Mechanisms of induction of protective anti-malarial CD8+ T Cells

Information

  • Research Project
  • 9232993
  • ApplicationId
    9232993
  • Core Project Number
    R01AI102891
  • Full Project Number
    5R01AI102891-04
  • Serial Number
    102891
  • FOA Number
    PA-11-260
  • Sub Project Id
  • Project Start Date
    3/1/2014 - 11 years ago
  • Project End Date
    2/28/2018 - 7 years ago
  • Program Officer Name
    WALI, TONU M.
  • Budget Start Date
    3/1/2017 - 8 years ago
  • Budget End Date
    2/28/2018 - 7 years ago
  • Fiscal Year
    2017
  • Support Year
    04
  • Suffix
  • Award Notice Date
    2/17/2017 - 8 years ago

Mechanisms of induction of protective anti-malarial CD8+ T Cells

DESCRIPTION (provided by applicant): Malaria remains one of the most devastating infectious diseases of the world, underscoring the need to develop effective vaccines. The current candidate malaria vaccines against the liver stages induce CD8+ T- cell-mediated protection. However, what remains unknown is the manner in which the anti-malarial CD8+ T cells are elicited in vivo. This unanswered question is particularly prominent in view of a very recent study showing that only through intravenous administration (and no other routes) do radiation-attenuated sporozoites (IrSpz) induce a potent malaria-specific CD8+ T-cell response in the livers of monkeys and of mice and provide anti-malarial protection in mice. Therefore, it appears that the nature of vaccine vectors, as well as the routes of vaccination, influences the mode of induction of protective anti-malarial CD8+ T cells in vivo. The overall aim of this proposal is to determine the mechanisms of in vivo induction of anti-malarial CD8+ T cells. SYVPSAEQI, derived from the P. yoelii circumsporozoite (PyCS) protein, is to date the only known CD8+ epitope that mediates protection against P. yoelii infection in mice and is presented by an H-2Kd molecule. Therefore, in addressing our overall goal, we have generated C57BL/6 transgenic (Tg) mice, in which Kd molecule is expressed only on dendritic cell (DC) (CD11c-Kd), macrophage (huCD68-Kd), or hepatocyte (Alb- Kd), by using CD11c promoter, huCD68 promoter, or albumin promoter, respectively. We have also generated MHC-I-Kd Tg mice that express a Kd molecule under the MHC-I promoter, in which we could induce a potent, protective anti-malarial immunity, dependent on both the PyCS protein and CD8+ T cells. These MHC-I-Kd Tg mice will be used as a positive control. In the proposed study, we will immunize the Kd Tg mice with malaria vaccines, including an adenovirus expressing the PyCS antigen, IrPySpz, or live PySpz followed by treatment with chloroquine, by different routes. We will determine the quantity, quality, and durability of PyCS antigen- specific CD8+ T-cell response induced in each group of Kd Tg mice in Aim 1. In Aim 2, we will challenge these immunized Kd Tg mice with live malaria parasites to determine the level and persistence of protective immunity induced in vivo. In Aim 3, we will determine which Kd-expressing cells induce the protective anti-malarial immunity by isolating these Kd+ cells from immunized, various Kd Tg mice, and adoptively transferring them to na?ve MHC-I-Kd Tg mice, followed by a malaria challenge. Finally, we will isolate PyCS antigen-specific CD8+ T cells from immunized, various Kd Tg mice and adoptively transfer them to na?ve MHC-I-Kd Tg mice, followed by a malaria challenge, to determine the protective capacity of the CD8+ T cells in Aim 4. Overall, we believe that the identification of the induction mechanisms of anti-malarial protective CD8+ T cells could ultimately lead to the vastly improved designs of potent T-cell-based vaccines against human malaria.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
    184599
  • Indirect Cost Amount
    165401
  • Total Cost
    350000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:350000\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    VMD
  • Study Section Name
    Vaccines Against Microbial Diseases Study Section
  • Organization Name
    AARON DIAMOND AIDS RESEARCH CENTER
  • Organization Department
  • Organization DUNS
    786658872
  • Organization City
    NEW YORK
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    100169102
  • Organization District
    UNITED STATES