This invention relates to mechanism's for firing projectiles, weapons, such as firearms technology primarily intended for all small arms categories as defined by military or by NATO terminology but could also be used for larger projectile weapons such as canons.
Historically firearm technology has evolved from the use of gunpowder. To achieve accuracy and reliability projectiles, gunpowder and a primer need to be encapsulated in a casing as ammunition. The casing needs to be accurately formed and be of soft metal, most commonly brass. These firearm weapons are of an entirely mechanical nature. If the casing system can be avoided there is a large saving in weight, volume and cost. This is known as “case-less ammunition”. There has been much work done in this field using both solid and liquid propellants. In the case of liquid propellants there comes the opportunity to eliminate mechanical parts thereby increasing the flexibility and efficiency of the firearm's design.
An object of the invention is to provide firearms technology that meets those needs.
According to a broadest aspect the invention provides a method for firing projectiles by electronically controlling the injection and ignition of propellants in a combustion chamber which is part of an action which incorporates a breech mechanism which loads and holds projectiles ready for firing and a propellant injection system including a series of valves.
Preferably the propellants include nitrous oxide which is used as an oxidizer.
Preferably the propellant includes as a fuel a liquid or gas selected from the group consisting of alkane, alkene, cycloalkanes and alkyne based compounds, alcohols or mixtures thereof.
The invention in accordance with a second aspect includes a frame or gunstock housing for a barrel, an action, a projectile magazine, a propellant storage system which can be detachable, an electronic control unit (ECU) and a battery, the action incorporating a combustion chamber, a breech mechanism that feeds a projectile from the magazine, a fuel injector, an oxide injector, valves, a spark ignition device and means for channeling the propellants to the combustion chamber.
Further aspects of the invention will become apparent from the following description which is given by way of example only.
Schematic drawings are attached which show the workings of an example weapon in accordance with the invention in which:
In
In
The invention uses fuel and nitrous oxide as propellant. The inert gas is used to pressurize the propellant to above its critical pressure. The critical pressure or vapor pressure is that pressure below which a liquid becomes a gas. Holding the propellants at or above that pressure ensures that it does not turn into a gas within the system. If it boils and turns into gas anywhere in the system it becomes less dense and therefore less powerful as a propellant. Inert gas is stored on the weapon at a pressure of between 200 and 400 bar. It can be nitrogen, helium, argon or any other suitable inert gas.
The fuel can be any hydrocarbon. The fuel can also be a mixture of hydrocarbons and can include inhibitors, which slow down the burn rate of the fuel. The fuel mix is selected to achieve the desired burn rate in relation to the design of the weapon i.e. caliber size, length of barrel, projectile speed needed and the multiple power settings a particular model may have. Generally hydrocarbons with longer carbon chains will be slower burning than those with short carbon chains. The fuel and oxidizer are injected at stoichiometric ratios. If nitrous oxide is used as an oxidizer, mixtures from five parts oxidizer to one part fuel to about ten parts oxidizer to one part fuel can be used depending on the fuel type, i.e. if methane were used which has four carbon molecules in it's chain then the stoichiometric ratio of at least six point one parts nitrous oxide to one of fuel by volume may be used whereas if octane which has 8 carbon molecules were used the ratio would be nine to one.
The invention uses an Electronic Control Unit or ECU to control the fuel injector valve 19, the nitrous oxide injector valve 18 and the ignition timing. The ECU is tuned for the specific application or model it is used in and for the specific fuel blend designed for that model. Temperature and pressure sensors shown in
There are several factors which greatly influence the combustion of the propellants in this invention. A propellant for a projectile weapon must not burn too fast or too slow to be effective. If it burns too fast it may over pressurize the breech and barrel causing projectile deformation or even catastrophic failure. If it burns too slowly it will not propel the projectile efficiently, wasting its power after the projectile has left the barrel. One factor in controlling this has been briefly discussed above i.e. the mixing of different types of hydrocarbons and the inclusion of inhibitors. For the understanding of this invention the applicant now discusses some of the other factors which influence combustion in the combustion chamber. Some of these other factors are: A, the temperature and pressure of the propellant and the timing of fuel injection in relation to the nitrous oxide. B, the physical shape and size of the combustion chamber. C, the shape and placement of the inlet valves in the combustion chamber (shown as 21 and 23 in
In the invention the governing principle of combustion that is too fast or in other words detonation, is the homogeneous mixing of fuel and oxidizer i.e. if the mixture is too homogeneous detonation may occur sending pressures too high. A good balance must be achieved by surrounding the fuel with oxidizer so that when ignition takes place there is an even flame front created. The points A, B, C and D above are used to achieve that. The dynamics inside the combustion chamber are very complex but the principle remains the same, to generate a flame front rather than detonation. The combustion chamber can be filled with both oxidizer and fuel within 15 milliseconds or less depending on the design. Different dynamics can be set up by programming the ECU with specific injection and ignition timing. Each increment in timing can change the pressure versus time curve of the internal ballistics. Once good physics are achieved inside the combustion chamber varying the ignition timing by very small increments has an effect on internal ballistics. So the secret lies in the tuning of the ECU for correct injection and ignition in relation to a particular combustion chamber design, fuel blend and the ballistics required for the application. A well designed combustion chamber and inlet valve combination can give a wide range of ballistic profiles and because propellant injection and ignition timing can be controlled down to the microsecond, it is possible to achieve very repeatable ballistics.
For safety the two components of the propellant namely the nitrous oxide and the fuel must remain separate at ALL times without exception before entering the combustion chamber. The fuel injection system and the nitrous oxide injection system is therefore built in such a way that they remain completely separated even in the event of component failure. The two systems must be separated by an escape to the outside atmosphere to be redundant and that includes the inert gas pressurization system.
The breech mechanism shown as 28 in
Where in the foregoing description particular mechanical parts or integers are referred to it is envisaged that their mechanical equivalents can be substituted therefore and fall within the scope of the invention.
Thus by the invention there is provided a mechanism for firing a projectile and a method of its use.
Particular examples of the invention have been described by way of example and it is envisaged that improvements and modifications can take place without departing from the scope of the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
599924 | May 2012 | NZ | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NZ2013/000044 | 3/18/2013 | WO | 00 |