None.
None.
None.
Field of the Disclosure
The present disclosure relates generally to imaging devices and finishers, and more particularly to those having media accumulator-ejector.
Description of the Related Art
Stapler finishing devices have long been using a rubber finger, belt drive media accumulator-ejector devices. As shown in
This prior art design does exhibit some drawbacks. There is a limited speed point in ejection of the media stack. This is due to the fact that rubber insert fingers 23-25 tend to bend or flex when driving a heavy or tall media stack MS from the accumulation plate 40. Failed to eject issues arise when one or more of the fingers 23-25 miss catching the trailing edge TE of the media stack MS or catch only a portion of the media stack MS which can occur when the media sheets are curling upward. Also, there is limited capability for single media sheet pass through feeding. The prior art design uses a media accumulation process for all media with all job types, for example, stapling, non-stapled, offset, non-offset, flushing/standard stacking, before media stack ejection will happen. This wastes time and reduces throughput speed performance. Lastly, there is a manufacturing and service challenge to properly time or align the fingers 23-25 during assembly or after belt replacement.
It would be advantageous to provide a media accumulator-ejector that overcomes the stated drawbacks. It would be further advantageous to have a media accumulator-ejector that can more reliably handle media that has curled. It would also be advantageous to have a media accumulator-ejector that does not interrupt continuous individual sheet media feeding.
Disclosed is a media accumulator-ejector for use with an imaging apparatus. The media accumulator-ejector includes an upper roll and a lower roll mounted to a frame. The upper roll has a first shaft having a first and a second end and a first plurality of wheels spaced apart along the first shaft and a left and a right linkage having one end rotatably coupled to first and second ends of the first shaft, respectively, with the other end rotatably connected to the frame. The lower roll has a second shaft having a first and second end and a second plurality of wheels spaced apart on the second shaft and a left and a right V-linkage, each linkage being rotatably coupled to first and second ends, respectively, of the second shaft and to the frame. The upper and lower rolls extend transversely across the accumulation plate adjacent to the downstream end of the accumulation plate. When in a respective home position, the upper roll is positioned above an upper surface of the accumulation plate and the lower roll positioned below the accumulation plate. The accumulation plate is mounted on the frame and has an upstream end positioned adjacent a media output of an imaging device to receive media therefrom and the downstream end has a plurality of slots therethrough corresponding to the second plurality of wheels on the second shaft.
A drive mechanism includes a DC drive motor having an output shaft with an output gear, a first and a second pulley gear operatively coupled to the output gear, a first and a second pulley mounted on the first and the second shafts, a first and a second belt respectively operatively coupled to the first and the second pulleys and to the first and the second pulley gears. Rotation of the drive motor in a first direction ejects media from the accumulation plate. The DC drive motor may be a DC servo motor with an encoder for providing speed control of the DC drive motor or be a DC stepper motor.
A lift mechanism includes a lift shaft transversely extending across the accumulation plate and has a left and a right coupling gear mounted on a respective left and right end of the lift shaft and a left and a right camming wheel respectively positioned on the lift shaft adjacent to the left and the right coupling gears and between a lower and an upper arm of the left and the right V-linkages of the lower shaft. The lift mechanism further includes a left and a right sector gear operably coupled to the respective left and right coupling gears and to the left and right linkage arms of the upper roll. Rotation of the left and right sector gears rotates the left and the right linkage arms. A reversible lift stepper motor is provided and has an output shaft with an output gear that operably is coupled to one of the left and right coupling gears. Rotation of the lift motor in a first direction pivots the upper and the lower rolls apart and rotation in a second direction pivots the upper and the lower rolls toward each other.
A flag extends from one of the left and the right ends of the first shaft. A home position sensor is positioned on the frame adjacent to the flag. The home position sensor has an output signal having a first state with the flag being present thereat and the upper roll and lower rolls being at their respective home positions and a second state when the upper and lower rolls are rotated away from their home positions.
A controller is in operable communication with the lift motor, the drive motor and the home position sensor. The controller drives the lift motor to move the upper and lower rolls in a first direction until the home position sensor output signal is in the first state, and, when a media stack has accumulated on the accumulation plate, the controller drives the lift motor in the second direction to move the upper and lower rolls to engage the media stack and then drives the drive motor to rotate the upper and lower rolls to eject the media stack from the accumulation plate. When continuously feeding a plurality of individual media sheets from the accumulation plate, the controller drives the lift motor in the second direction to move the upper and the lower rolls to form a feed nip for engaging each individual media sheet. Then prior to the first media sheet of the plurality of individual media sheets arriving at the feed nip, drives the drive motor to rotate the upper and the lower rolls to a speed matching a speed of the first media sheet of the plurality of individual media sheets fed from the imaging device to for continuously ejecting the plurality of individual media sheets from the accumulation plate.
The above-mentioned and other features and advantages of the disclosed embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of the disclosed embodiments in in conjunction with the accompanying drawings.
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the terms “having”, “containing”, “including”, “comprising”, and the like are open-ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise. The use of “including”, “comprising”, or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Terms such as “about” and the like are used to describe various characteristics of an object, and such terms have their ordinary and customary meaning to persons of ordinary skill in the pertinent art.
Terms such as “about” and the like have a contextual meaning and are used to describe various characteristics of an object, and such terms have their ordinary and customary meaning to persons of ordinary skill in the pertinent art. Terms such as “about” and the like, in a first context mean “approximately” to an extent as understood by persons of ordinary skill in the pertinent art; and, in a second context, are used to describe various characteristics of an object, and in such second context mean “within a small percentage of” as understood by persons of ordinary skill in the pertinent art.
Unless limited otherwise, the terms “connected”, “coupled”, and “mounted”, and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings. Spatially relative terms such as “left”, “right”, “top”, “bottom”, “front”, “back”, “rear”, “side”, “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc. and are also not intended to be limiting. Like terms refer to like elements throughout the description.
In addition, it should be understood that embodiments of the present disclosure include both hardware and electronic components or modules that, for purposes of discussion, may be illustrated and described as if the majority of the components were implemented solely in hardware. However, one of ordinary skill in the art, and based on a reading of this detailed description, would recognize that, in at least one embodiment, the electronic based aspects of the invention may be implemented in software. As such, it should be noted that a plurality of hardware and software-based devices, as well as a plurality of different structural components may be utilized to implement the invention. Furthermore, and as described in subsequent paragraphs, the specific mechanical configurations illustrated in the drawings are intended to exemplify embodiments of the present disclosure and that other alternative mechanical configurations are possible.
The term “image” as used herein encompasses any printed or electronic form of text, graphics, or a combination thereof. “Media” or “media sheet” refers to a material that receives a printed image or, with a document to be scanned, a material containing a printed image. The media is said to move along a media path, a media branch, and a media path extension from an upstream location to a downstream location as it moves from the media trays to the output area of the imaging system. For a top feed option tray, the top of the option tray is downstream from the bottom of the option tray. Conversely, for a bottom feed option tray, the top of the option tray is upstream from the bottom of the option tray. As used herein, the leading edge of the media is that edge which first enters the media path and the trailing edge of the media is that edge that last enters the media path. Depending on the orientation of the media in a media tray, the leading/trailing edges may be the short edge of the media or the long edge of the media, in that most media is rectangular. As used herein, the term “media width” refers to the dimension of the media that is transverse to the direction of the media path. The term “media length” refers to the dimension of the media that is aligned to the direction of the media path. “Media process direction” describes the movement of media within the imaging system, and is generally means from an input toward an output of the imaging system. Further, relative positional terms may be used herein. For example, “superior” means that an element is above another element. Conversely “inferior” means that an element is below or beneath another element
Media is conveyed using pairs of aligned rolls forming feed nips. The term “nip” is used in the conventional sense to refer to the opening formed between two rolls that are located at about the same point in the media path. The rolls forming the nip may be separated apart, be tangent to each other, or form an interference fit with one another. With these nip types, the axes of the rolls are parallel to one another and are typically, but do not have to be, transverse to the media path. For example, a deskewing nip may be at an acute angle with respect to the media feed path. The term “separated nip” refers to a nip formed between two rolls that are located at different points along the media path and have no common point of tangency with the media path. Again, the axes of rotation of the rolls having a separated nip are parallel but are offset from one another along the media path. Nip gap refers to the space between two rolls. Nip gaps may be positive, where there is an opening between the two rolls, zero, where the two rolls are tangentially touching, or negative, where there is an interference fit between the two rolls.
As used herein, the term “communication link” is used to generally refer to a structure that facilitates electronic communication among components. While several communication links are shown, it is understood that a single communication link may serve the same functions as the multiple communication links that are illustrated. Accordingly, a communication link may be a direct electrical wired connection, a direct wireless connection (e.g., infrared or r.f.), or a network connection (wired or wireless), such as for example, an Ethernet local area network (LAN) or a wireless networking standard, such as IEEE 802.11. Devices interconnected by a communication link may use a standard communication protocol, such as for example, universal serial bus (USB), Ethernet or IEEE 802.xx, or other communication protocols. The terms “input” and “output” when applied to a sensor, circuit or other electronic device means an electrical signal that is produced by or is acted upon by such sensor, circuit or electronic device. Such electrical signals may be analog or digital signals.
Referring now to the drawings and particularly to
Finisher 108 may include a stapler 112, a hole punch 113, one or more media sensors 114, various media reference and alignment surfaces and an output area 115 for holding finished media. Tamper 700 may also be located in finisher 108. While stapler 112 is shown in finisher 108 it may also be positioned adjacent to media accumulator-ejector 200 to staple media stacks formed therein.
Controller 103 includes a processor unit 110 and associated memory 111, and may be formed as one or more Application Specific Integrated Circuits (ASICs). Memory 111 may be any volatile or non-volatile memory or combination thereof such as, for example, random access memory (RAM), read only memory (ROM), flash memory and/or non-volatile RAM (NVRAM). Alternatively, memory 111 may be in the form of a separate electronic memory (e.g., RAM, ROM, and/or NVRAM), a hard drive, a CD or DVD drive, or any memory device convenient for use with controller 103. Provided in memory 111 is one or more look-up tables 111-1 and/or firmware modules 111-2 used for control of imaging device 102 and its attachments such as finisher 108 or media accumulator-ejector 200.
In
Computer 150 includes in its memory 151 a software program including program instructions that function as an imaging driver 152, e.g., printer/scanner driver software, for imaging device 102. Imaging driver 152 facilitates communication between imaging device 102 and computer 150. One aspect of imaging driver 152 may be, for example, to provide formatted print data to imaging device 102, and more particularly to print engine 104, to print an image. Another aspect of imaging driver 152 may be, for example, to facilitate collection of scanned data from scanner system 160. In some circumstances, it may be desirable to operate imaging device 102 in a standalone mode. In the standalone mode, imaging device 102 is capable of functioning without computer 150. Accordingly, all or a portion of imaging driver 152, or a similar driver, may be located in one or more firmware modules 111-2 within controller 103 of imaging device 102 so as to accommodate printing and/or scanning functionality when operating in the standalone mode.
Print engine 104, scanner system 160, user interface 107, finisher 108 and media accumulator-ejector 200 may be controlled by firmware modules, generally designated 111-2, maintained in memory 111 which may be performed by controller 103 or another processing element. Controller 103 may be, for example, a combined printer, scanner, media accumulator-ejector and finisher controller. Controller 103 serves to process print data and to operate print engine 104 and toner cartridge 191 during printing, to operate scanner system 160 and process data obtained via scanner system 160 for printing or transfer the data to computer 150, and to control operation of media accumulator-ejector 200 and finisher 108. Controller 103 may provide to computer 150 and/or to user interface 107 status indications and messages regarding the media, including scanned media and media to be printed, imaging device 102 itself or any of its subsystems, consumables status, etc. Computer 150 may provide operating commands to imaging device 102. Computer 150 may be located nearby imaging device 102 or be remotely connected to imaging device 102 via an internal or external computer network. Imaging device 102 may also be communicatively coupled to other imaging devices.
Scanner system 160 may employ scanning technology as is known in the art including for example, CCD scanners, optical reduction scanners or combinations of these and other scanner types. Scanner system 160 is illustrated as having an automatic document feeder (ADF) 161 having a media input tray 162 and a media output area 163. Two scan bars 166 may be provided—one in ADF 161 and the other in the base 165—to allow for scanning both surfaces of the media sheet as it is fed from input tray 162 along scan path SP to output area 163. Imaging device 102 may also be configured to be a printer without scanning.
Print engine 104 is illustrated as including a laser scan unit (LSU) 190, a toner cartridge 191, an imaging unit 192, and a fuser 193, all mounted within imaging device 102. Imaging unit 192 and toner cartridge 191 are supported in their operating positions so that toner cartridge 191 is operatively mated to imaging unit 192 while minimizing any unbalanced loading forces applied by the toner cartridge 191 on imaging unit 192. Imaging unit 192 is removably mounted within imaging device 102 and includes a developer unit 194 that houses a toner sump and a toner delivery system. The toner delivery system includes a toner adder roll that provides toner from the toner sump to a developer roll. A doctor blade provides a metered uniform layer of toner on the surface of the developer roll. Imaging unit 192 also includes a cleaner unit 195 that houses a photoconductive drum and a waste toner removal system. An exit port on toner cartridge 191 communicates with an entrance port on developer unit 194 allowing toner to be periodically transferred from toner cartridge 191 to resupply the toner sump in developer unit 194. Both imaging unit 192 and toner cartridge 191 may be replaceable items for imaging device 102. Imaging unit 192 and toner cartridge 191 may each have a memory device 196 mounted thereon for providing component authentication and information such as type of unit, capacity, toner type, toner loading, pages printed, etc. Memory device 196 is illustrated as being in operative communication with controller 103 via communication link 144. While print engine 104 is illustrated as being an electrophotographic printer, those skilled in the art will recognize that print engine 104 may be, for example, an ink jet printer and one or more ink cartridges or ink tanks or a thermal transfer printer; other printer mechanisms and associated image-forming material.
The electrophotographic imaging process is well known in the art and, therefore, will be only briefly described. During an imaging operation, laser scan unit 190 creates a latent image by discharging portions of the charged surface of photoconductive drum in cleaner unit 195. Toner is transferred from the toner sump in developer unit 194 to the latent image on the photoconductive drum by the developer roll to create a toned image. The toned image is then transferred either directly to a media sheet received in imaging unit 192 from one of media input trays 121 or to an intermediate transfer member and then to a media sheet. Next, the toned image is fused to the media sheet in fuser 193 and sent to an output location 133, finisher 108, a duplexer 130, or media accumulator-ejector 200. One or more gates 134, illustrated as being in operative communication with controller 103 via communication link 144, are used to direct the media sheet to output location 133, finisher 108, duplexer 130, or media accumulator-ejector 200. Toner remnants are removed from the photoconductive drum by the waste toner removal system housed within cleaner unit 195. As toner is depleted from developer unit 194, toner is transferred from toner cartridge 191 into developer unit 194. Controller 103 coordinates these activities including media movement occurring during the imaging process or during finishing.
Controller 103 also communicates with a controller 118 in option assembly 109, via communication link 144. A controller 118 is provided within each option assembly 109 that is attached to imaging device 102. Controller 118 operates various motors housed within option assembly 109 for feeding media from media path branches PB into media path P or media path extensions PX, as well as, feeding media along media path extensions PX. Controllers 103, 118 control the feeding of media along media path P and control the travel of media along media path P and media path extensions PX.
Imaging device 102 and option assembly 109 each also include a media feed system 120 having a removable media input tray 121 for holding media M to be printed or scanned, a pick mechanism 122, and a drive mechanism 123 positioned adjacent removable media input trays 121. Each media tray 121 also has a media dam assembly 124 and a feed roll assembly 125. In imaging device 102, pick mechanism 122 is mechanically coupled to drive mechanism 123 that is controlled by controller 103 via communication link 144. In option assembly 109, pick mechanism 122 is mechanically coupled to drive mechanism 123 that is controlled by controller 103 via controller 118 and communication link 144. In both imaging device 102 and option assembly 109, pick mechanisms 122 are illustrated in a position to drive a topmost media sheet from the media stack M into media dam assembly 124 which directs the picked sheet into media path P or extension PX. Bottom feed media trays may also be used. As is known, media dam assembly 124 may or may not contain one or more separator rolls and/or separator strips used to prevent shingled feeding of media from media stack M. Feed roll assemblies 125, comprised of two opposed rolls—a driven roll under control of controllers 103 and/or 118 and an idler roll, feed media from an inferior unit to a superior unit via a slot provided therein.
In imaging device 102, a media path P (shown in dashed line) is provided from removable media input tray 121 extending through print engine 104 to output area 133, or, when needed, to media accumulator-ejector 200 to finisher 108 or to duplexer 130. Media path P may also have extensions PX (shown in dashed line) and/or branches PB (shown in dotted line) from or to other removable media input trays as described herein such as those shown in option assembly 109. Media path P may include a multipurpose input tray 126 provided on the housing of imaging device 102 or may be incorporated into removable media tray 121 provided in imaging device 102 and a corresponding path branch PB that merges with the media path P within imaging device 102. Along media path P and its extensions PX are provided media position sensors 180-182 which are used to detect the position of the media, usually the leading and trailing edges of the media, as it moves along the media path P or path extension PX. Media position sensor 180 is located adjacent print engine 104, while media position sensors 181, 182 are positioned downstream from their respective media tray 121 along media path P or path extension PX. Media position sensor 180 also accommodates media fed along path branch PB from multipurpose media tray 126. Media position sensor 182 is illustrated at a position on path extension PX downstream of media tray 121 in option assembly 109. Additional media position sensors may be located throughout media path P and duplex path 131, when provided, and their positioning is a matter of design choice. Media position sensors 180-182 may be an optical interrupter or a limit switch or other type of edge detector as is known to a person of skill in the art and detect the leading and trailing edges of each sheet of media as it travels along the media path P, path branch PB, or path extension PX.
Media size sensors 183 are provided in image forming device 102 and each option assembly 109 to sense the size of media being fed from the removable media input trays 121. To determine media sizes such as Letter, A4, A6, Legal, etc., media size sensors 183 detect the location of adjustable trailing edge media supports and one or both adjustable media side edge media supports provided within removable media input trays 121 as is known in the art. Sensors 180-183 are in communication with controller 103 via communication link 145.
Media accumulator-ejector 200 is positioned on the media path P between the exit feed roll pair 135 and finisher 108. Exit feed roll pair 135 is driven by motor 136 that is in operative communication with controller 103 via communication link 144. Media accumulator-ejector 200 may be part of imaging device 102 or part of finisher 108 and is shown as a separate assembly for purposes of description. Media accumulator-ejector 200 includes a frame 202 having an accumulation zone 208 for collecting media. The accumulation zone 208 is formed in part by an accumulation plate 210 mounted on frame 202, an output bin 220, and a tamper 700. Tamper 700 includes motors 701, 702 that drive left and right tamping arms, respectively, used for aligning the side edges of a media stack that forms on accumulation plate 210. Mounted above and below a downstream end 212 of accumulation plate 210 are an upper roll assembly 300 and a lower roll assembly 400. Also found in frame 202 are a drive motor 240 and a lift motor 250, that are used respectively to rotate and to open and close the upper and lower roll assemblies 300, 400. A paddle motor 270, as described later, may also be provided. As shown in
Referring to
Upper and lower roll assemblies 300, 400 are transverse to the media path P and are pivotally mounted to frame 202 to allow them to be rotated through an arc and engage with media that has accumulated on accumulation plate 210. As seen in
In
Whether corrugation or pinch roll assemblies are employed, the media drive position for the upper and lower rolls 301, 401 is when the upper and lower roll assemblies 300, 400, or 300′, 400′ move to their respective closed positions. The lower roll assemblies 400, 400′ move to a respective fixed upward position and the upper roll assemblies 300, 300′ shaft move to a fixed downward position. The fixed positions of both assemblies are chosen to fully engage a single media sheet with a drive force. In the case of pinch rolls, the media sheet experiences opposing normal forces from each opposed wheel pair in contact with it. As the wheel pairs rotate, the sheet moves by means of the frictional force imparted to it by each wheel pair in direct contact with it. When the upper and lower roll assemblies 300, 400 are closed together, the corrugation wave generated in the media stack or media sheet by the staggered position of the plurality of wheels 305, 405 is counteracted by the beam strength within the media stack or media sheet which resists corrugation. The beam strength within the media stack or media sheet resists bending. The rounded profile of the plurality of wheels 305, 405 is chosen to obtain more contact between the media stack or media sheet with each wheel. Each media sheet corrugates in curved segments between the wheels that conform to the profile shape of the wheels. More contact by the media stack or each media sheet with each wheel ensures that the media stack or media sheet receives a high amount of friction from each wheel and counteracts any tendency for slippage. The net effect is the media stack itself or each media sheet applies a normal force against each wheel, and as the wheels rotate, the media stack or the media sheet is driven by means of the friction force imparted to it by each wheel that is in direct contact with it.
When in pass-through or continuous-feed mode, the upper and lower roll assemblies 300, 400, or 300′, 400′ are stationed in their respective closed positions and the top and bottom surfaces of each media sheet are in direct contact with the plurality of wheels 305, 405 or 305′, 405′ as the media sheet is driven through. When in accumulate mode to create a media stack, the upper and lower roll assemblies 300, 400, or 300′, 400′ are placed in their respective open positions and do not make contact with the media stack until all of the media sheets that comprise the job have been accumulated. After the last media sheet of an accumulated stack has arrived, the upper and lower roll assemblies 300, 400, or 300′, 400′ are rotated to their respective closed positions. Whether corrugation or pinch roll assemblies are employed, the spring-loaded shaft 302 (see
Tamper 700 aligns the accumulated media. As shown in
When tamper 700 is provided, the media stack MS rests between the left and right arms 704, 705. Prior to being clamped by upper and lower rolls 301, 401, motors 701, 702 oscillate the left and right arms 704, 705 along upstream and downstream rails 708, 709 (see
When the media stack MS and side edge alignment is complete, stapling of media stack MS may occur. Thereafter, using lift motor 250, upper roll 301 is rotated downwardly to engage the top of the media stack MS while lower roll 401 is rotated upwardly with the plurality of wheels 405 raising through the plurality of slots 214 to engage with the bottom of the media stack MS, clamping the media stack MS between the two rolls. The upper roll 301 may be spring-loaded, as later described, to accommodate different heights of media stacks and different types of media. Lift motor 250 may be used to control the amount of clamping force provided by the upper and lower rolls 301, 401 and applied to the media stack MS. The clamping force may be adjusted depending on the type and thickness of the media sheets contained in the media stack MS.
With the upper and lower rolls 301, 401 engaging the media stack MS, drive motor 240 is energized rotating the upper and lower rolls 301, 401 ejecting the media stack MS from accumulation plate 210, as a single unified body, as illustrated in
When stapling is not used with media stack MS, the upper and lower rolls 301, 401 are driven at the same speed allowing the media sheets in media stack MS to remain together as a single unified body when being ejected. The driving force for ejecting the media stack may tends to separate the media stack MS when accelerating the stopped media stack MS to an ejection speed due to the contact of the upper and lower rolls 301, 401 with only the top and bottom media sheets in media stack MS. However, the corrugation forces provided by upper and lower corrugation rolls 301, 401 keep the media stack MS together and counter a driving force that is used to eject the media stack MS.
During pass-through media feeding, the upper and lower rolls 301, 401 are driven by the lift motor 250 from their home positions to respective pass-through positions to receive and drive individual media sheets at process speed as shown in
Referring now to
Each coupling gear 602L, 602R is coupled to a respective sector gear 603L, 603R that are each rotatably mounted to the posts 204-1L, 204-1R to which one end of the left and right linkages 306, 307 are also attached. This allows the sector gears 603L, 603R and their adjacent linkage to have the same axis of rotation about posts 204-1L, 204-1R. Hooks 308, 309 are provided on left and right linkages 306, 307. Slots 615L, 615R and holes 616L, 616R are provided adjacent to the bottom of slots 615L, 615R in left and right sector gears 603L, 603R. A biasing member 620, such as coil spring 620, is attached at one end to hook 308 and at the other end to hole 616L and is positioned in slot 615L. A second biasing member 621, such as coil spring 621, is attached at one end to hook 309 and at the other end to hole 616R and is positioned in slot 615R. Springs 620, 621 apply a biasing force to shaft 302 of upper roll 301 while allowing sector gears 603L, 603R to be flexibly coupled to respective left and right linkages 306, 307. Springs 620, 621 allow the upper roll 301 to adjust to the height of the media stack that is present on the accumulation plate 210 as the upper and lower rolls 301, 401 close together. The higher the media stack, the more the upper roll 301 can raise due to the action of springs 620, 621 even as lift motor 250 drives the upper and lower rolls 301, 401 together to corrugate the media stack.
Alternately sector gears 615L, 615R may also be connected directly to left and right ends 302L, 302R of shaft 302. A flat 625 (see
Lift motor 250 is shown positioned on frame 202 adjacent to the left ends 302L, 402L of shafts 302, 402. Lift motor 250 is communicatively coupled to controller 103 via motor signal line 253 that are part of communication link 144. Lift motor 250 may be a reversible stepper motor. As shown, lift motor 250 is coupled to lift shaft 610 via a series of gears. An output gear 252 is mounted on the output shaft 251 of lift motor 250 and is coupled to gear 611-1 of an intermediate compound gear 611. Gear 611-2 of compound gear 611 is coupled to intermediate gear 612 that is mounted on lift shaft 610. As shown, intermediate gear 612 is mounted on the left end 610L of lift shaft 610. As is known, controller 103 sends a pulsed drive signal via motor signal line 253 to stepper lift motor 250 to control its rotation which controls the positioning of upper and lower rolls 301, 401. Lift motor 250′, output shaft 251′ and output gear 252′ (see
Operation of lift mechanism 600 is illustrated in
In
Although compound gears and pulley gears have been shown, those of skill in the art understand that two individual gears may be substituted for the corresponding compound gear or that a gear and pulley may be substituted for the corresponding pulley gear. The foregoing description of embodiments has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the present disclosure to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
7520505 | Thomas | Apr 2009 | B2 |
7789387 | Trudeau | Sep 2010 | B2 |
7976004 | Kimura | Jul 2011 | B2 |
20060202402 | Nagata | Sep 2006 | A1 |
20070018385 | Park | Jan 2007 | A1 |
20100150636 | Kubota | Jun 2010 | A1 |