on the other of the driving surface and the driven surface.
  • 9. Mechanism according to claim 1, comprising an active assembly for moving the driving part according to an reciprocal movement.
  • 10. Mechanism according to claim 1, wherein the driven part is movable in rotation around an axis of rotation, in the first direction, the driven part having at least one air circulation member.
  • 11. Cosmetic treatment device comprising: a support;a member capable of moving with respect to the support, ;a transmission mechanism according to claim 1, connecting the support to the mobile member.
  • 12. Cosmetic treatment device-according to claim 11, wherein the mobile member is mounted movable in rotation.
  • 13. Cosmetic treatment device according to claim 11, wherein the mobile member has an abrasive external surface, the driven part having at least one air circulation member.
  • 14. Cosmetic treatment device according to claim 11, comprising a tip, on which the transmission mechanism and the mobile member are mounted, and an active assembly for moving the driving part according to a reciprocal movement, the active assembly being received in the support, the tip being removably mounted on the support.
  • 15. Method for transmitting movement in a cosmetic treatment device, comprising the following steps: provision of a mechanism according to claim 1;reciprocal movement of the driving part in the first direction, and in the second direction;when the driving part moves in the first direction, driving of the driven part by the driving part by contact between the driving surface and the driven surface;when the driving part moves in the second direction, sliding of the driving surface over the driven surface.
  • 16. Mechanism according to claim 2, wherein the driving part is mounted oscillating in rotation.
  • 17. Mechanism according to claim 7, wherein the fibrous element comprise bristles or loops.
  • 18. Cosmetic treatment device according to claim 11, wherein the member is intended to be applied on a body surface of a user.
  • 19. Cosmetic treatment device according to claim 11, wherein the mobile member is capable of moving jointly with the driving part.
  • 20. Cosmetic treatment device according to claim 12, wherein the mobile member is mounted so as to oscillate with respect to the support around an axis of rotation.
Priority Claims (1)
Number Date Country Kind
13 63610 Dec 2013 FR national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/079061 12/22/2014 WO 00