This invention relates to the art of telecommunication systems, and more particularly to messaging between wireless terminal devices and access network controllers during congestion.
Radio access networks carry traffic between an end user device, e.g., a mobile telephone, a laptop computer, etc., and the core/application network. Congestion occurs when traffic in the network exceeds the engineered radio access network capacity. Illustratively, radio access networks can become congested/overloaded when many end user devices use the access network simultaneously or when a few users with one or more different applications generate a large amount of data. Without radio access network control, the congestion may remain for long periods of time and could result in queuing delay, packet loss or the blocking of new connections. Desired congestion controls allow high priority traffic, e.g., emergency calls, and throttle lower priority traffic.
Disadvantageously, with the popularity of smart phones and the high use of applications that use the Internet in short bursts, data is being used in non-optimal ways for the wireless network, which stresses radio access network and core network resources. Illustratively, a user of a wireless device with one or more existing connections to the network may repeatedly request additional wireless network resources when the radio access network is in an overload condition.
Apparatuses and methods are provided for throttling wireless traffic during congestion in radio access networks. Embodiments are provided that may assist network providers to reduce new requests for network resources during congestion and allow existing lower priority traffic to be pre-empted with a backoff time to allow a new request with higher priority traffic to be served.
More specifically, in one embodiment, provided is a method that includes receiving at an access network controller a request from a core network component to provide an additional connection to a mobile communications device that has one or more existing connections to the radio access network; determining at the access network controller that at least a portion of the radio access network is in an overload condition; and sending at the access network controller a first message to the core network component that comprises a congestion indicator and a time value during which congestion control is in effect.
In another embodiment, an apparatus includes a processor configured to compare a priority level of a connection requested by a mobile communications device having at least one existing connection in one of the one or more radio access networks to a priority level for connections in a set of one or more existing connections in the one of the one or more radio access networks, and configured to generate a first message when the comparison results in a determination that the priority level of the connection requested is not equal to the priority level of connections in the set of the one or more existing connections, wherein the first message comprises a congestion indicator and a time value during which congestion control is in effect; and a transmitter configured to send the first message to the core network component.
In another embodiment, a non-transitory computer-readable storage medium includes means for receiving a request from a core network component to provide an additional connection to a mobile communications device that has one or more existing connections to the radio access network; means for determining that at least a portion of the radio access network is in an overload condition; and means for sending a message to the core network component that comprises a congestion indicator and a time value during which congestion control is in effect.
In another embodiment, an apparatus includes a processor configured to generate, while having one or more connections to a radio access network, a first request to a core network for an additional connection to the radio access network, initialize a timer to a time value received in a response to the first request, wherein the time value represents a duration of time during which congestion control is in effect for an area impacted by congestion, and store a priority level under congestion control indicator received in the response to the first request; and a memory component associated with the processor for storing the time value of the timer and the priority level under congestion control indicator.
Some embodiments of apparatuses and methods in accordance with embodiments of the present invention are now described, by way of example only, and with reference to the accompanying drawings, in which:
Embodiments are provided that address how an access network controller may indicate to terminal devices to reduce new requests for network resources during congestion and allow existing lower priority traffic to be pre-empted with a backoff time, i.e., an amount of time required before a terminal device can initiate another request for network resources, to allow an existing higher priority connection or a new request with higher priority traffic to be served.
In one embodiment, Terminal devices 1-8 are small, light-weight portable mobile telephones, e.g., pocket telephones, used by service subscribers to initiate communications with networks, e.g., servers, and other subscribers. Terminal devices 1-8 are capable of wirelessly connecting to a communications network having wireless technology that allows a user of Terminal devices 1-8 to communicate, via a user interface on Terminal devices 1-8, with another party or services, not shown.
Terminal devices 1-8 may be capable of sending and receiving voice calls, email, short message service (SMS), images, video, microbrowser messages, text messaging, interacting with data services or any combination thereof. Terminal devices 1-8 connect to a communications network via one or more of different types of air interfaces that may include, but are not limited to Long Term Evolution (LTE)/Evolved UMTS Terrestrial Radio Access Network (E-UTRAN), Universal Mobile Telecommunications System (UMTS), Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Cellular Digital Packet Data (CDPD), Wireless Fidelity (Wi-Fi) based on IEEE 802.11 and Worldwide Interoperability for Microwave Access (Wi-Max) networks or any other standard or protocol which supports the delivery of voice calls, email, images, video, microbrowser messages, text messaging, and/or interacting with data services. Illustratively, I1, as shown in
It will be readily understood that the method of the present invention is not limited to a mobile “pocket” telephone. In another embodiment of the invention, Terminal devices 1-8 may be mobile telephones installed in an engine-driven vehicle and supplied with current from the vehicle electrical system. In yet another embodiment of the invention, Terminal devices 1-8 may be smart phones, personal digital assistance (PDA) devices, a digital video camera that can access the Internet, two-way pagers, notebook computers, or wireless portable media players that allow an addition of executable programs, or other portable devices with the capability to connect and interact with a wireless network.
In one embodiment, access network edge devices 20 are base stations, i.e., radio transmitters/receivers, that provide bi-directional wireless connectivity for wireless communication devices, e.g., Terminal devices 1-8, within a geographical area, or a cell, i.e., a basic geographic unit of a cellular system, proximate to access network edge device 20. Access network edge devices 20 may produce a radiation pattern that defines a coverage area of the cell site. Access network edge devices 20 may use an air interface standard that is complementary to the air interface standard of Terminal devices 1-8 so that calls may be connected from Terminal devices 1-8 to a wireless network which connects to Core Network 40, which may connect the calls to a terminal endpoint. Terminal devices 1-8 may select one of access network edge devices 20 for communication with the network based on factors such as signal strength, signal integrity, and current load on access network edge devices 20.
Access network edge devices 20 may route broadcasted pages from the wireless network to Terminal devices 1-8 to alert Terminal devices 1-8 of incoming packets, a call or text messages. Access network edge devices 20 may be positioned at or near the center of each cell or, depending on geography and other known factors, access network edge device 20 may instead be located at or near the periphery of, or otherwise away from the center of, each cell. Access network edge devices 20, may be geographically dispersed to form an area of coverage for a specific mobile switching center. Access network edge devices 20, in one embodiment, comprise one or more LTE cells.
Access network edge devices 20 communicate with Core Network 40 via Access Network Controller 30. Access Network Controller 30 may perform management of radio resources, e.g., radio bearer control, radio admission control, etc., and may control a plurality of access network edge devices. Illustratively, Access Network Controller 30 controls the hand-off process, i.e., change of an active access network edge device serving a terminal device, of in-progress voice calls and/or data transmissions from one access network edge device to another. Access Network Controller 30 may have a wired connection, e.g., T1/E1 (1.5 to 2 Mbps) or higher bandwidth, IP, etc., to access network edge devices 20. Illustratively, I2, as shown in
Core Network 40 performs communication session set up and tear down, contains the network infrastructure used to convey calls or messages from the call originator to the terminating point, and controls how connections are made from the call originator to the terminating point. Core Network 40 is composed of interconnected network infrastructure, not shown, that may include a) wireless and wireline components capable of monitoring packet connections and routing calls between endpoints, e.g., packet switches, mobile switching centers, circuit switches, servers, routers, Mobility Management Entities (MMEs), Serving General Packet Radio Service (GPRS) Support Nodes (SGSNs), Packet Gateways (P-GW), Gateway GPRS Support Nodes (GGSNs), satellites, etc., b) signaling components for transmission of control signaling messages between network elements, terminal devices, etc., e.g., signaling system 7 (SS7) architecture, mobile application part (MAP), Transmission Control Protocol/Internet Protocol (TCP/IP), session initiation protocol (SIP), etc., c) transport components, e.g., fiber, copper, SONET systems, etc., d) storage components, e.g., databases, used to process service requests, store messages, as well as e) systems used to manage elements of Core Network 40 and to collect call details, e.g., billing systems, etc, as will be appreciated by those of ordinary skill in the art. The functions of the network infrastructure are well known in the art, and will not be described in detail.
For purposes of illustration and example, Terminal device 1 may have one or more existing connections to Core Network 40 via radio access network 50 for a communication session, e.g., a data connection. The user of Terminal device 1 may thereafter initiate a new request for an additional connection, e.g., a connection to the Internet to run a smart phone application, by transmitting a message to Core Network 40.
The request may be sent in a core network message, e.g., an I4 protocol as shown in
Access Network Controller 30 monitors radio access network 50 and determines that a portion of radio access network 50, e.g., access network edge device 20-1, is in an overload condition, i.e., congested. Illustratively, an access network edge device may become overloaded when it exhausts its bandwidth capability on the radio bearers. A congested access network edge device may send a message to Access Network Controller 30 indicating the existence of congestion, possibly also including an indicator of the type of congestion it is experiencing. Also illustratively, Access Network Controller 30 knows that it is overloaded when it cannot handle any job requests and spends its time thrashing, i.e., trying to allocate internal resources and never being able to actually process the requests. In such a circumstance, Access Network Controller 30 may take action to relieve the congestion by throttling requests for new resources on the congested edge entity, i.e., access network edge device 20-1.
After receiving the message from Core Network 40 containing Terminal device 1's request, Access Network Controller 30 determines that Terminal device 1's request for the additional connection cannot be fulfilled at that time. Also, Access Network Controller 30 may have one or more processors which execute program logic to retrieve records from a storage device. The one or more processors may employ an identifier of Terminal device 1 to obtain the records of Terminal device 1's bandwidth allocation and a priority level for Terminal device 1's one or more existing connections from the storage device. Priority level in LTE/E-UTRAN defines the relative importance of requested resources, and is used to decide if a bearer establishment/modification request can be accepted or rejected in case of resource limitations. Illustratively, the range of the allocation and retention priority (ARP) priority level in LTE/E-UTRAN is 1 to 15, where a priority level of 15 has the lowest priority and a priority level of 1 has the highest priority. Access Network Controller 30 obtains the priority level of the newly requested connection from the request message.
After retrieving the records, Access Network Controller 30 may compare a priority level of the newly requested connection to the priority level of Terminal device 1's one or more existing data connections. Also illustratively, in LTE/E-UTRAN, the comparison could be between the priority level of the newly requested connection and the priority level of other existing connections in radio access network 50 regardless of the device's identity. If the priority level of the newly requested connection is lower than Terminal device 1's one or more existing data connections and the priority level of other existing data connections in radio access network 50, then Access Network Controller 30 will reject the request since it is a lower priority than the currently allocated data connections. Note that if the priority level of the newly requested connection is the same as the priority level of Terminal device 1's one or more existing data connections or the priority level of other existing data connections in radio access network 50, then there are no lower priority bearers that can be pre-empted and there are no additional resources available. The request for the new connection will again be rejected.
Access Network Controller 30 may send a message to Core Network 40 to indicate that the request is rejected because radio access network 50 is in an overload condition, (i.e., a congestion indicator) in conjunction with an indicator of the highest priority level under congestion control and the area/location of the overload. Illustratively, this message may be representative of a setup response to the setup request to establish additional radio access bearers for LTE/E-UTRAN. Information used to identify the area of the overload may include, but is not limited to, the number of cell sites impacted, a location of the cells represented by a global position represented by at least two coordinates, e.g., latitude and longitude, a base station identification code, a location/routing/tracking area code, a system identification, a network identification and a MacroCell identity, or any combination thereof. If an area impacted is not included, then it may be determined by default to be the current serving cell. In addition, the message includes a backoff time value, i.e., an amount of time required before a terminal can initiate another request for network resources, so that Terminal device 1 does not request the resources repeatedly. The backoff time may have a predetermined value, e.g., at least 10 seconds, or the backoff time may vary per requested connection.
After receiving the message from Access Network Controller 30, Core Network 40 may release the resources that were allocated for the requested connection. Also, Core Network 40 may send a message (e.g., an I4 response shown in
After receiving the message from Core Network 40 indicating a rejection of the request, Terminal device 1 starts a timer initialized with the backoff time value. Terminal device 1 will not initiate signaling messages to the impacted radio access network, i.e., access network edge device 20-1, or to Core Network 40 to request data connections of this priority level (i.e., the priority level under congestion control) or lower priority until the timer has expired or Terminal device 1 moves outside of the area impacted. However, Terminal device 1 may initiate requests for data connections of a higher priority than the requested connection while the timer is active, i.e., the time has a non-zero value. After the timer expires or Terminal device 1 moves outside of the area impacted or Terminal device 1 has a higher priority connection to request, then Terminal device 1 may initiate another request for the additional connection.
Alternatively, if the priority level of the requested connection is higher than the priority levels of Terminal device 1's one or more existing data connections or the priority levels of any other connected device's existing data connection that is pre-emptable, then Access Network Controller 30 may pre-empt (i.e., terminate) one of the existing data connections to allow the request for the higher priority connection. In other words, Access Network Controller 30 releases a lower priority pre-emptable bearer that may be either one of Terminal device 1's one or more existing data connections or one of the lower priority other existing data connections in radio access network 50, and grants the requested connection. The requested new connection is assigned to the bearer that was pre-empted, thus activating the request for the new connection. Access Network Controller 30 sends a message to Core Network 40 to indicate that the request for the new connection has been granted, but one or more lower priority pre-emptable bearers have been released. In addition, the message may include one or more of the congestion indicator, the priority level under congestion control indicator, the backoff time value and an identifier of the area impacted so that Terminal device 1 will not repeatedly request the lower priority existing data connection.
After receiving the message from Access Network Controller 30, Core Network 40 sends a message to Terminal device 1 to indicate that the request for the new connection has been granted, but a lower priority pre-emptable bearer has been released. Also, the message may include one or more of the congestion indicator, the identifier of the area impacted, the priority level under congestion control indicator and the backoff time value so that Terminal device 1 knows that an overload condition exists and Terminal device 1 should not attempt to re-establish its pre-empted data connection or a new connection that has a priority level less than or equal to the pre-empted connection until the backoff timer has expired or Terminal device 1 has moved outside of the area impacted. Then, Core Network 40 may release the resources associated with the pre-empted data connection.
As stated previously, Access Network Controller 30 may pre-empt one of the lower priority other existing data connections in radio access network 50, e.g., Access Network Controller 30 releases a bearer of Terminal device 2 rather than one of Terminal device 1's one or more existing data connections. In this embodiment, Access Network Controller 30 sends a second message to Core Network 40 to indicate one or more of the identity of the terminal device with the pre-empted connection, the identity of the bearer that was pre-empted in conjunction with the congestion indicator, the identifier of the area impacted, the priority level under congestion control indicator and the backoff time value. In other words, one message is sent per terminal device impacted. Core Network 40 may release the resources associated with the pre-empted data connection and send a message to Terminal device 2 that indicates one or more of an indicator of the bearer that was released, the congestion indicator, the identifier of the area impacted, the priority level under congestion control indicator and the backoff time value.
After receiving the message from Core Network 40, Terminal device 1 starts a timer initialized with the backoff time value. Terminal device 1 will not initiate signaling messages to the impacted radio access network (i.e., access network edge device 20-1) or to Core Network 40 to request the pre-empted data connection until the timer has expired or Terminal device 1 has moved outside of the area impacted (assuming one of Terminal device 1's one or more existing data connections was pre-empted). After the timer expires or Terminal device 1 moves outside of the area impacted, then Terminal device 1 may initiate another request for the pre-empted data connection.
In another embodiment, after receiving the message from Core Network 40 that Terminal device 1 requests the new connection, Access Network Controller 30 may determine that, instead of access network edge device 20-1 which provides radio access to Terminal device 1 being overloaded, all or a substantial portion of radio access network 50 is overloaded. In this embodiment, Access Network Controller 30 may throttle requests until the congestion is relieved, and devices that were rejected (e.g., Terminal device 1) would not be able to initiate a new request for connections for the specified priority while in the area specified by Access Network Controller 30. Access Network Controller 30 may send a message to Core Network 40 to indicate that the request for the new connection is rejected because radio access network 50 is in an overload condition, in conjunction with the priority level of the rejected connection and information that identifies the specific area of the overload, e.g., a location of the cell sites represented by a global position represented by at least two coordinates, e.g., latitude and longitude, a location area code and a MacroCell identity, etc., or any combination thereof. In addition, the message may include a congestion indicator and a backoff time value so that Terminal device 1 does not request the resources repeatedly.
After receiving the message from Access Network Controller 30, Core Network 40 releases the resources that were allocated for the requested new connection. Also, Core Network 40 sends a message to Terminal device 1 that contains an indication that the request will not be granted, and one or more of the congestion indicator, the priority level under congestion control indicator, an identifier of area impacted and the backoff time value (e.g., an indication that additional requests should not be made until the backoff time value has expired or until Terminal device 1 leaves the affected area).
After receiving the message from Core Network 40, Terminal device 1 starts a timer initialized with the backoff time value. Terminal device 1 will not initiate signaling messages to the impacted radio access network, i.e., access network edge device 20-1, or to Core Network 40 to request a new connection until the timer has expired or until Terminal device 1 moves outside of the area impacted or Terminal device 1 has a higher priority connection to request. After the timer expires or Terminal device 1 moves outside of the area impacted or Terminal device 1 has a higher priority connection to request, then Terminal device 1 may initiate another request for the new connection.
Processor 220 receives and processes instructional information to perform functions necessary for Access Network Controller 200 to manage radio access network 50. Specifically, Processor 220 monitors radio access network 50 to determine whether an overload condition exists and throttles wireless traffic during congestion in radio access network 50. More specifically, after receiving a request for an additional connection initiated by a terminal device that has one or more existing connections in radio access network 50 during an overload condition in radio access network 50, Processor 220 retrieves at least one record of the existing connections in radio access network 50 from Storage Device 230 via link 225. Processor 220 extracts a priority level of the requested additional connection from the request message and Processor 220 obtains a priority level of the existing connections from the retrieved at least one record. Next, Processor 220 compares the priority level of the requested additional connection to the priority level of the existing connections.
Processor 220 generates a message that has either a grant or a rejection indicator based on an outcome of the comparison. Processor 220 generates a message with a rejection indicator when the priority level of the requested additional connection is lower than or equal to the priority level of the existing connections. The message with the rejection indicator may also include one or more of a backoff time value, a congestion indicator, a priority level under congestion control indicator and an identifier of the area impacted. During congestion, Processor 220 generates a message with a grant indicator when the priority level of the requested additional connection is higher than the priority level of the existing connection in conjunction with an indicator of a release of a lower priority pre-emptable bearer. The message with the grant indicator may also include one or more a backoff time value, a congestion indicator, a priority level under congestion control indicator and an identifier of the area impacted. If none of the terminal device's assigned bearers have a lower priority pre-emptable bearer, then Processor 220 may pre-empt a lower priority connection/bearer of another (i.e., different) terminal device connected to radio access network 50. Also, Processor 220 generates a message with a grant indicator when the mobile communications device is not in the area impacted by the congestion.
Processor 220 may be any type of processor capable of manipulating data and performing the functions described herein for Access Network Controller 30. Processor 220 should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM) for storing software, and non volatile storage. The functions of Processor 220 may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared.
Storage device 230 contains memory locations for storing information, such as records on the number of existing connections, and the bandwidth allocations and priority levels of the existing connections and available resources in radio access network 50. The records for a specific Terminal device are held in Access Network Controller 30 for as long as the Terminal device is known in radio access network 50.
Transmitter/Receiver 210 are devices that may be used to access particular types of network elements with which Access Network Controller 200 wishes to communicate. Illustratively, Transmitter/Receiver 210 receives signaling messages from access edge devices 20 and Core Network 40 and forwards them to Processor 220 via link 215. Also illustratively, Transmitter/Receiver 210 sends signaling messages generated by Processor 220 to access edge devices 20 and Core Network 40.
The user interface of Terminal device 300 may include an audio interface (e.g., microphone and speakers), a visual interface (e.g., a display), a user input interface (e.g., a keyboard, a touch pad, or a pointing device (e.g., a navigation key set)), or some combination thereof.
Processor 310 controls the operations of Terminal device 300 and provides an interface between the user input interface, audio interface and visual interface. A user of Terminal device 300 may enter instructional information, such as a telephone number, for example, by pushing the buttons of the keyboard, by voice activation using the microphone or by pressing a touch pad. Processor 310 receives and processes the instructional information to perform the appropriate function, such as to dial a telephone number or connect to an Internet site. Processor 310 issues instructional information to a transmitter, not shown, to initiate communications. An antenna of Terminal device 300 facilitates the transmission and reception of radio frequency signals to a network.
Timer 330 provides, when initialized with a backoff time value, a waiting time during which Terminal device 300 must delay requests for network resources. More specifically, when Terminal device 300 has one or more existing connections to a radio access network and Processor 310 generates a request for an additional connection that is sent via the transmitter to the core network, Terminal device 300 may receive a message in response from the core network that contains either an indicator of a grant or a rejection of the request in conjunction with one or more of the backoff time value, a congestion indicator, an indicator of the area impacted, and an indicator of the priority level under congestion control. Also, the message may contain an indicator of a release of a lower priority pre-emptable bearer if the request was granted. Processor 310 executes program logic to extract the received backoff time value, congestion indicator, and indicators of priority level under control and area impacted from the message and to store the received backoff time value, congestion indicator, and indicators of priority level under control and area impacted in Memory 320. Next, Processor 310 initializes Timer 330 to the backoff time value via bus 325 to start Timer 330. Timer 330 may now limit Terminal device 300's ability to initiate signaling messages to the impacted radio access network to request network resources until Timer 330 has expired or Terminal device 300 moves outside of the area impacted or Terminal device 300 has a higher priority connection to request. When Terminal device 300 moves outside of the area impacted, Processor 310 may clear Timer 330 and generate a message to be sent to the core network to request the additional connection.
Memory 320 is used for storing instructions for the operation of Processor 310 and also for storing the data used by Processor 310 in executing those instructions. A bus 315 is used for the exchange of information between Memory 320 and Processor 310.
Advantageously, the methods according to the invention enable service providers to reduce terminal device initiated signaling load during radio access network overload. Also advantageously, the exemplary embodiments provide a technique for users of terminal devices to possibly obtain desired connections when the radio access network is in an overload condition.
In step 410 (
In step 420 (
If the test result in conditional branch point 420 (
If the test result in step 420 (
In step 440 (
If the test result in conditional branch point 440 (
If the test result in step 440 (
In step 450 (
In step 460 (
In step 470 (
If the test result in step 470 (
In step 480 (
If the test result in step 470 (
In step 490 (
The process is exited in step 495.
In step 510 (
In step 520 (
In step 530 (
In step 540 (
In step 550 (
If the test result in step 550 (
In step 560 (
If the test result in step 550 (
In step 570 (
If the test result in step 570 (
In step 580 (
In step 585 (
If the test result in step 570 (
In step 590 (
The process is exited in step 595.
In step 610 (
In step 620 (
In step 630 (
If the test result in step 630 (
In step 640 (
If the test result in step 630 (
In step 650 (
If the test result in step 650 (
If the test result in step 650 (
In step 670 (
The process is exited in step 680.
A person of ordinary skill in the art would readily recognize that steps of various above-described methods can be performed by programmed computers. Herein, some embodiments are intended to cover program storage devices, e.g., digital data storage media, which are machine or computer-readable and encode machine-executable or computer-executable programs of instructions where said instructions perform some or all of the steps of methods described herein. The program storage devices may be digital memories, magnetic storage media such as magnetic disks or tapes, hard drives, or optically readable digital data storage media. The embodiments are also intended to cover computers programmed to perform said steps of methods described herein.
The steps or operations described herein are intended as examples. There may be many variations to these steps or operations without departing from the spirit of the invention. For instance, the steps may be performed in a different order, or steps may be added, deleted, or modified.
The present invention may be embodied in other specific apparatus and/or methods. The described embodiments are to be considered in all respects as only illustrative and not restrictive. In particular, the scope of the invention is indicated by the appended claims rather than by the description and figures herein. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The foregoing merely illustrates the embodiments of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements, which, although not explicitly described or shown herein, embody the principles of the invention, and are included within its spirit and scope.
Number | Name | Date | Kind |
---|---|---|---|
6078959 | Wright et al. | Jun 2000 | A |
6374112 | Widegren et al. | Apr 2002 | B1 |
6738368 | Terry | May 2004 | B1 |
6912390 | Andersson et al. | Jun 2005 | B2 |
6965942 | Young et al. | Nov 2005 | B1 |
6999759 | Harris et al. | Feb 2006 | B2 |
7301905 | Tontiruttananon et al. | Nov 2007 | B1 |
7362726 | Petrovic et al. | Apr 2008 | B2 |
7466652 | Lau et al. | Dec 2008 | B2 |
7466677 | Rasanen | Dec 2008 | B2 |
7471654 | Mueckenheim et al. | Dec 2008 | B2 |
7564788 | Lundh et al. | Jul 2009 | B2 |
7587203 | Shahidi et al. | Sep 2009 | B2 |
7724656 | S{dot over (a)}gfors et al. | May 2010 | B2 |
7889646 | Wright | Feb 2011 | B2 |
7940734 | Park et al. | May 2011 | B2 |
7945255 | Harris et al. | May 2011 | B2 |
8060098 | Yang et al. | Nov 2011 | B2 |
8081974 | Fischer et al. | Dec 2011 | B2 |
8155074 | Vargantwar et al. | Apr 2012 | B1 |
8233462 | Walton et al. | Jul 2012 | B2 |
8270298 | Lundh et al. | Sep 2012 | B2 |
8307031 | Grieve | Nov 2012 | B1 |
8320397 | Desai et al. | Nov 2012 | B2 |
8509157 | Beziot et al. | Aug 2013 | B2 |
20030003919 | Beming et al. | Jan 2003 | A1 |
20030053480 | Jang et al. | Mar 2003 | A1 |
20030099197 | Yokota et al. | May 2003 | A1 |
20040081115 | Parsa et al. | Apr 2004 | A1 |
20040085909 | Soliman | May 2004 | A1 |
20040180677 | Harris et al. | Sep 2004 | A1 |
20050041584 | Lau et al. | Feb 2005 | A1 |
20050135284 | Nanda et al. | Jun 2005 | A1 |
20050163103 | Malomsoky et al. | Jul 2005 | A1 |
20050220097 | Swami et al. | Oct 2005 | A1 |
20050262266 | Wiberg et al. | Nov 2005 | A1 |
20060039450 | Fulton et al. | Feb 2006 | A1 |
20060079200 | Hirouchi et al. | Apr 2006 | A1 |
20060140115 | Timus et al. | Jun 2006 | A1 |
20070043558 | Schwarz et al. | Feb 2007 | A1 |
20070047570 | Benveniste | Mar 2007 | A1 |
20070076742 | Du et al. | Apr 2007 | A1 |
20070153695 | Gholmieh et al. | Jul 2007 | A1 |
20070195710 | Nakata | Aug 2007 | A1 |
20070264986 | Warrillow et al. | Nov 2007 | A1 |
20080089250 | Jung | Apr 2008 | A1 |
20080186862 | Corbett et al. | Aug 2008 | A1 |
20080198783 | Manos et al. | Aug 2008 | A1 |
20080225708 | Lange | Sep 2008 | A1 |
20080225857 | Lange | Sep 2008 | A1 |
20090067335 | Pelletier et al. | Mar 2009 | A1 |
20100002579 | Shi et al. | Jan 2010 | A1 |
20100054135 | Rahman et al. | Mar 2010 | A1 |
20100135319 | Wang et al. | Jun 2010 | A1 |
20100172299 | Fischer et al. | Jul 2010 | A1 |
20100195503 | Raleigh | Aug 2010 | A1 |
20100240369 | Law et al. | Sep 2010 | A1 |
20100246423 | Wang | Sep 2010 | A1 |
20100311433 | Lindskog et al. | Dec 2010 | A1 |
20100323736 | Fischer et al. | Dec 2010 | A1 |
20110134890 | Fodor | Jun 2011 | A1 |
20110151885 | Buyukkoc et al. | Jun 2011 | A1 |
20110188379 | Calippe et al. | Aug 2011 | A1 |
20110199905 | Pinheiro et al. | Aug 2011 | A1 |
20110235559 | Sakoda | Sep 2011 | A1 |
20110249568 | Desai et al. | Oct 2011 | A1 |
20110263274 | Fox et al. | Oct 2011 | A1 |
20120094680 | Stackelius et al. | Apr 2012 | A1 |
20120106458 | Jang et al. | May 2012 | A1 |
20120163204 | Oprescu-Surcobe et al. | Jun 2012 | A1 |
20120163265 | Kotecha et al. | Jun 2012 | A1 |
Entry |
---|
Alcatel-Lucent; MME Overload Control by Throttling of DL Low Priority Traffic; 3GPP Draft; S2-105057 (was 4574) 23401 MTC DL CTL, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921; Sophia-Antipolis Cedex; France, vol. SA WG2, No. Prague; 20101011, Oct. 13, 2010; XP050522506; [retrieved on Oct. 13, 2010]. |
Alcatel-Lucent; Mobility Management Congestion Control and Back-Off Timer; 3GPP Draft; C1-110890, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921; Sophia-Antipolis Cedex; France, vol. CT WG1, No. Salt Lake City; 20110221, Feb. 13, 2011; XP050480307; [retrieved on Feb. 13, 2011]. |
Number | Date | Country | |
---|---|---|---|
20120263036 A1 | Oct 2012 | US |