Mechanism to secure computer output from software attack using isolated execution

Information

  • Patent Grant
  • 7389427
  • Patent Number
    7,389,427
  • Date Filed
    Thursday, September 28, 2000
    25 years ago
  • Date Issued
    Tuesday, June 17, 2008
    17 years ago
Abstract
A method and platform for maintaining the security of output data in an isolated execution environment. A system memory has an isolated output area readable only by secure output controllers having an isolated execution mode. The output controllers may make a request for access to the isolated output area, upon proper authentication if the request access is granted. The output device may either DMA the content of the isolated output area to an output end point, such as a display, or load it into local storage, the security of which is guaranteed by the controller.
Description
BACKGROUND

(1) Field of the Invention


The invention relates to data security. More specifically, the invention relates to securing output data in an isolated execution environment.


(2) Background


Data security is increasingly important in this data-driven society. To that end, multilevel platforms have been developed to support both a normal execution mode and an isolated execution mode. A section of memory is allocated for use only in the isolated execution mode. Encryption and authentication are used any time isolated data is moved into a non-isolated section of the memory. In this manner, data used and maintained in isolated execution mode is not security compromised. However, when an isolated data is output to an output device, such as a display, it may be possible for insecure software to access the displayed data from the display when displayed in isolated execution mode or after the system returns to normal mode. This avenue of attack may compromise the security of isolated data.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.



FIG. 1A is a diagram illustrating an embodiment of the logical operating architecture for the IsoX™ architecture of the platform.



FIG. 1B is an illustrative diagram showing the accessibility of various elements in the operating system and the processor according to one embodiment of the invention.



FIG. 1C is a first block diagram of an illustrative embodiment of a platform utilizing the present invention.



FIG. 2 is a block diagram of a platform of one embodiment of the invention.





DETAILED DESCRIPTION

The present invention relates to a platform and method for maintaining the remote security of output data. A processor executing in isolated execution “IsoX” mode may have output such as display data. That data may be conveyed through a graphic card to a display. The graphic card may be enabled to operate in an IsoX mode and access a specially partitioned portion of memory to retrieve output data when the platform is in IsoX mode. The graphics card may be allowed to direct memory access (DMA), the data for each screen refresh, or it may store it in a secure bit plane on the graphics card for output. By “secure” bit plane, it is meant that only the graphics card (or possibly very special isolated components, such as the operating system nub described below) may access the bit plane. This IsoX graphics card is required to restrict access by all non-secure components of the system.


In the following description, certain terminology is used to discuss features of various embodiments of the invention. For example, a “platform” includes components that perform different functions on stored information. Examples of a platform include, but are not limited or restricted to a computer (e.g., desktop, a laptop, a hand-held, a server, a workstation, etc.), desktop office equipment (e.g., printer, scanner, a facsimile machine, etc.), a wireless telephone handset, a television set-top box, and the like. Examples of a “component” include hardware (e.g., an integrated circuit, etc.) and/or one or more software modules. A “software module” is code that, when executed, performs a certain function. This code may include an operating system, an application, an applet or even a nub being a series of code instructions, possibly a subset of code from an applet. A “link” is broadly defined as one or more information-carrying mediums (e.g., electrical wire, optical fiber, cable, bus, or air in combination with wireless signaling technology) to establish a communication pathway. This pathway is deemed “protected” when it is virtually impossible to modify information routed over the pathway without detection.


In addition, the term “information” is defined as one or more bits of data, address, and/or control and a “segment” is one or more bytes of information. A “message” is a grouping of information, possibly packetized information. “Keying material” includes any information needed for a specific cryptographic algorithm such as a Digital Signature Algorithm. A “one-way function” is a function, mathematical or otherwise, that converts information from a variable-<length to a fixed-length (referred to as a “hash value” or “digest”). The term “one-way” indicates that there does not readily exist an inverse function to recover any discernible portion of the original information from the fixed-length hash value. Examples of a hash function include MD5 provided by RSA Data Security of Redwood City, Calif., or Secure Hash Algorithm (SHA-1) as specified in a 1995 publication Secure Hash Standard FIPS 180-1 entitled “Federal Information Processing Standards Publication” (Apr. 17, 1995).


I. Architecture Overview


In one embodiment, a platform utilizing the present invention may be configured with an isolated execution (IsoX™) architecture. The IsoX™ architecture includes logical and physical definitions of hardware and software components that interact directly or indirectly with an operating system of the platform. Herein, the operating system and a processor of the platform may have several levels of hierarchy, referred to as rings, which correspond to various operational modes. A “ring” is a logical division of hardware and software components that are designed to perform dedicated tasks within the platform. The division is typically based on the degree or level of privilege, namely the ability to make changes to the platform. For example, a ring-0 is the innermost ring, being at the highest level of the hierarchy. Ring-0 encompasses the most critical, privileged components. Ring-3 is the outermost ring, being at the lowest level of the hierarchy. Ring-3 typically encompasses user level applications, which are normally given the lowest level of privilege. Ring-1 and ring-2 represent the intermediate rings with decreasing levels of privilege.



FIG. 1A is a diagram illustrating an embodiment of a logical operating architecture 50 of the IsoX™ architecture. The logical operating architecture 50 is an abstraction of the components of the operating system and processor. The logical operating architecture 50 includes ring-010, ring-120, ring-230, ring-340, and a processor nub loader 52. Each ring in the logical operating architecture 50 can operate in either (i) a normal execution mode or (ii) an IsoX mode. The processor nub loader 52 is an instance of a processor executive (PE) handler.


Ring-010 includes two portions: a normal execution Ring-011 and an isolated execution Ring-015. The normal execution Ring-011 includes software modules that are critical for the operating system, usually referred to as the “kernel”. These software modules include a primary operating system 12 (e.g., kernel), software drivers 13, and hardware drivers 14. The isolated execution Ring-015 includes an operating system (OS) nub 16 and a processor nub 18 as described below. The OS nub 16 and the processor nub 18 are instances of an OS executive (OSE) and processor executive (PE), respectively. The OSE and the PE are part of executive entities that operate in a protected environment associated with the isolated area 70 and the IsoX mode. The processor nub loader 52 is a bootstrap loader code that is responsible for loading the processor nub 18 from the processor or chipset into an isolated area as will be explained later.


Similarly, ring-120, ring-230, and ring-340 include normal execution ring-121, ring-231, ring-341, and isolated execution ring-125, ring-235, and ring-345, respectively. In particular, normal execution ring-3 includes N applications 421-42N and isolated execution ring-3 includes Mapplets 461-46M (where “N” and “M” are positive whole numbers).


One concept of the IsoX™ architecture is the creation of an isolated region in the system memory, which is protected by components of the platform (e.g., the processor and chipset). This isolated region, referred to herein as an “isolated area,” may also be in cache memory that is protected by a translation look aside (TLB) access check. Access to this isolated area is permitted only from a front side bus (FSB) of the processor, using special bus cycles (referred to as “isolated read and write cycles”) issued by the processor executing in IsoX mode. In one embodiment, a second isolated area, referred to herein as the isolated output area, is partitioned within main memory. In one embodiment, the isolated output area is only readable by an output device in an isolated execution mode and writeable by the OS nub 16 via the output driver 17.


Typically shared links may be used within the platform for isolated output operations. Examples of these shared links include a Peripheral Component Interconnect (PCI) bus, an accelerated graphics port (AGP) bus, an Industry Standard Architecture (ISA) bus, a Universal Serial Bus (USB) bus and the like.


The IsoX mode is initialized using a privileged instruction in the processor, combined with the processor nub loader 52. The processor nub loader 52 verifies and loads a ring-0 nub software module (e.g., processor nub 18) into the isolated area. For security purposes, the processor nub loader 52 is non-modifiable, tamper-resistant and non-substitutable. In one embodiment, the processor nub loader 52 is implemented in read only memory (ROM).


One task of the processor nub 18 is to verify and load the ring-0 OS nub 16 into the isolated area. The OS nub 16 provides links to services in the primary operating system 12 (e.g., the unprotected segments of the operating system), provides page management within the isolated area, and has the responsibility for loading ring-3 application modules 45, including applets 461 to 46M, into protected pages allocated in the isolated area. The OS nub 16 may also support paging of data between the isolated area and ordinary (e.g., non-isolated) memory. If so, then the OS nub 16 is also responsible for the integrity and confidentiality of the isolated area pages before evicting the page to the ordinary memory, and for checking the page contents upon restoration of the page. The OS nub 16 may also contain an output driver 17 to fill the isolated output area 90 with secure output data. In one embodiment, the output driver 17 writes a display bit map into the isolated output area for any data to be displayed when the platform is in isolated execution mode.


Referring now to FIG. 1B, a diagram of the illustrative elements associated with the operating system 10 and the processor for one embodiment of the invention is shown. For illustration purposes, only elements of ring-010 and ring-340 are shown. The various elements in the logical operating architecture 50 access an accessible physical memory 60 according to their ring hierarchy and the execution mode.


The accessible physical memory 60 includes an isolated area 70, an isolated output area 90 and a non-isolated area 80. The isolated area 70 includes applet pages 72 and nub pages 74. The non-isolated area 80 includes application pages 82 and operating system pages 84. The isolated area 70 is accessible only to components of the operating system and processor operating in the IsoX mode. The non-isolated area 80 is accessible to all elements of the ring-0 operating system and processor. In one embodiment, the isolated output area 90 may only be accessed by the OS nub 16 and secure output devices. In some embodiments, access to the isolated output area 90 may be write-only for the OS nub 16 and read-only for the output device.


The normal execution ring-011 including the primary OS 12, the software drivers 13, and the hardware drivers 14, can access both the OS pages 84 and the application pages 82. The normal execution ring-3, including applications 42, to 42N, can access only to the application pages 82. Neither the normal execution ring-011 nor normal execution ring-341 can access the isolated area 70 or the isolated output area 90.


The isolated execution ring-015, including the OS nub 16 and the processor nub 18, can access the isolated area 70, including both the applet pages 72 and the nub pages 74, and the non-isolated area 80, including the application pages 82 and the OS pages 84. The isolated execution ring-345, including applets 461 to 46M, can access only to the application pages 82 and the applet pages 72. The applets 461 to 46M reside in the isolated area 70.


Referring to FIG. 1C, a block diagram of an illustrative embodiment of a platform utilizing the present invention is shown. In this embodiment, platform 100 comprises a processor 110, a chipset 120, a system memory 140 and peripheral components (e.g., tokens 180/182 coupled to a token link 185 and/or a token reader 190) in communication with each other. It is further contemplated that the platform 100 may contain optional components such as a non-volatile memory (e.g., flash) 160 and additional peripheral components. Examples of these additional peripheral components include, but are not limited or restricted to a mass storage device 170 and one or more input/output (I/O) devices 175. For clarity, the specific links for these peripheral components (e.g., PCI bus, AGP bus, ISA bus, USB bus, wireless transmitter/receiver combinations, etc.) are not shown.


In general, the processor 110 represents a central processing unit of any type of architecture, such as complex instruction set computers (CISC), reduced instruction set computers (RISC), very long instruction word (VLIW), or hybrid architecture. In one embodiment, the processor 110 includes multiple logical processors. A “logical processor,” sometimes referred to as a thread, is a functional unit within a physical processor having an architectural state and physical resources allocated according to a specific partitioning functionality. Thus, a multi-threaded processor includes multiple logical processors. The processor 110 is compatible with the Intel Architecture (IA) processor, such as a PENTIUM® series, the IA-32™ and IA-64™. It will be appreciated by those skilled in the art that the basic description and operation of the processor 110 applies to either a single processor platform or a multi-processor platform.


The processor 110 may operate in a normal execution mode or an IsoX mode. In particular, an isolated execution circuit 115 provides a mechanism to allow the processor 110 to operate in an IsoX mode. The isolated execution circuit 115 provides hardware and software support for the IsoX mode. This support includes configuration for isolated execution, definition of the isolated area, definition (e.g., decoding and execution) of isolated instructions, generation of isolated access bus cycles, and generation of isolated mode interrupts.


As shown in FIG. 1C, a host link 116 is a front side bus that provides interface signals to allow the processor 110 to communicate with other processors or the chipset 120. In addition to normal mode, the host link 116 supports an isolated access link mode with corresponding interface signals for isolated read and write cycles when the processor 110 is configured in the IsoX mode. The isolated access link mode is asserted on memory accesses initiated while the processor 110 is in the IsoX mode if the physical address falls within the isolated area address range. The isolated access link mode is also asserted on instruction pre-fetch and cache write-back cycles if the address is within the isolated area address range. The processor 110 responds to snoop cycles to a cached address within the isolated area address range if the isolated access bus cycle is asserted.


The chipset 120 includes a memory control hub (MCH) 130 and an input/output control hub (ICH) 150 described below. The MCH 130 and the ICH 150 may be integrated into the same chip or placed in separate chips operating together.


With respect to the chipset 120, a MCH 130 provides control and configuration of memory and input/output devices such as the system memory 140 and the ICH 150. The MCH 130 provides interface circuits to recognize and service isolated memory read and write cycles and/or isolated output read and write cycles. In addition, the MCH 130 has memory range registers (e.g., base and length registers) to represent the isolated area and isolated output area in the system memory 140. The isolated output area and isolated area need not be contiguous. Similarly, the MCH 130 aborts any access to the isolated output area when the isolated output link mode is not asserted. Once configured, the MCH 130 aborts any access to the isolated area when the isolated access link mode is not asserted.


The system memory 140 stores code and data. The system memory 140 is typically implemented with dynamic random access memory (DRAM) or static random access memory (SRAM). The system memory 140 includes the accessible physical memory 60 (shown in FIG. 1B). The accessible physical memory 60 includes the isolated area 70, isolated output area 90, and the non-isolated area 80 as shown in FIG. 1B. The isolated area 70 is the memory area that is defined by the processor 110 when operating in the IsoX mode. Access to the isolated area 70 is restricted and is enforced by the processor 110 and/or the chipset 120 that integrates the isolated area functionality. Access to the isolated output memory will typically be controlled by the chipset 120 and more particularly the MCH 130. The non-isolated area 80 includes a loaded operating system (OS). The loaded OS 142 is the portion of the operating system that is typically loaded from the mass storage device 170 via some boot code in a boot storage such as a boot read only memory (ROM). Of course, the system memory 140 may also include other programs or data which are not shown.


As shown in FIG. 1C, the ICH 150 supports isolated execution in addition to traditional I/O functions. In this embodiment, the ICH 150 comprises at least the processor nub loader 52 (shown in FIG. 1A), a hardware-protected memory 152, an isolated execution logical processing manager 154, and a token link interface 158. For clarity, only one ICH 150 is shown although platform 100 may be implemented with multiple ICHs. When there are multiple ICHs, a designated ICH is selected to control the isolated area configuration and status. This selection may be performed by an external strapping pin. As is known by one skilled in the art, other methods of selecting can be used.


The processor nub loader 52, as shown in FIGS. 1A and 1C, includes a processor nub loader code and its hash value (or digest). After being invoked by execution of an appropriated isolated instruction (e.g., ISO_INIT) by the processor 110, the processor nub loader 52 is transferred to the isolated area 70. Thereafter, the processor nub loader 52 copies the processor nub 18 from the non-volatile memory 160 into the isolated area 70, verifies and places a representation of the processor nub 18 (e.g., a hash value) into the protected memory 152. Herein, the protected memory 152 is implemented as a memory array with single write, multiple read capability. This non-modifiable capability is controlled by logic or is part of the inherent nature of the memory itself. For example, as shown, the protected memory 152 may include a plurality of single write, multiple read registers.


As shown in FIG. 1C, the protected memory 152 is configured to support an audit log 156. An “audit log” 156 is information concerning the operating environment of the platform 100; namely, a listing of data that represents what information has been successfully loaded into the system memory 140 after power-on of the platform 100. For example, the representative data may be hash values of each software module loaded into the system memory 140. These software modules may include the processor nub 18, the OS nub 16, and/or any other critical software modules (e.g., ring-0 modules) loaded into the isolated area 70. Thus, the audit log 156 can act as a fingerprint that identifies information loaded into the platform (e.g., the ring-0 code controlling the isolated execution configuration and operation), and is used to attest or prove the state of the current isolated execution.


In another embodiment, both the protected memory 152 and unprotected memory (e.g., a memory array in the non-isolated area 80 of the system memory 140 of FIG. 1C) may collectively provide a protected audit log 156. The audit log 156 and information concerning the state of the audit log 156 (e.g., a total hash value for the representative data within the audit log 156) are stored in the protected memory 152.


Referring still to FIG. 1C, the non-volatile memory 160 stores non-volatile information. Typically, the non-volatile memory 160 is implemented in flash memory. The non-volatile memory 160 includes the processor nub 18 as described above. Additionally, the processor nub 18 may also provide application programming interface (API) abstractions to low-level security services provided by other hardware and may be distributed by the original equipment manufacturer (OEM) or operating system vendor (OSV) via a boot disk.


The mass storage device 170 stores archive information such as code (e.g., processor nub 18), programs, files, data, applications (e.g., applications 421-42N), applets (e.g., applets 461 to 46M) and operating systems. The mass storage device 170 may include a compact disk (CD) ROM 172, a hard drive 176, or any other magnetic or optic storage devices. The mass storage device 170 also provides a mechanism to read platform-readable media. When implemented in software, the elements of the present invention are stored in a processor readable medium. The “processor readable medium” may include any medium that can store or transfer information. Examples of the processor readable medium include an electronic circuit, a semiconductor memory device, a read only memory (ROM), a flash memory, an erasable programmable ROM (EPROM), a 2 fiber optic medium, a radio frequency (RF) link, and any platform readable media such as a floppy diskette, a CD-ROM, an optical disk, a hard disk, etc.



FIG. 2 is a block diagram of a platform of one embodiment of the invention. A central processing unit (CPU) 210 is capable of operating in either an isolated execution mode or normal execution mode. An OS nub 216, including an output driver 217, may execute on CPU 210. The CPU is coupled by a link to MCH 230. MCH 230 controls access to a system memory 240, which is partitioned to include an isolated output area 290, normal memory areas 280 and an isolated memory area 270. The OS nub 216 pages may reside in the isolated memory area 270.


When the CPU 210 is operating in isolated execution mode the output driver 217 sends isolated output request cycles to the MCH 230 for access to the isolated output area 290. Isolated output cycles are identified as such by the MCH 230 based on the status of the system and whether an isolated attribute is attached to the request. If the request is identified by the MCH 230, as containing the appropriate isolated attribute, write access to the isolated output area 290 may be granted. In that context, the output driver 217 will then drive output data, for example, a bit map, into the isolated output area 290. In some embodiments of the invention, the OS nub 216 is permitted write-only access to the isolated output area.


In some embodiments, a graphics card 275 is coupled by a secure AGP bus 254 to MCH 230. The OS nub should be able to write to the graphics card to permit the OS nub to provide the base address and size of the isolated output area. In one embodiment, the graphics card is provided with an isolated direct memory access (DMA) controller 250, which sends isolated DMA requests through AGP 252 to the MCH for read access to the isolated output area 290. The MCH authenticates the request before granting access to the isolated output area. The isolated DMA controller 250 may then DMA, for example the bit map contained in the isolated output area 290 directly to an output end point such as display 202.


In some embodiments of the invention, the graphics card 275 includes one or more isolated bit planes 254 and one or more normal bit planes 256. In such embodiment, where the graphics card 275 is permitted to store isolated output data in the isolated bit planes 254, the graphics card must guarantee security of those isolated bit planes from software attack and/or access by non-Iso software. Such protection may be because the graphics card denies all external access to the isolated bit planes 254. In another embodiment, only the OS nub 216 is permitted to access the isolated bit planes 254 from outside the graphics card 275. In such embodiments it is contemplated that the isolated DMA controller 250 may DMA the output data to the isolated bit planes. Subsequent refreshes of the display may be conducted from the isolated bit planes 254. It is also within the scope and contemplation of the invention that the isolated bit planes may be loaded other than by DMA controller 250.


One form of possible attack is for rogue software to establish an environment on the display that mimics the secure environment to appear as the proper target for the secure output or input data from a user. In one embodiment, hardware on the graphics card ensures that the user sees and the output goes to the secure window. In some embodiments of the invention, upon entering isolated execution mode, the graphics card will occlude existing windows on the display 202 by overlaying an occlusion window 204. An isolated execution focus window 206 may then be tiled over occlusion window 204. In this manner, reliability of delivery of the isolated output data to the focus window is enhanced. Additionally, the isolated focus window may be itself occluded, e.g., grayed out when the graphics card leaves the isolated execution mode. In any case, the graphics card 275 is responsible for preventing software access to isolated data on the display.


It should be noted that while the above description is conducted in the context of a display, or graphical output, the invention may readily be extended to other forms of output, such as for example, audio output. Thus, such extension is within the scope and contemplation of the invention.


In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes can be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A platform comprising: a system memory to store output data in an isolated output area and a non-isolated area;a memory controller hub (MCH) coupled to the system memory; anda processor coupled to the MCH to generate a signal to the MCH, the signal indicating whether the output data is to be stored in the isolated output area or the non-isolated area, the signal generated by the processor to further cause the MCH, in response to an indication of the signal that the output data is to be stored in the isolated output area of the system memory, to receive a bus transaction indicating an isolated transaction from a graphics device to enable access to the output data stored in the isolated output area, and to transfer the output data to an isolated bit plane on the graphic device, the graphic device having the isolated bit plane for the output data from the isolated output area and a non-isolated bit plane for the output data from the non-isolated output area.
  • 2. The platform of claim 1 wherein the MCH coupled between the system memory, the processor, and the graphics device, the memory control hub to permit the graphics device to access the isolated output area only when the graphics device asserts an isolated access mode.
  • 3. The platform of claim 2 wherein the graphics device comprises: a direct memory access (DMA) controller.
  • 4. The platform of claim 2 wherein only the graphics device is permitted to read the isolated output area.
  • 5. The platform of claim 1 further comprising: an operating system (O/S) nub having a driver to write display data into the isolated output area when the processor is executing in an isolated execution mode.
  • 6. The platform of claim 2 further comprising: a link between the graphics device and the MCH having an isolated transaction type.
  • 7. The platform of claim 2 wherein the MCH only permits the O/S nub to write to the isolated output area.
  • 8. The platform of claim 6 wherein the link is a secure accelerated graphics port bus.
  • 9. The platform of claim 1 wherein the graphics device denies all external access to the isolated bit plane.
  • 10. A method comprising: establishing an isolated execution environment having an isolated execution mode by a processor generating a signal indicating whether output data is to be stored in an isolated output area or a non-isolated area of a system memory, the signal generated by the processor further causing a memory controller hub (MCH), in response to an indication of the signal that the output data is to be stored in the isolated output area of the system memory, to receive a bus transaction indicating an isolated transaction from a graphics device to enable access to the output data stored in the isolated output areas and to transfer the output data to an isolated bit plane on the graphic device, the graphic device having the isolated bit plane for the output data from the isolated output area and a non-isolated bit plane for the output data from the non-isolated output area; andpreventing access to the output data in the isolated output area of the system memory by any requester not operating in the isolated execution mode.
  • 11. The method of claim 10 further comprising: issuing an isolated direct memory access (DMA) request for display data in the isolated output area from the graphics device; andrefreshing the display based on the display data.
  • 12. The method of claim 10 wherein preventing comprises: identifying if an isolated attribute is present in a request for access to the isolated output area; anddenying the request if no isolated attribute is present.
  • 13. The method of claim 10 further comprising: loading data from the isolated output area into the isolated bit plane on the graphics device; anddenying all external access to the isolated bit plane.
  • 14. The method of claim 13 further comprising: defining a first window on an output display to present an image corresponding to the isolated bit plane; andoccluding all windows on the display but the first window.
  • 15. The method of claim 10 further comprising: retrieving data from the isolated output area;displaying an image corresponding to the data; andoccluding the image prior to a platform transitioning out of the isolated execution mode.
  • 16. An apparatus comprising: a processor to generate a signal to a memory controller hub (MCH), the signal indicating whether output data is to be stored in an isolated output area or a non-isolated area of a system memory, the signal generated by the processor to further cause the MCH, in response to an indication of the signal that the output data is to be stored in the isolated output area of the system memory, to receive a bus transaction indicating an isolated transaction from a graphics device to enable access to the output data stored in the isolated output areas and to transfer the output data to an isolated bit plane on the graphic device, the graphic device having the isolated bit plane for the output data from the isolated output area and a non-isolated bit plane for the output data from the non-isolated output area.
  • 17. The apparatus of claim 16 wherein the bus transaction is issued through a secure accelerated graphics port (AGP).
  • 18. The apparatus of claim 16 wherein the bus transaction is issued by a direct memory access (DMA) controller of the graphics device, the DMA controller to attach an isolated attribute to any isolated output area access request.
  • 19. The apparatus of claim 16 wherein the signal generated by the processor has an isolated attribute to indicate execution in an isolated execution mode.
US Referenced Citations (172)
Number Name Date Kind
3996449 Attanasio et al. Dec 1976 A
4037214 Birney et al. Jul 1977 A
4162536 Morley Jul 1979 A
4247905 Yoshida et al. Jan 1981 A
4276594 Morley Jun 1981 A
4278837 Best Jul 1981 A
4307447 Provanzano et al. Dec 1981 A
4319323 Ermolovich et al. Mar 1982 A
4347565 Kaneda et al. Aug 1982 A
4366537 Heller et al. Dec 1982 A
4430709 Schleupen et al. Feb 1984 A
4521852 Guttag Jun 1985 A
4571672 Hatada et al. Feb 1986 A
4759064 Chaum Jul 1988 A
4795893 Ugon Jan 1989 A
4802084 Ikegaya et al. Jan 1989 A
4825052 Chemin et al. Apr 1989 A
4907270 Hazard Mar 1990 A
4907272 Hazard Mar 1990 A
4910774 Barakat Mar 1990 A
4975836 Hirosawa et al. Dec 1990 A
5007082 Cummins Apr 1991 A
5022077 Bealkowski et al. Jun 1991 A
5075842 Lai Dec 1991 A
5079737 Hackbarth Jan 1992 A
5187802 Inoue et al. Feb 1993 A
5230069 Brelsford et al. Jul 1993 A
5255379 Melo Oct 1993 A
5293424 Holtey et al. Mar 1994 A
5295251 Wakui et al. Mar 1994 A
5317705 Gannon et al. May 1994 A
5319760 Mason et al. Jun 1994 A
5361375 Ogi Nov 1994 A
5386552 Garney Jan 1995 A
5421006 Jablon et al. May 1995 A
5434999 Goire et al. Jul 1995 A
5437033 Inoue et al. Jul 1995 A
5442645 Ugon et al. Aug 1995 A
5455909 Blomgren et al. Oct 1995 A
5459867 Adams et al. Oct 1995 A
5459869 Spilo Oct 1995 A
5469557 Salt et al. Nov 1995 A
5473692 Davis Dec 1995 A
5479509 Ugon Dec 1995 A
5504922 Seki et al. Apr 1996 A
5506975 Onodera Apr 1996 A
5511217 Nakajima et al. Apr 1996 A
5522075 Robinson et al. May 1996 A
5528231 Patarin Jun 1996 A
5533126 Hazard et al. Jul 1996 A
5555385 Osisek Sep 1996 A
5555414 Hough et al. Sep 1996 A
5564040 Kubala Oct 1996 A
5566323 Ugon Oct 1996 A
5568552 Davis Oct 1996 A
5574936 Ryba et al. Nov 1996 A
5582717 Di Santo Dec 1996 A
5604805 Brands Feb 1997 A
5606617 Brands Feb 1997 A
5615263 Takahashi Mar 1997 A
5628022 Ueno et al. May 1997 A
5633929 Kaliski, Jr. May 1997 A
5657445 Pearce Aug 1997 A
5717903 Bonola Feb 1998 A
5720609 Pfefferle Feb 1998 A
5721222 Bernstein et al. Feb 1998 A
5729760 Poisner Mar 1998 A
5737604 Miller et al. Apr 1998 A
5737760 Grimmer, Jr. et al. Apr 1998 A
5752046 Oprescu et al. May 1998 A
5757919 Herbert et al. May 1998 A
5764969 Kahle Jun 1998 A
5796835 Saada Aug 1998 A
5796845 Serikawa et al. Aug 1998 A
5805712 Davis Sep 1998 A
5825875 Ugon Oct 1998 A
5835594 Albrecht et al. Nov 1998 A
5844986 Davis Dec 1998 A
5852717 Bhide et al. Dec 1998 A
5854913 Goetz et al. Dec 1998 A
5867577 Patarin Feb 1999 A
5872994 Akiyama et al. Feb 1999 A
5890189 Nozue et al. Mar 1999 A
5900606 Rigal May 1999 A
5901225 Ireton et al. May 1999 A
5903752 Dingwall et al. May 1999 A
5935247 Pai et al. Aug 1999 A
5937063 Davis Aug 1999 A
5953502 Helbig, Sr. Sep 1999 A
5956408 Arnold Sep 1999 A
5970147 Davis et al. Oct 1999 A
5978475 Schneier et al. Nov 1999 A
5978481 Ganesan et al. Nov 1999 A
5987557 Ebrahim Nov 1999 A
6014745 Ashe Jan 2000 A
6044478 Green Mar 2000 A
6055637 Hudson et al. Apr 2000 A
6058478 Davis May 2000 A
6061794 Angelo May 2000 A
6075938 Bugnion et al. Jun 2000 A
6085296 Karkhanis et al. Jul 2000 A
6088262 Nasu Jul 2000 A
6092095 Maytal Jul 2000 A
6093213 Favor et al. Jul 2000 A
6101584 Satou et al. Aug 2000 A
6115816 Davis Sep 2000 A
6125430 Noel et al. Sep 2000 A
6131166 Wong-Insley Oct 2000 A
6148379 Schimmel Nov 2000 A
6158546 Hanson et al. Dec 2000 A
6173417 Merrill Jan 2001 B1
6175924 Arnold Jan 2001 B1
6175925 Nardone et al. Jan 2001 B1
6178509 Nardone Jan 2001 B1
6182089 Ganapathy et al. Jan 2001 B1
6188257 Buer Feb 2001 B1
6192455 Bogin et al. Feb 2001 B1
6205550 Nardone et al. Mar 2001 B1
6212635 Reardon Apr 2001 B1
6222923 Schwenk Apr 2001 B1
6249872 Wildgrube et al. Jun 2001 B1
6252650 Nakaumra Jun 2001 B1
6269392 Cotichini et al. Jul 2001 B1
6272533 Browne et al. Aug 2001 B1
6272637 Little et al. Aug 2001 B1
6275933 Fine et al. Aug 2001 B1
6282650 Davis Aug 2001 B1
6282651 Ashe Aug 2001 B1
6282657 Kaplan et al. Aug 2001 B1
6292874 Barnett Sep 2001 B1
6301646 Hostetter Oct 2001 B1
6308270 Guthery et al. Oct 2001 B1
6314409 Schneck et al. Nov 2001 B2
6321314 Van Dyke Nov 2001 B1
6330670 England et al. Dec 2001 B1
6339815 Feng Jan 2002 B1
6339816 Bausch Jan 2002 B1
6357004 Davis Mar 2002 B1
6363485 Adams Mar 2002 B1
6374286 Gee et al. Apr 2002 B1
6374317 Ajanovic et al. Apr 2002 B1
6378068 Foster Apr 2002 B1
6378072 Collins et al. Apr 2002 B1
6389537 Davis et al. May 2002 B1
6397242 Devine et al. May 2002 B1
6412035 Webber Jun 2002 B1
6421702 Gulick Jul 2002 B1
6435416 Slassi Aug 2002 B1
6445797 McGough et al. Sep 2002 B1
6463535 Drews et al. Oct 2002 B1
6463537 Tello Oct 2002 B1
6476806 Cunniff et al. Nov 2002 B1
6499123 McFarland et al. Dec 2002 B1
6505279 Phillips et al. Jan 2003 B1
6507904 Ellison et al. Jan 2003 B1
6535988 Poisner Mar 2003 B1
6557104 Vu et al. Apr 2003 B2
6633963 Ellison et al. Oct 2003 B1
6633981 Davis Oct 2003 B1
6775779 England et al. Aug 2004 B1
20010021969 Burger et al. Sep 2001 A1
20010027511 Wakabayashi et al. Oct 2001 A1
20010027527 Khidekel et al. Oct 2001 A1
20010037450 Metlitski et al. Nov 2001 A1
20020147916 Strongin et al. Oct 2002 A1
20020166061 Falik et al. Nov 2002 A1
20020169717 Challener Nov 2002 A1
20030018892 Tello Jan 2003 A1
20030074548 Cromer et al. Apr 2003 A1
20030126453 Glew et al. Jul 2003 A1
20030159056 Cromer et al. Aug 2003 A1
20030188179 Challener et al. Oct 2003 A1
Foreign Referenced Citations (29)
Number Date Country
4217444 Dec 1992 DE
0473913 Mar 1992 EP
0600112 Jun 1994 EP
0930567 Jul 1999 EP
0961193 Dec 1999 EP
0965902 Dec 1999 EP
1030237 Aug 2000 EP
1085396 Mar 2001 EP
1146715 Oct 2001 EP
1271277 Jan 2003 EP
2000076139 Mar 2000 JP
WO-9524696 Sep 1995 WO
WO-9729567 Aug 1997 WO
WO-9834365 Aug 1998 WO
WO-9844402 Oct 1998 WO
WO-9905600 Feb 1999 WO
WO-9957863 Nov 1999 WO
WO-9965579 Dec 1999 WO
WO-0021238 Apr 2000 WO
WO-0062232 Oct 2000 WO
WO-0127723 Apr 2001 WO
WO-0127821 Apr 2001 WO
WO-0163994 Aug 2001 WO
WO-0175565 Oct 2001 WO
WO-0175595 Oct 2001 WO
WO-9909482 Jan 2002 WO
WO-0217555 Feb 2002 WO
WO-0175564 Oct 2002 WO
WO-02086684 Oct 2002 WO