1. Field of the Invention
The present invention relates generally to tractoring mechanisms for use in wells. More particularly, the present invention relates to a mechanism that assists tractoring in wells having uniform and non-uniform surfaces by adjusting or adapting its configuration in response to the internal surface configuration of the wellbore, well casing, or pipe through which it is moved. Even more particularly, the present invention is particularly applicable to the field of borehole tractors for conveying logging and service tools in deviated or horizontal oil and gas wells, or in pipelines, where such tools may not readily be conveyed by the force of gravity.
2. Description of Related Art
U.S. Pat. No. 4,557,327 discloses a roller arm centralizer mechanism that is basically in the form of a four-bar mechanism. The disadvantage of this mechanism for tractoring is that the force required to push it through casing joints is several times higher than that required with the six-bar mechanism utilized in the present invention. U.S. Pat. No. 4,243,099 discloses a two-bar mechanism having motor positioned arms with bow springs causing rollers to maintain contact with the borehole wall surface. If used to assist tractoring systems, the rollers of this well tool mechanism will enter casing joints and other depressions and almost always become caught in most casing joints. U.S. Pat. No. 5,358,039 discloses a centralizer mechanism having a non-centered system of four-bar mechanisms with bow springs around them. This system will not allow tractoring systems to pass casing joints and changes of pipe diameter while simultaneously tractoring. U.S. Pat. No. 6,232,773 discloses a tractor vehicle that tows a support vehicle through a flexible coupling. This tractor mechanism employs linkage assemblies in the form of four-bar mechanisms, but does not offer the advantages of the present invention that is based on a six-bar mechanism. U.S. Pat. No. 5,848,479 presents another centralizer option, but does not offer the advantages of the present invention. Finally, the apparatus set forth in U.S. Pat. Nos. 5,794,703 and 5,184,676 are also based on four-bar linkage mechanisms that do not offer the advantages of the present invention.
It is a principal feature of the present invention to provide a novel linkage mechanism that is utilized in conjunction with or as a component of a tractor mechanism to enhance the traction capability of the tractor mechanism when deviations in internal wall surfaces are encountered;
It is another feature of the present invention to provide a novel six-bar type linkage mechanism that offers minimal resistance to movement along the internal surface of a borehole or conduit; and
It is also a feature of the present invention to provide a novel six-bar type linkage mechanism that becomes essentially conformed to the internal configuration of the wellbore, well casing, or pipeline that is being traversed and thus maintains an efficient traction capability with the non-uniform internal surface and, after passing an anomaly on the surface, returns to a predetermined configuration for a uniform internal surface.
Briefly, the various principles of the present invention are realized in general by a six-bar linkage mechanism that is employed in conjunction with a tractoring mechanism to assist the tractoring mechanism and other systems to accomplish efficient traction movement within internal surfaces of both uniform and non-uniform surface character. The six-bar linkage mechanism of the present invention is constructed in such a manner that the bars pivot around their joints in order to adapt the linkage mechanism to assume variations in its configuration responsive to the changes of the internal surface geometry in which the system is being utilized to assist or enhance tractoring capability of the systems by maintaining efficient traction contact with the internal surface regardless of its geometric changes.
Specifically, the design relates to logging tools or other tools or devices that are intended to be conveyed through the boreholes of oil and gas wells or conveyed through pipes, such as well casings or pipelines. The present invention may be utilized in conjunction with downhole tractors for well casings in order to facilitate the passage of traction devices and the well tools conveyed thereby over casing joints, restrictions, changes in pipe diameter, and other internal wall surface irregularities in pipes. The six-bar linkage mechanism may also be utilized for traction activity in open-hole wellbores where the density and hardness of the walls allow its utilization. The six-bar linkage mechanism improves other designs and allows the utilization of different types of downhole tractors that otherwise would not be able to move through non-uniform surfaces in casing or open-hole wellbores. The six-bar linkage mechanism of the present invention is also applicable for utilization as a component of a centralizer mechanism for oilfield tools such as logging tools, perforating guns, or other tools that require specific centralized location within a wellbore.
More specifically the six-bar linkage mechanism of the present invention is a combination of interacting mechanical elements that permit the construction of a mechanism or tool that adapts its configuration to the geometric changes of the internal surface against which it slides. For purposes of the present invention, this internal surface is referred to as the tractored surface. The six-bar linkage mechanism of the present invention is constructed in a manner that only three of the mechanism bars can be in contact with the surface at any time.
The mechanism is composed of six main links. One of the links, the central link, is connected to four of the other links at four different joints. Three of these four links can pivot around their joints with the central link and can also slide along the central link. One of these four links can only pivot around its joint with the central link, but cannot slide along it. The remaining link is called a saddle link. The saddle link is connected to the four links that are also connected to the central link. It should be borne in mind, however, that the saddle link is connected to these four links in a different way. Two links of these four are connected to the saddle link at two different points that are close to the saddle link ends. These two links are called front links, they can pivot around their joints with the saddle link. The other two links of the four previously mentioned are connected at a common point with the saddle link, these two links are called the centralizer links. One of the centralizer links can only pivot around its joint with the central link and the other cannot only pivot, but can also slide in its joint with the central link.
When the centralizer links are pivoted around their joints with the central link the saddle link moves toward the tractored surface. For some types of tractored surfaces, the movement of the centralizer links, just described, can also put the front links in contact with the tractored surface. Once the saddle link is in contact with the tractored surface, a force applied along the axis of the central-link can move the whole mechanism along the tractored surface while adapting its configuration to the internal surface geometry. The most efficient of its configurations is a configuration that locates its saddle link in parallel relation with the central link. When the mechanism faces irregular tractored surfaces, the saddle link conforms generally to the internal surface configuration of the tractored surface and is not oriented in parallel relation with the central link. However, the linkage mechanism adapts its configuration to the irregularities of the internal tractored surface until it passes the irregularities, and then the saddle link returns to its original orientation and becomes parallel to the central link again. The major elements of the invention are schematically shown in FIG. 1. In this figure, the parts of the design are labeled according to the description presented in the present section.
The present invention may be understood by reference to the following description taken in conjunction with-the accompanying drawings in which:
Referring now to the drawings and first to
The connection of the front link 2 can both pivot and move linearly with respect to the central link 10 at the joint 26. The joint 26 is a pivotal and sliding joint that permits the lower end of the front link 2 to have the capability of pivotal movement relative to the central link 10 and to also have the capability of sliding or moving linearly with respect to the central link 10. The lower end of the front link 8 is also connected to an end portion of the central link 10 by a pivotal and sliding connection 20, thus permitting both pivotal movement and sliding or linear movement with respect to the end portion of the central link 10 to which it is connected.
All of these elements or components of the six-bar linkage mechanism of the present invention are combined to define a linkage mechanism that conforms automatically to the general orientation of the internal surface geometry of a borehole or pipe passage or spaced surfaces that define a tractored surface, and assists other systems to tractor efficiently even when non-uniform tractored surfaces are encountered.
The manner by which the six-bar linkage mechanism of the present invention functions is as follows: If the centralizer link 6 pivots around the fixed pivot joint 22, its fixed pivot joint 28 with the saddle link 12 will move toward or away from the tractored surface T depending on the direction of pivotal movement. When the fixed pivot joint 28 is located against or in close proximity with the tractored surface T, the tractored surface T constrains pivoting of the saddle link 12 to pivotal movement around the fixed pivot of the pivot joint 28. Thus, the saddle link 12 is permitted to pivotally articulate about the fixed pivot joint 28 and assumes a non-parallel or parallel relation with respect to the central link 10 by assuming the general orientation of the tractored surface T. This feature permits the six-bar linkage mechanism of the present invention to readily adapt its configuration according to the internal geometry of the tractored surface and to accommodate any irregularities of the tractored surface. When an apparatus having one or more of the six-bar linkages of the present invention is moved along the extent of a tractored surface T, the orientation of the saddle link 12 relative to the central link 10 will be changed by the reaction force of the tractored surface T, and the front links 2, 8 and centralizer links 4, 6 will move pivotally or both pivotally and linearly with respect to the central link 10, as the case may be, to accommodate orientation changes of the saddle link 12.
When the six-bar linkage mechanism shown in the drawings is moving along the direction of the tractored surface's longitudinal axis, one of the front links 2 or 8 may be in contact with the tractored surface T and the saddle link 12 may not contact the tractored surface T as shown in the schematic illustration of FIG. 3. During similar movement of the linkage mechanism, the saddle link 12 may be in contact with the tractored surface T and one of the front links 2 or 8 may also be in contact with the tractored surface T as evidenced by the schematic illustration of FIG. 4. When either of the front links 2 or 8 is in contact with the tractored surface T, the rest of the mechanism will change its configuration pushing the saddle link 12 and its fixed pivot joint 28 toward the central link 10 until the saddle link 12 is again in full contact with the tractored surface T and the front links 2, 8 are no longer in contact with the tractored surface T.
The schematic illustration of
The schematic illustration of
The explanation of how the six-bar linkage mechanism of the present invention adapts its configuration to the tractored surface is as follows: When the six-bar linkage mechanism is pushed along the direction of its central link 10 and any of the front links 2 or 8 or the saddle link 12 comes in contact with the tractored surface T, the tractored surface T exerts a reaction force on the link that is in contact with it. This reaction force exerted by the tractored surface T on the six-bar linkage mechanism makes its saddle link fixed pivot joint 28 move toward the central link 10.
Most of the time, when the mechanism moves in cased wells, the most common obstacle encountered is groove-type, with grooves usually being presented by the casing joints that connect sections of casing to form a casing string within a wellbore. In these cases, the distance between the wheel axles of a tractor employing the six-bar linkage mechanism must be chosen to be at least equal to the width of the grooves found in the tractored surface. Sometimes, the tractored surface can present abrupt changes in internal diameter. In the oil business, these are usually found in the restrictions of well casings due to reducing collars or connectors that couple casing sections of differing diameter. In order to overcome these obstacles, the length of the saddle link 12 must be maximized within the dimensional limits presented by the tractor or tool design that is utilizing the six-bar mechanism.
Referring now to
It should be borne in mind that this particular embodiment is not intended to limit the scope of the present invention in any manner whatever. Embodiments having a lesser or greater number of tractored surface engaging mechanisms may be employed as well. In the embodiment shown, the saddle links 12 of each of the six-bar linkages incorporates a wheel 25 that is positioned for engagement with the tractored surface. This wheel may simply be a rotary element that is mounted for rotation by the fixed pivot joint 28 that connects the centralizer links 4 and 6 with the saddle link 12. Alternatively, the wheel 25 may be a traction wheel that is rotatably driven in any suitable manner, such as by a tractor motor. Another embodiment may have wheels on both ends of the saddle link 12 to facilitate the sliding of the saddle link 12 while moving in contact with the tractored surface.
It is important to emphasize that the dimensioning of the front links 2 and 8, the saddle link 12, and the position of the fixed pivot joint 28 on saddle link 12 define the external force that is required to make the mechanism move in the direction of the longitudinal axis of the tractored surface. In general terms, the ratio between the length of the front link 2 (L1) to the length of centralizer link 4 (L2) defines the magnitude of the external force required to push the mechanism inside any given tractored surface. Another ratio that defines the performance of this mechanism is the ratio of the distance between joints 16 and 28 called L4 and the distance between the joint 28 and the joint 18 called L5. The best performance to overcome restrictions, for example, is achieved when the ratio L1/L2 is maximized and the ratio L4/L5 is minimized.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
This application claims priority from U.S. Provisional Application No. 60/369,385, filed Apr. 2, 2002, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
840374 | Rhoades | Jan 1907 | A |
1177984 | Beene | Apr 1916 | A |
2742259 | Boucher | Apr 1956 | A |
2871946 | Bigelow | Feb 1959 | A |
3405772 | Wisenbaker et al. | Oct 1968 | A |
3670566 | Basham et al. | Jun 1972 | A |
3827512 | Edmond | Aug 1974 | A |
3862359 | McCullough et al. | Jan 1975 | A |
3890905 | Clavin | Jun 1975 | A |
3926267 | Svirschevsky et al. | Dec 1975 | A |
4031750 | Youmans et al. | Jun 1977 | A |
4050384 | Chapman | Sep 1977 | A |
4071086 | Bennett | Jan 1978 | A |
4095655 | Still | Jun 1978 | A |
4112850 | Sigel-Gfeller | Sep 1978 | A |
4177734 | Rhoden | Dec 1979 | A |
4192380 | Smith | Mar 1980 | A |
4243099 | Rodgers, Jr. | Jan 1981 | A |
4272781 | Taguchi et al. | Jun 1981 | A |
4369713 | Richardson | Jan 1983 | A |
4372161 | de Buda et al. | Feb 1983 | A |
4457236 | Akhmadiev et al. | Jul 1984 | A |
4460920 | Weber et al. | Jul 1984 | A |
4463814 | Horstmeyer et al. | Aug 1984 | A |
4537136 | Douglas | Aug 1985 | A |
4542869 | Brine | Sep 1985 | A |
4557327 | Kinley et al. | Dec 1985 | A |
4670862 | Staron et al. | Jun 1987 | A |
4676310 | Scherbatskoy et al. | Jun 1987 | A |
4686653 | Staron et al. | Aug 1987 | A |
4838170 | Illakowicz | Jun 1989 | A |
4862808 | Hedgcoxe et al. | Sep 1989 | A |
4919223 | Egger et al. | Apr 1990 | A |
5142989 | Suzumori et al. | Sep 1992 | A |
5156238 | Matthews | Oct 1992 | A |
5184676 | Graham et al. | Feb 1993 | A |
5293823 | Box | Mar 1994 | A |
5309844 | Zollinger | May 1994 | A |
5358039 | Fordham | Oct 1994 | A |
5375530 | Zollinger et al. | Dec 1994 | A |
5375668 | Hallundbaek | Dec 1994 | A |
5513901 | Smith et al. | May 1996 | A |
5794703 | Newman et al. | Aug 1998 | A |
5848479 | MacIndoe | Dec 1998 | A |
6003606 | Moore et al. | Dec 1999 | A |
6089323 | Newman et al. | Jul 2000 | A |
6112809 | Angle | Sep 2000 | A |
6179055 | Sallwasser et al. | Jan 2001 | B1 |
6232773 | Jacobs et al. | May 2001 | B1 |
6241031 | Beaufort et al. | Jun 2001 | B1 |
6273189 | Gissler et al. | Aug 2001 | B1 |
6427786 | Beaufort et al. | Aug 2002 | B2 |
6478097 | Bloom et al. | Nov 2002 | B2 |
Number | Date | Country |
---|---|---|
0564500 | Oct 1994 | EP |
0964131 | Dec 1999 | EP |
481748 | Sep 1975 | RU |
WO-9521987 | Aug 1995 | WO |
WO-9806927 | Feb 1998 | WO |
WO-9966171 | Dec 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030183383 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60369385 | Apr 2002 | US |