The present subject matter relates generally to mechano-caloric heat pumps for appliances.
Conventional refrigeration technology typically utilizes a heat pump that relies on compression and expansion of a fluid refrigerant to receive and reject heat in a cyclic manner so as to effect a desired temperature change or transfer heat energy from one location to another. This cycle can be used to receive heat from a refrigeration compartment and reject such heat to the environment or a location that is external to the compartment. Other applications include air conditioning of residential or commercial structures. A variety of different fluid refrigerants have been developed that can be used with the heat pump in such systems.
While improvements have been made to such heat pump systems that rely on the compression of fluid refrigerant, at best such can still only operate at about forty-five percent or less of the maximum theoretical Carnot cycle efficiency. Also, some fluid refrigerants have been discontinued due to environmental concerns. The range of ambient temperatures over which certain refrigerant-based systems can operate may be impractical for certain locations. Other challenges with heat pumps that use a fluid refrigerant exist as well.
Mechano-caloric materials (MECMs), e.g. materials that exhibit the elasto-caloric or baro-caloric effect, provide a potential alternative to fluid refrigerants for heat pump applications. In general, MECMs exhibit a change in temperature in response to a change in strain. The theoretical Carnot cycle efficiency of a refrigeration cycle based on an MECM can be significantly higher than for a comparable refrigeration cycle based on a fluid refrigerant. As such, a heat pump system that can effectively use an MECM would be useful.
Challenges exist to the practical and cost competitive use of an MECM, however. In addition to the development of suitable MECMs, equipment that can attractively utilize an MECM is still needed. Currently proposed equipment may require relatively large and expensive mechanical systems, may be impractical for use in e.g., appliance refrigeration, and may not otherwise operate with enough efficiency to justify capital cost.
Accordingly, a heat pump system that can address certain challenges, such as those identified above, would be useful. Such a heat pump system that can also be used in a refrigerator appliance would also be useful.
Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first example embodiment, a mechano-caloric stage includes an elongated outer sleeve. An elongated inner sleeve is disposed within the elongated outer sleeve. A pair of pistons is received within the elongated inner sleeve. Each of the pair of pistons is positioned at a respective end of the elongated inner sleeve. The pair of pistons are moveable relative to the elongated inner sleeve. A mechano-caloric material is disposed within the elongated inner sleeve between the pair of pistons. The mechano-caloric material is compressible between the pair of pistons.
In a second example embodiment, a mechano-caloric stage includes a metal elongated outer sleeve. A plastic elongated inner sleeve is disposed within the metal elongated outer sleeve. A pair of pistons is received within the plastic elongated inner sleeve. Each of the pair of pistons is positioned at a respective end of the plastic elongated inner sleeve. The pair of pistons are moveable relative to the plastic elongated inner sleeve. A mechano-caloric material is disposed within the plastic elongated inner sleeve between the pair of pistons. The mechano-caloric material is compressible between the pair of pistons. The mechano-caloric material is slidable against the elongated inner sleeve. The elongated outer sleeve defines a pair of ports. Each port of the pair of ports is positioned at a respective end of the elongated outer sleeve. The mechano-caloric material defines a channel that extends through the mechano-caloric material along a length of the mechano-caloric material. Each of the pair of pistons defines a passage that is contiguous with the channel of the mechano-caloric material and a respective one of the pair of ports.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to
Refrigerator 10 is provided by way of example only. Other configurations for a refrigerator appliance may be used as well including appliances with only freezer compartments, only chilled compartments, or other combinations thereof different from that shown in
The heat transfer fluid flows out of first heat exchanger 32 by line 44 to heat pump 100. As will be further described herein, the heat transfer fluid receives additional heat from caloric material in heat pump 100 and carries this heat by line 48 to pump 42 and then to second heat exchanger 34. Heat is released to the environment, machinery compartment 40, and/or other location external to refrigeration compartment 30 using second heat exchanger 34. A fan 36 may be used to create a flow of air across second heat exchanger 34 and thereby improve the rate of heat transfer to the environment. Pump 42 connected into line 48 causes the heat transfer fluid to recirculate in heat pump system 52. Motor 28 is in mechanical communication with heat pump 100 as will further described.
From second heat exchanger 34 the heat transfer fluid returns by line 50 to heat pump 100 where, as will be further described below, the heat transfer fluid loses heat to the caloric material in heat pump 100. The now colder heat transfer fluid flows by line 46 to first heat exchanger 32 to receive heat from refrigeration compartment 30 and repeat the cycle as just described.
Heat pump system 52 is provided by way of example only. Other configurations of heat pump system 52 may be used as well. For example, lines 44, 46, 48, and 50 provide fluid communication between the various components of the heat pump system 52 but other heat transfer fluid recirculation loops with different lines and connections may also be employed. For example, pump 42 can also be positioned at other locations or on other lines in system 52. Still other configurations of heat pump system 52 may be used as well. For example, heat pump system 52 may be configured such that the caloric material in heat pump 100 directly cools air that flows through refrigeration compartment 30 and directly heats air external to refrigeration compartment 30. Thus, system 52 need not include a liquid working fluid in certain example embodiments.
As may be seen in
A distance D1 between first end portion 326 of first elongated lever arm 322 and first point 330 is less than a distance D2 between second end portion 327 of first elongated lever arm 322 and first point 330. Thus, first elongated lever arm 322 is pivotable about first point 330 to provide a suitable mechanical advantage. As an example, the distance D1 may be no greater than half (½) of the distance D2. As another example, the distance D1 may be no greater than a quarter (¼) of the distance D2. As may be seen from the above, force applied at second end portion 327 of first elongated lever arm 322 is amplified at first end portion 326 of first elongated lever arm 322 via suitable selecting of the distances D1, D2.
Second elongated lever arm 324 also extends between a first end portion 328 and a second end portion 329, e.g., along the length of second elongated lever arm 324. Second elongated lever arm 324 is pivotable about a second point 340. For example, second elongated lever arm 324 may be mounted to an axle at second point 332. Second point 332 is spaced from first point 330. A distance D3 between first end portion 328 of second elongated lever arm 324 and second point 332 is less than a distance D4 between second end portion 329 of second elongated lever arm 324 and second point 332. The distances D3, D4 may be selected in the same or similar manner to that described above for the distances D1, D2 in order to provide a suitable mechanical advantage.
Mechano-caloric heat pump 300 also includes a motor 340, such as motor 28, that is operable to rotate a cam 342. First elongated lever arm 322 is coupled to cam 342 proximate second end portion 327 of first elongated lever arm 322. As an example, a roller 334 on second end portion 327 of first elongated lever arm 322 may contact and ride on cam 342. As another example, second end portion 327 of first elongated lever arm 322 may be directly connected to cam 342, e.g., via an axle. Second elongated lever arm 324 is coupled to cam 342 proximate second end portion 329 of second elongated lever arm 324. As an example, a roller 336 on second end portion 329 of second elongated lever arm 324 may contact and ride on cam 342. As another example, second end portion 329 of second elongated lever arm 324 may be directly connected to cam 342, e.g., via an axle. Due to the coupling of first and second elongated lever arms 322, 324, motor 340 is operable to pivot first elongated lever arm 322 about first point 330 and second elongated lever arm 324 about second point 332 as motor 340 rotates cam 342.
First and second elongated lever arms 322, 324 are also coupled to mechano-caloric stages 310, 312. For example, first elongated lever arm 322 is coupled to mechano-caloric stage 310 proximate first end portion 326 of first elongated lever arm 322, and second elongated lever arm 324 is coupled to mechano-caloric stage 312 proximate first end portion 328 of second elongated lever arm 324. Thus, motor 340 is operable to stress and/or deform mechano-caloric stages 310, 312 via pivoting of first and second elongated lever arms 322, 324 as motor 340 rotates cam 342. In particular, first and second elongated lever arms 322, 324 elastically deform as first and second elongated lever arms 322, 324 pivot on first and second points 330, 332, e.g., such that first and second elongated lever arms 322, 324 apply an elastic or spring force onto mechano-caloric stages 310, 312. The relatively large translation of first end portions 326, 328 of elongated lever arms 320 as elongated lever arms 320 pivot on first and second points 330, 332 may result in a relatively small translation of second end portions 327, 329 of elongated lever arms 320 and thus translation of a large force or pressure onto mechano-caloric stages 310, 312 as motor 340 rotates cam 342. As may be seen from the above, elastic deformation of elongated lever arms 320 and leverage may translate a large displacement at one end of elongated lever arms 320 into a large force with very low displacement at the opposite end of elongated lever arms 320.
Cam 342 is rotatable about an axis by motor 340. In
Mechano-caloric heat pump 300 may also include a fluid pump 346, such as pump 42, that is coupled to motor 340. Thus, motor 340 may drive both cam 342 and pump 346 in certain example embodiments. Pump 346 may be coupled to motor 340 via shaft 344 in certain example embodiments. Pump 346 is configured to flow heat transfer fluid through mechano-caloric stages 310, 312, heat exchangers 32, 34, etc., as discussed in greater detail below. Pump 346 may continuously flow the heat transfer fluid through mechano-caloric stages 310, 312. Alternatively, pump 346 may positively displace the heat transfer fluid through mechano-caloric stages 310, 312, e.g., in a periodic manner.
In
One or more of mechano-caloric stages 310, 312, 350 may include a mechano-caloric material, such as an elasto-caloric material, a baro-caloric material, etc. The mechano-caloric material may be constructed from a single mechano-caloric material or may include multiple different mechano-caloric materials, e.g., in a cascade arrangement. By way of example, refrigerator appliance 10 may be used in an application where the ambient temperature changes over a substantial range. However, a specific mechano-caloric material may exhibit the mechano-caloric effect over only a much narrower temperature range. As such, it may be desirable to use a variety of mechano-caloric materials within mechano-caloric stages 310, 312, 350 to accommodate the wide range of ambient temperatures over which refrigerator appliance 10 and/or an associated mechano-caloric heat pump may be used.
As noted above, mechano-caloric stages 310, 312, 350 include mechano-caloric material that exhibits the mechano-caloric effect. During deformation of mechano-caloric stages 310, 312, 350, the mechano-caloric material in mechano-caloric stages 310, 312, 350 is successively stressed and relaxed between a high strain state and a low strain state. The high strain state may correspond to when the mechano-caloric material is in compression and the mechano-caloric material is shortened relative to a normal length of the mechano-caloric material. Conversely, the low strain state may correspond to when the mechano-caloric material is not in compression and the mechano-caloric material is uncompressed relative to the normal length of the mechano-caloric material.
When the mechano-caloric material in mechano-caloric stages 310, 312, 350 is compressed to the high strain state, the deformation causes reversible phase change within the mechano-caloric material and an increase (or alternatively a decrease) in temperature such that the mechano-caloric material rejects heat to a heat transfer fluid. Conversely, when the mechano-caloric material is relaxed to the low strain state, the deformation causes reversible phase change within the mechano-caloric material and a decrease (or alternatively an increase) in temperature such that the mechano-caloric material receives heat from a heat transfer fluid. By shifting between the high and low strain states, mechano-caloric stages 310, 312, 350 may transfer thermal energy by utilizing the mechano-caloric effect of the mechano-caloric material in mechano-caloric stages 310, 312, 350.
As an example, working fluid may be flowable through or to stages 310, 312. In particular, with reference to
In addition, cool working fluid (labeled QH-IN) from second heat exchanger 34 may enter first stage 310 via line 50 when first stage 310 is in the low strain state, and the working fluid rejects additional heat to mechano-caloric material in first stage 310 as the mechano-caloric material in first stage 310 relaxes. The now cooler working fluid (labeled QC-OUT) may then exit first stage 310 via line 46, flow to first heat exchanger 32, and receive heat from refrigeration compartment 30.
Continuing the example, mechano-caloric stages 310, 312 may be deformed from the configuration shown in
In addition, cool working fluid QH-IN from second heat exchanger 34 may enter second caloric stage 312 via line 50 when second caloric stage 312 is in the low strain state, and the working fluid rejects additional heat to mechano-caloric material in second caloric stage 312 as the mechano-caloric material in second caloric stage 312 relaxes. The now cooler working fluid QC-OUT may then exit second caloric stage 312 via line 46, flow to first heat exchanger 32, and receive heat from refrigeration compartment 30.
The above cycle may be repeated by deforming first and second caloric stages 310, 312 between the configurations shown in
As may be seen in
Elongated outer and inner sleeves 410, 420 may be cylindrical. Thus, elongated outer sleeve 410 may have a circular cross-section along a length of elongated outer sleeve 410, and elongated inner sleeve 420 may also have a circular cross-section along a length of elongated inner sleeve 420. An outer diameter of elongated inner sleeve 420 may be selected to complement an inner diameter of elongated outer sleeve 410, e.g., such that friction between elongated outer and inner sleeves 410, 420 assists with mounting elongated inner sleeve 420 within elongated outer sleeve 410.
Mechano-caloric material 430 is disposed within elongated inner sleeve 420. Mechano-caloric stage 400 also includes a pair of pistons 440. Pistons 440 are received within elongated inner sleeve 420. Each of pistons 440 is positioned at a respective end of elongated inner sleeve 420. Thus, pistons 440 may be positioned opposite each other about mechano-caloric material 430 within elongated inner sleeve 420. Pistons 440 are moveable relative to elongated inner sleeve 420 and mechano-caloric material 430. In particular, pistons 440 may be slidable on elongated inner sleeve 420 in order to compress mechano-caloric material 430 between pistons 440 within elongated inner sleeve 420.
Seals 450, such as O-rings, may assist with limiting leakage of heat transfer fluid from within elongated inner sleeve 420 at the interface between elongated inner sleeve 420 and pistons 440. For example, a respective seal 450 may extend between each piston 440 and elongated inner sleeve 420. Each piston 440 may also include a roller 444. Rollers 444 may engage elongated lever arms 320 (
Elongated outer sleeve 410 also defines a pair of ports 412. Each port 412 may be positioned at a respective end of elongated outer sleeve 410. Thus, ports 412 may be positioned at opposite ends of elongated outer sleeve 410. Heat transfer fluid may enter and exit elongated outer sleeve 410 via ports 412.
Mechano-caloric material 430 may also define one or more channels 432 that extend through mechano-caloric material 430 along a length of mechano-caloric material 430. Heat transfer fluid may flow through mechano-caloric material 430 via channel 432 of mechano-caloric material 430. Each of pistons 440 may define a passage 442 that is contiguous with channel 432 of mechano-caloric material 430 and a respective one of ports 412. Heat transfer fluid from ports 412 may flow through pistons 440 via passages 442 and enter or exit channel 432 of mechano-caloric material 430. Thus, heat transfer fluid may flow through mechano-caloric stage 400 via ports 412, passages 442 and channel 432.
Mechano-caloric material 430 may be an elasto-caloric material when mechano-caloric material 430 is formed with channel 432, and the heat transfer fluid within elongated inner sleeve 420 may contact mechano-caloric material 430 in channel 432. Such direct contact between mechano-caloric material 430 and heat transfer fluid may improve heat transfer, e.g., relative to when the heat transfer fluid does not contact mechano-caloric material 430 in channel 432. It will be understood that mechano-caloric material 430 may include any suitable number of channels 432 in alternative example embodiments.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
668560 | Fulner et al. | Feb 1901 | A |
1985455 | Mosby | Dec 1934 | A |
2671929 | Gayler | Mar 1954 | A |
2765633 | Muffly | Oct 1956 | A |
3618265 | Croop | Nov 1971 | A |
3816029 | Bowen et al. | Jun 1974 | A |
3844341 | Bimshas, Jr. et al. | Oct 1974 | A |
3956076 | Powell, Jr. et al. | May 1976 | A |
4037427 | Kramer | Jul 1977 | A |
4102655 | Jeffery et al. | Jul 1978 | A |
4107935 | Steyert, Jr. | Aug 1978 | A |
4197709 | Hochstein | Apr 1980 | A |
4200680 | Sasazawa et al. | Apr 1980 | A |
4259843 | Kausch | Apr 1981 | A |
4332135 | Barclay et al. | Jun 1982 | A |
4408463 | Barclay | Oct 1983 | A |
4507927 | Barclay | Apr 1985 | A |
4507928 | Johnson | Apr 1985 | A |
4549155 | Halbach | Oct 1985 | A |
4554790 | Nakagome et al. | Nov 1985 | A |
4557228 | Samodovitz | Dec 1985 | A |
4599866 | Nakagome et al. | Jul 1986 | A |
4625519 | Hakuraku et al. | Dec 1986 | A |
4642994 | Barclay et al. | Feb 1987 | A |
4735062 | Woolley et al. | Apr 1988 | A |
4741175 | Schulze | May 1988 | A |
4785636 | Hakuraku et al. | Nov 1988 | A |
4796430 | Malaker et al. | Jan 1989 | A |
5062471 | Jaeger | Nov 1991 | A |
5091361 | Hed | Feb 1992 | A |
5156003 | Yoshiro et al. | Oct 1992 | A |
5190447 | Schneider | Mar 1993 | A |
5249424 | DeGregoria et al. | Oct 1993 | A |
5336421 | Kurita et al. | Aug 1994 | A |
5351791 | Rosenzweig | Oct 1994 | A |
5465781 | DeGregoria | Nov 1995 | A |
5599177 | Hetherington | Feb 1997 | A |
5661895 | Irgens | Sep 1997 | A |
5718570 | Beckett et al. | Feb 1998 | A |
5934078 | Lawton, Jr. et al. | Aug 1999 | A |
6332323 | Reid et al. | Dec 2001 | B1 |
6423255 | Hoechsmann et al. | Jul 2002 | B1 |
6446441 | Dean | Sep 2002 | B1 |
6467274 | Barclay et al. | Oct 2002 | B2 |
6517744 | Hara et al. | Feb 2003 | B1 |
6526759 | Zimm et al. | Mar 2003 | B2 |
6588215 | Ghoshal | Jul 2003 | B1 |
6612816 | Vanden Brande et al. | Sep 2003 | B1 |
6668560 | Zimm et al. | Dec 2003 | B2 |
6826915 | Wada et al. | Dec 2004 | B2 |
6840302 | Tanaka et al. | Jan 2005 | B1 |
6915647 | Tsuchikawa et al. | Jul 2005 | B2 |
6935121 | Fang et al. | Aug 2005 | B2 |
6946941 | Chell | Sep 2005 | B2 |
6971245 | Kuroyanagi | Dec 2005 | B2 |
7148777 | Chell et al. | Dec 2006 | B2 |
7297270 | Bernard et al. | Nov 2007 | B2 |
7313926 | Gurin | Jan 2008 | B2 |
7481064 | Kitanovski et al. | Jan 2009 | B2 |
7552592 | Iwasaki et al. | Jun 2009 | B2 |
7644588 | Shin et al. | Jan 2010 | B2 |
7863789 | Zepp et al. | Jan 2011 | B2 |
7897898 | Muller et al. | Mar 2011 | B2 |
7938632 | Smith | May 2011 | B2 |
8061147 | Dinesen et al. | Nov 2011 | B2 |
8069662 | Albert | Dec 2011 | B1 |
8099964 | Saito et al. | Jan 2012 | B2 |
8174245 | Carver | May 2012 | B2 |
8191375 | Sari et al. | Jun 2012 | B2 |
8209988 | Zhang et al. | Jul 2012 | B2 |
8216396 | Dooley et al. | Jul 2012 | B2 |
8310325 | Zhang et al. | Nov 2012 | B2 |
8375727 | Sohn | Feb 2013 | B2 |
8378769 | Heitzler et al. | Feb 2013 | B2 |
8448453 | Bahl et al. | May 2013 | B2 |
8551210 | Reppel et al. | Oct 2013 | B2 |
8596084 | Herrera et al. | Dec 2013 | B2 |
8616009 | Dinesen et al. | Dec 2013 | B2 |
8656725 | Muller et al. | Feb 2014 | B2 |
8695354 | Heitzler et al. | Apr 2014 | B2 |
8729718 | Kuo et al. | May 2014 | B2 |
8763407 | Carroll et al. | Jul 2014 | B2 |
8769966 | Heitzler et al. | Jul 2014 | B2 |
8869541 | Heitzler et al. | Oct 2014 | B2 |
8904806 | Cramet et al. | Dec 2014 | B2 |
8935927 | Kobayashi et al. | Jan 2015 | B2 |
8978391 | Muller et al. | Mar 2015 | B2 |
9175885 | Katter | Nov 2015 | B2 |
9245673 | Carroll et al. | Jan 2016 | B2 |
9377221 | Benedict | Jun 2016 | B2 |
9400126 | Takahashi et al. | Jul 2016 | B2 |
9523519 | Muller | Dec 2016 | B2 |
9534817 | Benedict et al. | Jan 2017 | B2 |
9548151 | Muller | Jan 2017 | B2 |
9599374 | Takahashi et al. | Mar 2017 | B2 |
9631843 | Benedict | Apr 2017 | B2 |
9702594 | Vetrovec | Jul 2017 | B2 |
9739510 | Hassen | Aug 2017 | B2 |
9746214 | Zimm et al. | Aug 2017 | B2 |
9797630 | Benedict et al. | Oct 2017 | B2 |
9810454 | Tasaki et al. | Nov 2017 | B2 |
9857105 | Schroeder et al. | Jan 2018 | B1 |
9857106 | Schroeder et al. | Jan 2018 | B1 |
9927155 | Boeder et al. | Mar 2018 | B2 |
9978487 | Katter et al. | May 2018 | B2 |
10006675 | Benedict et al. | Jun 2018 | B2 |
10018385 | Radermacher et al. | Jul 2018 | B2 |
10684044 | Schroeder | Jun 2020 | B2 |
20020040583 | Barclay et al. | Apr 2002 | A1 |
20020066368 | Zornes | Jun 2002 | A1 |
20020087120 | Rogers et al. | Jul 2002 | A1 |
20030010054 | Esch et al. | Jan 2003 | A1 |
20030051774 | Saito | Mar 2003 | A1 |
20040093877 | Wada | May 2004 | A1 |
20040182086 | Chiang et al. | Sep 2004 | A1 |
20040187510 | Jung | Sep 2004 | A1 |
20040187803 | Regev | Sep 2004 | A1 |
20040250550 | Bruck | Dec 2004 | A1 |
20050017394 | Hochsmann et al. | Jan 2005 | A1 |
20050046533 | Chell | Mar 2005 | A1 |
20050109490 | Harmon et al. | May 2005 | A1 |
20050217278 | Mongia et al. | Oct 2005 | A1 |
20050263357 | Kuwahara | Dec 2005 | A1 |
20050274676 | Kumar et al. | Dec 2005 | A1 |
20060130518 | Kang et al. | Jun 2006 | A1 |
20060231163 | Hirosawa et al. | Oct 2006 | A1 |
20060279391 | Xia | Dec 2006 | A1 |
20070130960 | Muller et al. | Jun 2007 | A1 |
20070220901 | Kobayashi | Sep 2007 | A1 |
20080223853 | Muller et al. | Sep 2008 | A1 |
20080236171 | Saito et al. | Oct 2008 | A1 |
20080236175 | Chaparro Monferrer et al. | Oct 2008 | A1 |
20080303375 | Carver | Dec 2008 | A1 |
20090032223 | Zimmerman et al. | Feb 2009 | A1 |
20090091411 | Zhang et al. | Apr 2009 | A1 |
20090158749 | Sandeman | Jun 2009 | A1 |
20090217674 | Kaji et al. | Sep 2009 | A1 |
20090236930 | Nashiki | Sep 2009 | A1 |
20090266083 | Shin et al. | Oct 2009 | A1 |
20090308080 | Han et al. | Dec 2009 | A1 |
20090314860 | Wang et al. | Dec 2009 | A1 |
20090320499 | Muller et al. | Dec 2009 | A1 |
20100000228 | Wiest et al. | Jan 2010 | A1 |
20100058775 | Kaji et al. | Mar 2010 | A1 |
20100071383 | Zhang et al. | Mar 2010 | A1 |
20100116471 | Reppel et al. | May 2010 | A1 |
20100122488 | Fukai | May 2010 | A1 |
20100150747 | Mehta et al. | Jun 2010 | A1 |
20100162747 | Hamel et al. | Jul 2010 | A1 |
20100209084 | Nelson et al. | Aug 2010 | A1 |
20100236258 | Heitzler et al. | Sep 2010 | A1 |
20100276627 | Mazet | Nov 2010 | A1 |
20100303917 | Watson et al. | Dec 2010 | A1 |
20110000206 | Aprad | Jan 2011 | A1 |
20110042608 | Reesink | Feb 2011 | A1 |
20110048031 | Barve | Mar 2011 | A1 |
20110048690 | Reppel et al. | Mar 2011 | A1 |
20110058795 | Kleman et al. | Mar 2011 | A1 |
20110061398 | Shih et al. | Mar 2011 | A1 |
20110062821 | Chang et al. | Mar 2011 | A1 |
20110082026 | Sakatani et al. | Apr 2011 | A1 |
20110094243 | Carroll et al. | Apr 2011 | A1 |
20110129363 | Sakai et al. | Jun 2011 | A1 |
20110154832 | Barve et al. | Jun 2011 | A1 |
20110162388 | Barve et al. | Jul 2011 | A1 |
20110168363 | Reppel et al. | Jul 2011 | A9 |
20110173993 | Muller et al. | Jul 2011 | A1 |
20110182086 | Mienko et al. | Jul 2011 | A1 |
20110192836 | Muller et al. | Aug 2011 | A1 |
20110218921 | Addala et al. | Sep 2011 | A1 |
20110239662 | Bahl et al. | Oct 2011 | A1 |
20110284196 | Zanadi | Nov 2011 | A1 |
20110302931 | Sohn | Dec 2011 | A1 |
20110308245 | Tice | Dec 2011 | A1 |
20110308258 | Smith et al. | Dec 2011 | A1 |
20110314836 | Heitzler et al. | Dec 2011 | A1 |
20120031108 | Kobayashi et al. | Feb 2012 | A1 |
20120033002 | Seeler et al. | Feb 2012 | A1 |
20120036868 | Heitzler et al. | Feb 2012 | A1 |
20120045698 | Shima | Feb 2012 | A1 |
20120060526 | May et al. | Mar 2012 | A1 |
20120079834 | Dinesen | Apr 2012 | A1 |
20120103301 | Vazquez | May 2012 | A1 |
20120222427 | Hassen | Sep 2012 | A1 |
20120222428 | Celik et al. | Sep 2012 | A1 |
20120266591 | Morimoto et al. | Oct 2012 | A1 |
20120266607 | Morimoto et al. | Oct 2012 | A1 |
20120267090 | Kruglick | Oct 2012 | A1 |
20120272665 | Watanabe et al. | Nov 2012 | A1 |
20120272666 | Watanabe | Nov 2012 | A1 |
20120285179 | Morimoto | Nov 2012 | A1 |
20120291453 | Watanabe et al. | Nov 2012 | A1 |
20130019610 | Zimm et al. | Jan 2013 | A1 |
20130020529 | Chang et al. | Jan 2013 | A1 |
20130104568 | Kuo et al. | May 2013 | A1 |
20130106116 | Kuo et al. | May 2013 | A1 |
20130145573 | Bizhanzadeh | Jun 2013 | A1 |
20130180263 | Choi et al. | Jul 2013 | A1 |
20130186107 | Shih et al. | Jul 2013 | A1 |
20130187077 | Katter | Jul 2013 | A1 |
20130192269 | Wang | Aug 2013 | A1 |
20130199460 | Duplessis et al. | Aug 2013 | A1 |
20130200293 | Zhao et al. | Aug 2013 | A1 |
20130227965 | Yagi et al. | Sep 2013 | A1 |
20130232993 | Saito et al. | Sep 2013 | A1 |
20130255279 | Tomimatsu et al. | Oct 2013 | A1 |
20130269367 | Meillan | Oct 2013 | A1 |
20130298571 | Morimoto et al. | Nov 2013 | A1 |
20130300243 | Gieras et al. | Nov 2013 | A1 |
20130319012 | Kuo et al. | Dec 2013 | A1 |
20130327062 | Watanabe et al. | Dec 2013 | A1 |
20140020881 | Reppel et al. | Jan 2014 | A1 |
20140075958 | Takahashi et al. | Mar 2014 | A1 |
20140116538 | Tanaka et al. | May 2014 | A1 |
20140157793 | Johnson et al. | Jun 2014 | A1 |
20140165594 | Benedict | Jun 2014 | A1 |
20140165595 | Zimm et al. | Jun 2014 | A1 |
20140190182 | Benedict | Jul 2014 | A1 |
20140216057 | Oezcan | Aug 2014 | A1 |
20140260373 | Gerber et al. | Sep 2014 | A1 |
20140290273 | Benedict et al. | Oct 2014 | A1 |
20140290275 | Muller | Oct 2014 | A1 |
20140291570 | Klausner et al. | Oct 2014 | A1 |
20140305137 | Benedict | Oct 2014 | A1 |
20140305139 | Takahashi et al. | Oct 2014 | A1 |
20140311165 | Watanabe et al. | Oct 2014 | A1 |
20140325996 | Muller | Nov 2014 | A1 |
20140366557 | Mun et al. | Dec 2014 | A1 |
20150007582 | Kim et al. | Jan 2015 | A1 |
20150027133 | Benedict | Jan 2015 | A1 |
20150030483 | Ryu | Jan 2015 | A1 |
20150033762 | Cheng et al. | Feb 2015 | A1 |
20150033763 | Saito et al. | Feb 2015 | A1 |
20150047371 | Hu et al. | Feb 2015 | A1 |
20150068219 | Komorowski et al. | Mar 2015 | A1 |
20150089960 | Takahashi et al. | Apr 2015 | A1 |
20150096307 | Watanabe et al. | Apr 2015 | A1 |
20150114007 | Neilson et al. | Apr 2015 | A1 |
20150168030 | Leonard et al. | Jun 2015 | A1 |
20150184903 | Mun et al. | Jul 2015 | A1 |
20150211440 | Joffroy | Jul 2015 | A1 |
20150260433 | Choi et al. | Sep 2015 | A1 |
20150267943 | Kim et al. | Sep 2015 | A1 |
20150362224 | Benedict et al. | Dec 2015 | A1 |
20150362225 | Schwartz | Dec 2015 | A1 |
20150369524 | Ikegami et al. | Dec 2015 | A1 |
20160000999 | Focht et al. | Jan 2016 | A1 |
20160025385 | Auringer et al. | Jan 2016 | A1 |
20160032920 | Hatami Aghdam | Feb 2016 | A1 |
20160084544 | Radermacher et al. | Mar 2016 | A1 |
20160091227 | Leonard et al. | Mar 2016 | A1 |
20160146515 | Momen et al. | May 2016 | A1 |
20160216012 | Benedict et al. | Jul 2016 | A1 |
20160238287 | Benedict | Aug 2016 | A1 |
20160273811 | Smith et al. | Sep 2016 | A1 |
20160282021 | Zhao et al. | Sep 2016 | A1 |
20160298880 | Humburg | Oct 2016 | A1 |
20160355898 | Vieyra Villegas et al. | Dec 2016 | A1 |
20160356529 | Humburg | Dec 2016 | A1 |
20160367982 | Pennie | Dec 2016 | A1 |
20170059213 | Barclay et al. | Mar 2017 | A1 |
20170059215 | Watanabe et al. | Mar 2017 | A1 |
20170071234 | Garg | Mar 2017 | A1 |
20170130999 | Numazawa | May 2017 | A1 |
20170138648 | Cui et al. | May 2017 | A1 |
20170176083 | Sul et al. | Jun 2017 | A1 |
20170309380 | Benedict et al. | Oct 2017 | A1 |
20170328603 | Barclay et al. | Nov 2017 | A1 |
20170328649 | Brandmeier | Nov 2017 | A1 |
20170370624 | Zimm et al. | Dec 2017 | A1 |
20180005735 | Scharf et al. | Jan 2018 | A1 |
20180023852 | Schroeder et al. | Jan 2018 | A1 |
20180045437 | Vetrovec | Feb 2018 | A1 |
20180195775 | Schroeder et al. | Jul 2018 | A1 |
20180283740 | Holladay et al. | Oct 2018 | A1 |
20180340715 | Benedict et al. | Nov 2018 | A1 |
20190206578 | Wong | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2893874 | Jun 2014 | CA |
2919117 | Jan 2015 | CA |
1977131 | Jun 2007 | CN |
101280983 | Oct 2008 | CN |
101495818 | Jul 2009 | CN |
101842647 | Sep 2010 | CN |
101979937 | Feb 2011 | CN |
201772566 | Mar 2011 | CN |
102165615 | Aug 2011 | CN |
101788207 | Sep 2011 | CN |
102345942 | Feb 2012 | CN |
202432596 | Sep 2012 | CN |
103090583 | May 2013 | CN |
103712401 | Apr 2014 | CN |
102077303 | Apr 2015 | CN |
106481842 | Mar 2017 | CN |
106949673 | Jul 2017 | CN |
107003041 | Aug 2017 | CN |
804694 | Apr 1951 | DE |
1514388 | Jun 1969 | DE |
102013223959 | May 2015 | DE |
202015106851 | Mar 2016 | DE |
0187078 | Jul 1986 | EP |
2071255 | Jun 2009 | EP |
2108904 | Oct 2009 | EP |
2215955 | Aug 2010 | EP |
2322072 | May 2011 | EP |
2420760 | Feb 2012 | EP |
2813785 | Dec 2014 | EP |
3306082 | Apr 2018 | EP |
2935468 | Mar 2010 | FR |
59232922 | Dec 1984 | JP |
H08166182 | Jun 1996 | JP |
3205196 | Sep 2001 | JP |
2002315243 | Oct 2002 | JP |
2007147136 | Jun 2007 | JP |
2007291437 | Nov 2007 | JP |
2008051412 | Mar 2008 | JP |
2010112606 | May 2010 | JP |
2010525291 | Jul 2010 | JP |
6212955 | Dec 2014 | JP |
2014228216 | Dec 2014 | JP |
5907023 | Apr 2016 | JP |
6079498 | Feb 2017 | JP |
6191539 | Sep 2017 | JP |
2017207222 | Nov 2017 | JP |
101100301 | Dec 2011 | KR |
101238234 | Mar 2013 | KR |
WO0133145 | May 2001 | WO |
WO0212800 | Feb 2002 | WO |
WO03016794 | Feb 2003 | WO |
WO2004068512 | Aug 2004 | WO |
WO2007036729 | Apr 2007 | WO |
WO2007086638 | Aug 2007 | WO |
WO2009024412 | Feb 2009 | WO |
WO2009098391 | Aug 2009 | WO |
WO2010119591 | Oct 2010 | WO |
WO2011034594 | Mar 2011 | WO |
WO2011152179 | Dec 2011 | WO |
WO2014099199 | Jun 2014 | WO |
WO2014170447 | Oct 2014 | WO |
WO2014173787 | Oct 2014 | WO |
WO2015017230 | Feb 2015 | WO |
WO2016005774 | Jan 2016 | WO |
WO2016035267 | Mar 2016 | WO |
WO2017042266 | Mar 2017 | WO |
WO2017081048 | May 2017 | WO |
WO2017097989 | Jun 2017 | WO |
Entry |
---|
Mañosa and Planes, Mechanocaloric Effects in Shape Memory Alloys, 2016 (Year: 2016). |
International Search Report issued in connection with PCT Application No. PCT/US2014/042485 dated Oct. 23, 2014. |
International Search Report issued in connection with PCT Application No. PCT/US2014/017431 dated May 9, 2014. |
International Search Report issued in connection with PCT/US2013/070518, dated Jan. 22, 2014. |
Tetsuji Okamura, Performance of a room-temperature rotary magnet refrigerator, dated Nov. 28, 2005, Elsevier. |
Journal of Alloys and Compounds, copyright 2008 Elsevier B..V.. |
Evaluation of Ni—Mn—In—Si Alloys for Magnetic Refrigerant Application, Rahul Das, A. Perumal and A. Srinivasan, Dept of Physics, Indian Institute of Technology, Oct. 10, 2011. |
Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni—Mn—In ribbons, X.Z. Zhao, C.C. Hsieh, et al Science Direct, Scripta Materialia 63 (2010). |
PCT International Search Report and Written Opinion issued in connection with PCT Application No. PCT/US2013/070023 dated Feb. 27, 2014. |
Barbara Pulko, Epoxy-bonded La—Fe—Co—Si magnetocaloric plates, Journal of Magnetism and Magnetic Materials, 375 (2015) 65-73. |
International Search Report of PCT/US2014/047925 dated Nov. 10, 2014. |
Andrej Kitanovski, Present and future caloric refrigeration and heat-pump technologies, International Journal of Refrigeration, vol. 57, Sep. 2015, pp. 288-298. |
C Aprea, et al., An innovative rotary permanent magnet magnetic refrigerator based on AMR cycle, Thermal Energy Systems: Production, Storage, Utilization and the Environment, dated May 2015, Napoli, Italy, pp. 1-5. |
International Search Report, PCT Application No. PCT/CN2019/096188, dated Oct. 15, 2019, 5 pages. |
International Search Report, PCT Application No. PCT/CN2019/096187, dated Sep. 30, 2019, 4 pages. |
Stefano Dall'Olio, et al., Numerical Simulation of a Tapered Bed AMR, Technical University of Denmark, 2015, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20200217567 A1 | Jul 2020 | US |