Mechanisms of Perchlorate-Induced Disruption of Sexual Differentiation

Information

  • Research Project
  • 8204488
  • ApplicationId
    8204488
  • Core Project Number
    R01ES017039
  • Full Project Number
    5R01ES017039-03
  • Serial Number
    017039
  • FOA Number
    PA-07-070
  • Sub Project Id
  • Project Start Date
    3/1/2010 - 14 years ago
  • Project End Date
    11/30/2014 - 9 years ago
  • Program Officer Name
    HEINDEL, JERROLD
  • Budget Start Date
    12/1/2011 - 12 years ago
  • Budget End Date
    11/30/2012 - 11 years ago
  • Fiscal Year
    2012
  • Support Year
    03
  • Suffix
  • Award Notice Date
    12/9/2011 - 12 years ago

Mechanisms of Perchlorate-Induced Disruption of Sexual Differentiation

DESCRIPTION (provided by applicant): The recent dramatic increase and geographic differences in frequency of reproductive diseases are likely influenced by changes in the environment, including perchlorate exposure. Perchlorate (ClO4-) is a persistent, chlorinated water-soluble contaminant that is pervasive in the United States. As a toxicant, perchlorate poses a major risk to human health through ingestion of contaminated water, food, and breast milk. Perchlorate is a known endocrine disruptor that competitively inhibits iodide uptake at the Sodium-Iodide Symporter (NIS) in the thyroid, thus hindering thyroid hormone synthesis. Studies demonstrate, however, that perchlorate exposure masculinizes both female and male stickleback fish (Gasterosteus aculeatus), leading to hermaphroditic females and males with testicular hypertrophy, results that are not predicted by a simple, direct thyroid- disruption mechanism. The goal of this project is to reconcile the dominant paradigm of perchlorate action - exclusively by disruption of NIS in the thyroid - with masculinization of behavior, physiology, and morphology in stickleback. The project's goal is to identify previously unsuspected pathways by which perchlorate may impact human reproductive health. Our working hypothesis is that perchlorate disrupts gonadal development by acting independently of the thyroid. Aim 1 will determine whether all observed phenotypic responses to perchlorate exposure in stickleback are mediated by the thyroid by rescuing thyroid hormone levels in perchlorate-exposed fish. Aim 2 will define the functional roles of NIS and NIS-paralogs in disruption of gonadal development by perchlorate using in situ hybridization to localize mRNA (Aim 2a), loss-of-function experiments to knock down expression of NIS and NIS-paralogs with morpholino anti-sense oligonucleotides and induced mutations using zinc finger nucleases (Aim 2b), and gain-of-function experiments by over- expressing the NIS and NIS-paralogs (Aim 2c). Aim 3 will determine the mechanism by which perchlorate alters sex differentiation using whole genome transcription profiling to determine which genes are early responders to perchlorate exposure, which are likely to be downstream genes, and whether responding genes are related to thyroid or gonad development. Quantitative PCR (qPCR) and in situ hybridization will verify expression profiling results. Significance. The proposed experiments will identify molecular and physiological pathways by which perchlorate disrupts gonadal development, whether solely via NIS in the thyroid or by other mechanisms. Because perchlorate is a pervasive contaminant in the U.S., our proposed work has direct implications for human health, particularly regarding thyroid diseases and disorders of sexual development. PUBLIC HEALTH RELEVANCE: Perchlorate is a persistent, water-soluble contaminant that is pervasive in the United States and poses a major risk to human health through ingestion of contaminated water, food and milk. Perchlorate not only inhibits thyroid activity, but also alters sexual development in stickleback fish, a commonly used model organism in genetic studies. The recent dramatic increase and geographic differences in frequency of human reproductive disorders are likely due to changes in the environment, including perchlorate exposure. Proposed experiments will identify genes and gene functions that, under the insult of perchlorate contamination, disrupt normal development of male and female gonads. Experiments will also determine the hormonal mechanisms that translate genetic changes into developmental disorders of the gonads. This research will advance our understanding of human thyroid diseases and the recent epidemic of impaired human reproductive health.

IC Name
NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES
  • Activity
    R01
  • Administering IC
    ES
  • Application Type
    5
  • Direct Cost Amount
    445187
  • Indirect Cost Amount
    95042
  • Total Cost
    540229
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    113
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIEHS:540229\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ICER
  • Study Section Name
    Integrative and Clinical Endocrinology and Reproduction Study Section
  • Organization Name
    UNIVERSITY OF ALASKA ANCHORAGE
  • Organization Department
    BIOLOGY
  • Organization DUNS
    076664986
  • Organization City
    ANCHORAGE
  • Organization State
    AK
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    995084614
  • Organization District
    UNITED STATES