Various exemplary embodiments of the systems and methods are described in detail below, with reference to the attached drawing figures, in which:
Modular printer/copier systems can selectively include different modules, such as paper supplies, image output terminals (IOT), and finisher modules. However, some of the modules, such as the image output terminal, can suffer from degraded performance under specific conditions. For example, some image output terminals have a limited latitude for transferring images onto lightweight media. Lightweight media can be of any relative light weight, such as in the 40-45 lbs (60-67 gsm) range, however, the embodiments herein are not limited to any specific weight or the media. Lightweight stock is gauged for its application by the media's ppi (pages per inch) requirement, which relates to the media's paper thickness and how many sheets can be bound in a 1 inch thickness. As a resultant of paper thickness and moisture content of the media, the beam strength of the media is compromised, and this can cause paper corrugation, and induce errors within the transfer zone. Testing has demonstrated that a reduction in paper moisture content improves paper beam strength, which in turn reduces paper corrugation and increases resitivity, which improves transfer stability.
When heating media, such as paper or other porous materials, moisture evaporates and steam vapor is produced. A major contributor to media handling problems is caused by such moisture being introduced onto the paper transport baffles. Due to the packaging constraints of the feeder module, the heating process will occur in a horizontal orientation, thus creating a source of trapped moisture between the media and the baffles.
One counter measure (solution) to this phenomenon employed by embodiments herein is the usage of a cooling zone (cooler 12,
With the structure shown in
More specifically,
In one embodiment, the media conditioning module 52 comprises a heater 10 and a cooler 12, each having upper and lower manifolds. The heater 10 has manifolds positioned to supply heated air to both sides of the sheets of media 20 as the sheets of media 20 pass through the media conditioning module 52. The cooler 12 can comprise the same form of manifolds used for the heater or can comprise fans positioned directly adjacent the media path to supply non-heated cooling air to both sides of the sheets of media 20 as the sheets of media 20 pass through the media conditioning module 52. Whether the fans of the cooler 12 are connected to manifolds or not, the fans can operate to blow cooling air toward the media or the fans can be reversed to draw air and moisture away from the media and the region of the media. The heater 10 is positioned with respect to the cooler 12 such that the sheets of media 20 pass by the heater 10 before the sheets of media 20 pass by the cooler 12.
The heated air has a higher temperature than the non-heated air. For example, the non-heated air can be at ambient, room temperature, or the temperature of air within the printer/copier which can range from 5° C. to 40° C., or higher. To the contrary, the heated air is substantially warmer than the non-heated air (e.g., heated by at least 10° C.) and can range from 40° C. to the ignition temperature of the printing media. For example, if standard paper is used, the heated air could comprise a temperature between 50° C. and the ignition temperature of paper (350° C.), and more particularly, between 100° C. and 150° C. The embodiments herein are not limited to any specific temperature ranges, as the foregoing are merely examples used to illustrate the embodiments herein. In addition, the media conditioning module 52 includes a media path comprising nip rollers 14 and guides or baffles 16. However, the baffles 16 do not block the heated air and instead include at least one opening 30 (
The heater 10 comprises heating ducts connected to any conventional forced air thermal heating device 24 that produces the hot air flow 22. The heating device 24 can comprise any conventional device, such as a fan that provides air flow across a resistive heater element, these air heaters are commonly available, as are blowers, sensors and controls that can be packaged within the heating device 24. The unit 24 can be, for example, positioned behind the heater and a hose or hoses can be routed to the upper and lower manifolds of the heater 10.
In a more specific embodiment, the heater 10 comprises stationary manifolds positioned to supply heated air to both sides of the sheets of media 20 as the sheets of media 20 pass through the media conditioning module 52. Further, the cooler 12 also comprises stationary manifolds positioned to supply non-heated air to both sides of the sheets of media 20 as the sheets of media 20 pass through the media conditioning module 52.
In a further embodiment, the cooler 12 can include the same type of manifolds as those used in the heater. Such manifolds can similarly be positioned to blow/remove air to/from both sides of the sheets of media 20. Alternatively, differently shaped ducting 28 can be connected to the cooler 12. The ducting (manifolds) is not limited to the specific examples shown in the drawings and, instead, the ducting can take on any shape necessary to accommodate spacing and size constraints of the device in question. Similarly, the fans 12 can be placed at either end of the ducting, again depending upon design requirements. The cooler 12 blows air and moisture from the sheets of media 20 into the ducting and the ducting is shaped and positioned to direct the air and moisture away from the sheets of media 20 to a location outside the device or at least far enough away from the media region and baffles to prevent the return of moisture to the media region.
The actual temperatures used in the heater 10 will vary from application to application and can even be varied depending upon the type of media being processed. The heat process configuration used to deliver moisture reduction in paper disclosed herein is non-contact convection and, therefore, does not cause the paper deformation that can be caused by heated rollers and other contact based heaters. Paper can be transported through the feeder module bypass transport at a different speed than that used within the IOT module to allow for sufficient heating and cooling. The space used to achieve optimum dwell or heat transfer will be constrained. As velocity and distance are known, time for transfer can be calculated. As a resultant of limited dwell zone for effective heat transfer and individual heat absorption rate of the paper, variables of air flow and temperature delivered onto the paper will change dependent upon the heat absorption rate of the media.
Therefore, a controller 26 can control the temperature of the hot air flow 22 to change with each different characteristic (weight, size, moisture content, transport speed, etc.) of the media passing through the conditioner module 52. Because different types of media will possess varying heat absorption rates, unique set points for temperature and air flow settings to achieve desired moisture reduction can be used. Such setting can be determined through environmental testing to validate the image quality associated with moisture content reduction of the paper, for each different media characteristic the apparatus is likely to encounter. Thus, the embodiments herein can, but do not need to, rely upon a previously created control scheme and interface in which a user can potentially input media set points.
The methodology of embodiments herein is shown in flowchart form in
Further, the present embodiments can comprise a completely new module or a retrofit to a previous module. More specifically, the structure shown in
As shown more specifically in
In
A controller within the IOT 54 orchestrates the production of printed or rendered pages, their transportation over the various path elements, and their collation and assembly as job output by the finisher 58. The produced, printed or rendered pages may include images transferred to the document processing system via a telephone communications network, a computer network, computer media, and/or images entered through an image input device. For example, rendered or printed pages or sheets may include images received via facsimile, transferred to the document processing system from a word processing, spreadsheet, presentation, photo editing or other image generating software, transferred to a document processor over a computer network or on a computer media, such as, a CD ROM, memory card or floppy disc, or may include images generated by the image input device of scanned or photographed pages or objects. Additionally, on an occasional, periodic, or as needed or requested basis, the controller (not shown) may orchestrate the generation, printing or rendering of test, diagnostic or calibration sheets or pages. As will be explained in greater detail below, such test, diagnostic or calibration sheets may be transferred, manually or automatically, to the image input device, which can be used to generate computer readable representations of the rendered test images. The computer readable representations may then be analyzed by the controller, or some auxiliary device, to determine image consistency information, and, if necessary, adjust some aspect of the image rendering system in a manner predetermined or known to make an improvement in, or achieve, image consistency. For example, electrophotographic, xerographic, or other rendering technology actuators may be adjusted. Alternatively, image path data may be manipulated to compensate or correct for some aspect of the rendering or marking process based on the analysis of the computer readable representations of the test images.
The word “printer” or “image output terminal” as used herein encompasses any apparatus, such as a digital copier, bookmaking machine, facsimile machine, multi-function machine, etc. which performs a print outputting function for any purpose. The details of printers, printing engines, etc. are well-known by those ordinarily skilled in the art and are discussed in, for example, U.S. Pat. No. 6,032,004, the complete disclosure of which is fully incorporated herein by reference. The embodiments herein can encompass embodiments that print in color, monochrome, or handle color or monochrome image data. All foregoing embodiments are specifically applicable to electrostatographic and/or xerographic machines and/or processes.
It will be appreciated that the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. The claims can encompass embodiments in hardware, software, and/or a combination thereof. Unless specifically defined in a specific claim itself, steps or components of the invention should not be implied or imported from any above example as limitations to any particular order, number, position, size, shape, angle, color, or material.
The present application is related to pending U.S. patent application Ser. No. 11/327,633, filed on Jan. 6, 2006 to Michael N. Soures et al., entitled “Automatically Variably Heated Airflow For Separation Of Humid Coated Paper Print Media”. The foregoing application is assigned to the present assignee, and is incorporated herein by reference in its entirety.