1. Field of the Invention
The present invention relates to media devices and, more particularly, to playing of media on media devices.
2. Description of the Related Art
Media players are becoming more popular these days. Of particular popularity are portable media players such as MP3 players or DVD players. Media players operate to play media items for their user that are stored within the media players. The media items are most commonly audio items (e.g., songs) but could also be video items (e.g., DVDs). Typically, an MP3 player will store various audio items internally on a storage disk. When the user makes a selection to play one of the stored audio items, the audio item must first be loaded into semiconductor memory (i.e., Random-Access Memory) before the audio item begins to be played. The delay in reading the rather large file for the audio item is unsatisfactory to users who are anxious to hear the audio item they have already selected to be played. Recently, advancements in MP3 players have enabled some MP3 players to begin playing an audio item before being completely loaded into semiconductor memory. See, for example, U.S. Pat. No. 6,799,226.
Whenever a media item to be played is not stored within the semiconductor memory, the storage disk must be accessed. Unfortunately, storage disks are rather costly in terms of power consumption for small, battery-powered MP3 players. Accordingly, there is a need for improved techniques to reduce the need to access the storage disks of media players.
Broadly speaking, the invention relates to a portable media device and a method for operating a portable media device. According to one aspect, a battery-powered portable media device can manage use of a mass storage device to efficiently utilize battery power. By providing a cache memory and loading the cache memory so as to provide skip support, battery power for the portable media device can be conserved (i.e., efficiently consumed). According to another aspect, a portable media device can operate efficiently in a seek mode. The seek mode is an operational mode of the portable media device in which the portable media device automatically scans through media items to assist a user in selecting a desired one of the media items.
The invention can be implemented in numerous ways, including as a method, system, device, apparatus, or computer readable medium. Several embodiments of the invention are discussed below.
As a method for operating a media device having a cache memory as well as a disk drive for storage of media data for media items, one embodiment of the invention includes at least the operations of: receiving a selection of a particular media item to be presented by the media device, the particular media item being one of a plurality of media items organized in a sequential list; loading, in response to the selection, at least a portion of the media data for the particular media item retrieved from the disk storage to the cache memory; loading, in response to the selection, initial portions of media data for a plurality of sequentially adjacent media items from the sequential list with respect to the particular media item; and thereafter loading remaining portions of media data for a subset of the plurality of the sequentially adjacent media items from the sequential list.
As a method for operating a media device having a cache memory as well as a disk drive for storage of media data for media items, another embodiment of the invention includes at least the operations of: receiving a selection of a particular media item to be presented by the media device, the particular media item being one of a plurality of media items organized in a sequential list; loading, in response to the selection, at least a portion of the media data for the particular media item retrieved from the disk storage to the cache memory; loading, in response to the selection, complete media data for a plurality of sequentially adjacent media items from the sequential list with respect to the particular media item; and loading, in response to the selection, only initial media data for a plurality of other sequentially adjacent media items from the sequential list.
As a method for operating a media device having a first memory as well as a mass storage device for storage of media data for media items, one embodiment of the invention includes at least the operations of: receiving a user play selection for a selected media item from the media items; determining an amount or degree of skip support to be provided by the media device; determining media data to be stored in the first memory based on the user play selection and the amount or degree of skip support; and loading the determined media data into the first memory from the mass storage device.
As a method for operating a media device having a cache memory as well as a disk drive for storage of media data for media items, yet another embodiment of the invention includes at least the operations of: receiving a user play selection for a selected media item from the media items; determining whether media data for the selected media item is contained in the cache memory; when it is determined that the media data for the selected media item is not contained in the cache memory, determining a media data set to be stored in the cache memory, and loading the media data set into the cache memory; retrieving the media data for the selected media item from the cache memory; initiating playing of the retrieved media data; receiving a user skip selection for another media item from the media items; determining whether media data for the another media item is contained in the cache memory; when it is determined that the media data for the another media item is not contained in the cache memory, determining another media data set to be stored in the cache memory, and loading the another media data set into the cache memory; retrieving the media data for the another media item from the cache memory; and initiating playing of the retrieved media data.
As a computer readable medium including at least computer program code for operating a media device having a first memory as well as a mass storage device for storage of media data for media items, one embodiment of the invention includes at least: computer program code for receiving a user play selection for a selected media item from the media items; computer program code for determining an amount or degree of skip support to be provided by the media device; computer program code for determining media data to be stored in the first memory based on the user play selection and the amount or degree of skip support; and computer program code for loading the determined media data into the first memory from the mass storage device.
As a consumer electronics product, one embodiment of the invention includes at least: a storage disk that stores a plurality of media items; a user input device that enables a user of the consumer electronics product to at least select a particular media item from the plurality of media items; a cache memory capable of storing at least one of the media items; and a processor operatively connected to the storage disk, the user input device and the cache memory. The processor causes the cache memory to support a series of skip selections by the user via the user input device. In supporting the skip selection, the processor causes the cache memory to, in advance of the skip selections, store only initial portions of a plurality of media items other than the particular media item that correspond to the skip selections.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention relates to a portable media device and a method for operating the portable media device. According to one aspect, a battery-powered portable media device can manage use of a mass storage device to efficiently utilize battery power. By providing a cache memory and loading the cache memory so as to provide skip support, battery power for the portable media device can be conserved (i.e., efficiently consumed). According to another aspect, a portable media device can operate efficiently in a seek mode. The seek mode is an operational mode of the portable media device in which the portable media device automatically scans through media items to assist a user in selecting a desired one of the media items.
Embodiments of this aspect of the invention are discussed below with reference to
According to one aspect, a portable media device can manage use of a mass storage device to efficiently utilize battery power. By providing a cache memory and loading the cache memory so as to provide skip support, battery power for the portable media device can be conserved, such as during successive skip operations.
The media player 100 also includes a RAM 120 and a Read-Only Memory (ROM) 122. The ROM 122 can store programs, utilities or processes to be executed in a non-volatile manner. The ROM 122 can be implemented such that it is re-programmable, e.g., using EEPROM or FLASH technologies. The RAM 120 provides volatile data storage, such as for the cache 106.
The media player 100 also includes a user input device 108 that allows a user of the media player 100 to interact with the media player 100. For example, the user input device 108 can take a variety of forms, such as a button, keypad, dial, etc. Still further, the media player 100 includes a display 110 (screen display) that can be controlled by the processor 102 to display information to the user. A data bus 111 can facilitate data transfer between at least the file system 104, the cache 106, the processor 102, and the CODEC 112.
In one embodiment, the media player 100 serves to store a plurality of media items (e.g., songs) in the file system 104. When a user desires to have the media player 100 play a particular media item, a list of available media items can be displayed on the display 110. Then, using the user input device 108, a user can select one of the available media items. The processor 102, upon receiving a selection of a particular media item, the media data (e.g., audio file) for the particular media item is access by the processor 102 and then supplied to a coder/decoder (CODEC) 112. The CODEC 112 then produces analog output signals for a speaker 114. The speaker 114 can be a speaker internal to the media player 100 or external to the media player 100. For example, headphones or earphones that connect to the media player 100 would be considered an external speaker.
The media player 100 also includes a network/bus interface 116 that couples to a data link 118. The data link 118 allows the media player 100 to couple to a host computer. The data link 118 can be provided over a wired connection or a wireless connection. In the case of a wireless connection, the network/bus interface 116 can include a wireless transceiver.
Moreover, the processor 102 includes a media access manger 124. The media access manager 124 manages access to the plurality of media items via the file system 104 or the cache 106. More specifically, among other things, the media access manager 124 determines the appropriate media data to be stored in the cache 106. For example, based on user selection, user behavior or predetermined criteria, the media access manager 124 determines the appropriate media data to be stored in the cache 106. When the appropriate media data resides in the cache 106, the file system 104 can be inactive (e.g., “powered-off”). Since the cache 106 consumes substantially less power than the file system 104, the media player 100 can be operated in a power efficient manner.
Although the display 110 can be used to display a graphical user interface for a user, the display 110 is not required for the media player 100.
The cache loading process 200 begins with a decision 202 that determines whether a user selection has been made. Typically, as discussed in detail below, the user can be presented with a list or menu of media items that can be selected. For example, the selection of a media item by the user can signal the media device that the user desires to have the media item presented. For example, the media device can present a media item by playing the media item or displaying the media item. When the decision 202 determines that a user selection has not been received, the cache loading process 200 awaits such a selection.
Once the cache loading process 200 determines that a user selection has been received, the cache loading process 200 continues. In other words, the cache loading process 200 is effectively invoked once a user selection has been received. In any case, following receipt of the user selection, an amount or degree of skip support to be provided is determined 204. The media device performing the cache loading process 200 serves to present media items to its user. However, the user may desire to navigate from one media item to another so as to control which of the media items is presented by the media player. The navigation from a current media item to a next media item is referred to as a skip operation in which the balance of the current media items is skipped and the next media item is presented. Skip support refers to memory resource utilization of the media device so as to facilitate efficient processing of skip operations.
The determination 206 of the amount or degree of skip support to be provided can be done in various different ways depending upon implementation. In one implementation, the amount or degree of skip support can be predetermined, such as by a designer or manufacturer of the media device. In another implementation, the amount or degree of skip support can be controlled or influenced by a user setting, such as a preference setting for the media device. In still another implementation, the amount or degree of skip support can be adapted (i.e., automatically) to user behavior, such as through use of a user history.
After the amount or degree of skip support has been determined 204, media data to be stored in a cache memory of the media device is determined 206. The determination 206 of the media data to be stored in the cache memory is based on the user selection and the amount or degree of skip support. The media data corresponds to a plurality of different media items. The amount or quantity of media data stored in a cache memory for each of the media items can be different. The media data for the plurality of media items to be stored in the cache memory can also be referred to as a media data set.
After the determined media data to be stored in the cache memory has been determined 206, the determined media data is loaded 208 into the cache memory. Here, the determined media data is typically retrieved from a disk drive of the media device and stored in the cache memory of the media device. After the determined media data has been loaded 208 into the cache memory, the cache loading process 200 ends. However, typically, once the determined media data is loaded into the cache memory, the selected media item can be presented by the media device using the media data that has been loaded into the cache memory. Also, should the user skip to one or more next adjacent media items, the required media data for such adjacent media items would at least partially be available in the cache memory. As a result, the media device can process a skip operation in an efficient manner. For example, the media device in many cases will not need to access the disk device (instead just the cache memory) to process the skip operation, thereby operating in a power efficient manner to conserve battery power. Also, having the needed media data already in the cache memory to process a skip operation, allows the media device to respond more quickly to a skip request from the user.
The media device performing the cache loading process 500 includes a cache memory and a disk drive. The disk drive maintains storage for media data for a plurality of media items. The cache memory stores a small subset of the media data stored in the disk drive. The cache memory offers fast, low power access to the media data. The cache loading process 500 serves to intelligently load a portion of the media data from the disk drive into the cache memory.
The cache loading process 500 begins with a decision 502 that determines whether a play selection has been made. When the decision 502 determines that a play selection has not yet been made, the cache loading process 500 awaits such a selection. Once the decision 502 determines that a play selection has been made, the cache loading process 500 continues. In other words, the cache loading process 500 can be deemed to be invoked once a play selection has been made.
After the decision 502 determines that a play selection has been made, an initial portion of media data for the selected media item is loaded 504 into the cache memory. Once the initial portion of the media data for the selected media item has been loaded 504 into the cache memory (or otherwise available), play of the media data for the selected media item can be initiated 506. In addition, initial portions of media data for N sequentially adjacent media items can be loaded 508 into the cache memory. Moreover, remaining portions of media data for a subset of the N sequentially adjacent media items can also be loaded 510 into the cache memory. After the operation 510, the cache loading process 500 ends. It should be noted that the order of the operations 504 through 510 can be performed in any order.
The media device performing the cache loading process 600 includes a cache memory and a disk drive. The disk drive maintains storage for media data for a plurality of media items. The cache memory stores a small subset of the media data stored in the disk drive. The cache memory offers fast, low power access to the media data. The cache loading process 600 serves to intelligently load a portion of the media data from the disk drive into the cache memory.
The cache loading process 600 begins with a decision 602 that determines whether a media item has been selected. When the decision 602 determines that a media item has not been selected, the cache loading process 600 awaits such a selection. Once the decision 602 determines that a media item selection has been made, at least a portion of the selected media item is loaded 604 into the cache memory. In addition, complete media data for a plurality of sequentially adjacent media items is also loaded 606 into the cache memory. Here, the sequentially adjacent media items are determined with respect to the selected media item. Typically, the sequentially adjacent media items are subsequent to the selected media and in a sequential list. Furthermore, initial media data for a plurality of other sequentially adjacent media items is loaded 608 into the cache memory. Here, it is only the initial media data for the plurality of other sequentially adjacent media items that is loaded 608 into the cache memory. These initial media data portions are utilized to support playing initial portions of media items during successive skip operations. Following the operation 608, the cache loading process 600 ends. It should be noted that the order of the operations 604 through 608 can be performed in any order.
Although snippets represent only small portions of the complete media data for corresponding media items, it should be understood that the size of the snippets can vary with implementation. Still further, the size of the snippets can be controlled or adaptable. For example, a user selection (e.g., user preference) could influence the size of the snippets. As another example, the size of the snippets can also adapt to user behavior. As an example, if the user of the media device tends to enter a skip request very quickly, if at all, then the size of the skip requests could be made smaller than normal. Alternatively, if the user of the media device tends to enter a skip request very slowly, if at all, then the size of the skip requests could be made larger than normal.
The play processing 800 initially displays 802 at least portion of a list of media items. A decision 804 then determines whether a user play selection has been made. When the decision 804 determines that a user play selection has not been made, then the play processing 800 awaits such a selection. Once the decision 804 determines that a user play selection has been made, a decision 806 determines whether the media data for the media item associated with the user play selection is already within the cache memory.
When the decision 806 determines that the required media data for the media item associated with the user play selection is not in the cache memory, then a media data set desired for storage in the cache memory is determined 808. The media data set can be determined 808 based on a variety of different criteria. The criteria can include user preference, user behavior, or be predetermined. After the media data set has been determined 808, the media data set is loaded 810 into the cache memory. Following the block 810, the play processing 800 returns to repeat the decision 806.
On the other hand, when the decision 806 determines that the required media data for the media item associated with the user play selection is already in the cache memory, the required media data is retrieved 812 from the cache memory as needed. The retrieved media data is then played 814. While the retrieved media data is being played, a user of the media device may enter a skip selection (skip request). When the decision 816 determines that a skip selection has been made, the play processing 800 returns to repeat the decision 806 to determine whether the media data for the next media item is within the cache memory. If the needed media data is already available in the cache memory, the needed media data can be retrieved 812 from the cache memory and then played 814. On the other hand, if the needed media data is not in cache memory, then operations 808 and 810 are performed to determine a new media data set and to load the new media data set into the cache memory. In this regard, to the extent that the cache memory supports the skip selection, there is no need to access a mass storage device, such as a disk drive, to retrieve the needed media data. As a result, the media device can be power efficient and very responsive to user skip selections. Additionally, it should be noted that a user may repeatedly enter a skip selection on rather short order (e.g., 30 seconds or less) and the process repeats for each skip selection.
Alternatively, when the decision 816 determines that a skip selection has not been made, a decision 818 determines whether playing of the media data is done (i.e., complete). When the decision 818 determines that the playing on the media data is not done, the play processing 800 returns to repeat the block 812 and subsequent blocks so that the remaining portion of the media item associated with the user play selection can be retrieved 812 and played 814.
Additionally, in some cases, the media device operates such that after the selected media item is completely played, a next media item of an ordered list can be automatically played. Hence, in such case, the processing for the next media item can be continued in the play processing 800 by returning to repeat the decision 806 for the next media item. In any case, when the decision 818 determines that the play processing 800 is done, the play processing 800 ends.
The media data retrieval process 900 begins with a decision 902. The decision 902 determines whether the disk drive providing mass storage for the media data pertaining to the media items is active. When the disk drive is not active, the disk drive is activated 904. When the disk drive is already active, the activation 904 of the disk drive is not required. Following the decision 902 when activation is not needed or following the activation 904 when activation is needed, a portion of the media data set is retrieved 906 from the disk drive. The portion is then loaded 908 into the cache memory. A decision 910 then determines whether there are more portions of the media data set that are to be retrieved. When the decision 910 determines that there are more portions to be retrieved, the media data retrieval process 900 returns to repeat the block 906 and subsequent blocks so that additional portions can be retrieved 906 and loaded 908. Alternatively, when the decision 910 determines that there are no more portions of the media data set the retrieved, the disk drive is inactivated 912.
According to another aspect, a media device can operate efficiently in a seek mode. The seek mode is an operational mode of the media device in which the media device automatically scans through media items in accordance with a predetermined timing. For example, a media device can present a series of media items to a user in brief fashion. In other words, the media device can allow a user to scan through a large set of media items by playing only an initial portion of each of the media items. The user can select a desired one of the media items during the seek process if so desired, whereby the selected media item could be played in its entirety.
The seek initiation process 1000 begins with a decision 1002 that determines whether a user seek request has been received. When the decision 1002 determines that a user seek request has not yet been received, the seek initiation process 1000 awaits such a request. Once the decision 1002 determines that a user seek request has been received, the seek initiation processing 1000 continues. In other words, the seek initiation process 1000 is effectively invoked when the user seek request is received.
When the seek initiation processing 1000 continues, a seek media data set is determined 1004. The seek media data set is the media data set that if desired to be stored in the cache memory during the seek mode. In this regard, the seek media data set is designed to facilitate efficient utilization of media device resources, including battery power, during a seek operation. For example, as noted above with respect
After the seek media data set has been determined 1004, a decision 1006 then determines whether the seek media data set is already in the cache memory. When the decision 1006 determines that the seek media data set is not already in the cache memory, then the seek media data is loaded 1008 into the cache memory. On the other hand, when the decision 1006 determines that the seek media data set is already in the cache memory, then the block 1008 is bypassed. After the block 1008, or its being bypassed, the seek initiation processing 1000 initiates 1010 a seek operation. After the seek operation has been initiated 1010, the seek initiation processing 1000 ends. The seek operation operates to present a user with small portions of each of a large number of media items, thereby facilitating user's selection of a desired one of the media items to be presented in full.
Although the media items (or media assets) of emphasis in several of the above embodiments were audio items (e.g., audio files, such as for songs or audiobooks), the media items are not limited to audio items. For example, the media items can alternatively pertain to video items (e.g., video files or movies), or image items (e.g., photos).
The various aspects, embodiments, implementations or features of the invention can be used separately or in any combination.
The invention can be implemented by software, hardware or a combination of hardware and software. The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The advantages of the invention are numerous. Different aspects, embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that a disk storage device that stores media items within a portable media device can be used less often, thereby enhancing battery life when being battery-powered. Another advantage of the invention is that a portable media device can intelligently load a cache memory so as to efficiently support successive skip requests by a user. Still another advantage of the invention is that a portable media device can intelligently load a cache memory so as to efficiently support a seek mode where small portions of a plurality of media items are successively presented to a user.
The many features and advantages of the present invention are apparent from the written description and, thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, the invention should not be limited to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.
This application claims priority benefit of U.S. Provisional Application No. 60/756,096, filed Jan. 3, 2006, and entitled “MEDIA DEVICE WITH INTELLIGENT CACHE UTILIZATION,” which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4090216 | Constable | May 1978 | A |
4386345 | Narveson et al. | May 1983 | A |
4451849 | Fuhrer | May 1984 | A |
4589022 | Prince et al. | May 1986 | A |
4908523 | Snowden et al. | Mar 1990 | A |
4928307 | Lynn | May 1990 | A |
4951171 | Tran et al. | Aug 1990 | A |
5185906 | Brooks | Feb 1993 | A |
5293494 | Saito et al. | Mar 1994 | A |
5379057 | Clough et al. | Jan 1995 | A |
5406305 | Shimomura et al. | Apr 1995 | A |
5559945 | Beaudet et al. | Sep 1996 | A |
5566337 | Szymanski et al. | Oct 1996 | A |
5583993 | Foster et al. | Dec 1996 | A |
5608698 | Yamanoi et al. | Mar 1997 | A |
5616876 | Cluts | Apr 1997 | A |
5617386 | Choi | Apr 1997 | A |
5670985 | Cappels, Sr. et al. | Sep 1997 | A |
5675362 | Clough et al. | Oct 1997 | A |
5684513 | Decker | Nov 1997 | A |
5710922 | Alley et al. | Jan 1998 | A |
5712949 | Kato et al. | Jan 1998 | A |
5717422 | Fergason | Feb 1998 | A |
5721949 | Smith et al. | Feb 1998 | A |
5726672 | Hernandez et al. | Mar 1998 | A |
5739451 | Winksy et al. | Apr 1998 | A |
5740143 | Suetomi | Apr 1998 | A |
5760588 | Bailey | Jun 1998 | A |
5778374 | Dang et al. | Jul 1998 | A |
5803786 | McCormick | Sep 1998 | A |
5815225 | Nelson | Sep 1998 | A |
5822288 | Shinada | Oct 1998 | A |
5835721 | Donahue et al. | Nov 1998 | A |
5835732 | Kikinis et al. | Nov 1998 | A |
5838969 | Jacklin et al. | Nov 1998 | A |
5864868 | Contois | Jan 1999 | A |
5867163 | Kurtenbach | Feb 1999 | A |
5870710 | Ozawa et al. | Feb 1999 | A |
5918303 | Yamaura et al. | Jun 1999 | A |
5920728 | Hallowell et al. | Jul 1999 | A |
5923757 | Hocker et al. | Jul 1999 | A |
5952992 | Helms | Sep 1999 | A |
6006274 | Hawkins et al. | Dec 1999 | A |
6009237 | Hirabayashi et al. | Dec 1999 | A |
6011585 | Anderson | Jan 2000 | A |
6018705 | Gaudet et al. | Jan 2000 | A |
6041023 | Lakhansingh | Mar 2000 | A |
6052654 | Gaudet et al. | Apr 2000 | A |
6108426 | Stortz | Aug 2000 | A |
6122340 | Darley et al. | Sep 2000 | A |
6158019 | Squibb | Dec 2000 | A |
6161944 | Leman | Dec 2000 | A |
6172948 | Keller et al. | Jan 2001 | B1 |
6179432 | Zhang et al. | Jan 2001 | B1 |
6185163 | Bickford et al. | Feb 2001 | B1 |
6191939 | Burnett | Feb 2001 | B1 |
6208044 | Viswanadham et al. | Mar 2001 | B1 |
6216131 | Liu et al. | Apr 2001 | B1 |
6217183 | Shipman | Apr 2001 | B1 |
6248946 | Dwek | Jun 2001 | B1 |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6297795 | Kato et al. | Oct 2001 | B1 |
6298314 | Blackadar et al. | Oct 2001 | B1 |
6332175 | Birrell et al. | Dec 2001 | B1 |
6336365 | Blackadar et al. | Jan 2002 | B1 |
6336727 | Kim | Jan 2002 | B1 |
6341316 | Kloba et al. | Jan 2002 | B1 |
6357147 | Darley et al. | Mar 2002 | B1 |
6377530 | Burrows | Apr 2002 | B1 |
6452610 | Reinhardt et al. | Sep 2002 | B1 |
6467924 | Shipman | Oct 2002 | B2 |
6493652 | Ohlenbusch et al. | Dec 2002 | B1 |
6536139 | Darley et al. | Mar 2003 | B2 |
6549497 | Miyamoto et al. | Apr 2003 | B2 |
6560903 | Darley | May 2003 | B1 |
6587403 | Keller et al. | Jul 2003 | B1 |
6587404 | Keller et al. | Jul 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6606281 | Cowgill et al. | Aug 2003 | B2 |
6611607 | Davis et al. | Aug 2003 | B1 |
6611789 | Darley | Aug 2003 | B1 |
6617963 | Watters et al. | Sep 2003 | B1 |
6621768 | Keller et al. | Sep 2003 | B1 |
6623427 | Mandigo | Sep 2003 | B2 |
6631101 | Chan et al. | Oct 2003 | B1 |
6693612 | Matsumoto et al. | Feb 2004 | B1 |
6731312 | Robbin | May 2004 | B2 |
6760536 | Amir et al. | Jul 2004 | B1 |
6762741 | Weindorf | Jul 2004 | B2 |
6781611 | Richard | Aug 2004 | B1 |
6794566 | Pachet | Sep 2004 | B2 |
6799226 | Robbin et al. | Sep 2004 | B1 |
6801964 | Mahdavi | Oct 2004 | B1 |
6832373 | O'Neill | Dec 2004 | B2 |
6844511 | Hsu et al. | Jan 2005 | B1 |
6870529 | Davis | Mar 2005 | B1 |
6871063 | Schiffer | Mar 2005 | B1 |
6876947 | Darley et al. | Apr 2005 | B1 |
6882955 | Ohlenbusch et al. | Apr 2005 | B1 |
6886749 | Chiba et al. | May 2005 | B2 |
6898550 | Blackadar et al. | May 2005 | B1 |
6911971 | Suzuki et al. | Jun 2005 | B2 |
6918677 | Shipman | Jul 2005 | B2 |
6931377 | Seya | Aug 2005 | B1 |
6934812 | Robbin et al. | Aug 2005 | B1 |
6950087 | Knox et al. | Sep 2005 | B2 |
7010365 | Maymudes | Mar 2006 | B2 |
7028096 | Lee | Apr 2006 | B1 |
7046230 | Zadesky | May 2006 | B2 |
7062225 | White | Jun 2006 | B2 |
7076561 | Rosenberg et al. | Jul 2006 | B1 |
7084856 | Huppi | Aug 2006 | B2 |
7084921 | Ogawa | Aug 2006 | B1 |
7092946 | Bodnar | Aug 2006 | B2 |
7124125 | Cook et al. | Oct 2006 | B2 |
7131059 | Obrador | Oct 2006 | B2 |
7143241 | Hull | Nov 2006 | B2 |
7146437 | Robbin et al. | Dec 2006 | B2 |
7171331 | Vock et al. | Jan 2007 | B2 |
7191244 | Jennings et al. | Mar 2007 | B2 |
7213228 | Putterman | May 2007 | B2 |
7234026 | Robbin et al. | Jun 2007 | B2 |
7277928 | Lennon | Oct 2007 | B2 |
7301857 | Shah et al. | Nov 2007 | B2 |
7356679 | Le et al. | Apr 2008 | B1 |
7508535 | Hart et al. | Mar 2009 | B2 |
7515431 | Zadesky et al. | Apr 2009 | B1 |
7536565 | Girish et al. | May 2009 | B2 |
7593782 | Jobs et al. | Sep 2009 | B2 |
20010013983 | Izawa et al. | Aug 2001 | A1 |
20010029178 | Criss et al. | Oct 2001 | A1 |
20010037367 | Iyer | Nov 2001 | A1 |
20010041021 | Boyle et al. | Nov 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20020002413 | Tokue | Jan 2002 | A1 |
20020013784 | Swanson | Jan 2002 | A1 |
20020028683 | Banatre et al. | Mar 2002 | A1 |
20020045961 | Gibbs et al. | Apr 2002 | A1 |
20020046315 | Miller et al. | Apr 2002 | A1 |
20020055934 | Lipscomb et al. | May 2002 | A1 |
20020059440 | Hudson et al. | May 2002 | A1 |
20020059499 | Hudson | May 2002 | A1 |
20020090912 | Cannon et al. | Jul 2002 | A1 |
20020116082 | Gudorf | Aug 2002 | A1 |
20020116517 | Hudson et al. | Aug 2002 | A1 |
20020122031 | Maglio et al. | Sep 2002 | A1 |
20020123359 | Wei et al. | Sep 2002 | A1 |
20020152045 | Dowling et al. | Oct 2002 | A1 |
20020156833 | Maurya et al. | Oct 2002 | A1 |
20020161865 | Nguyen | Oct 2002 | A1 |
20020173273 | Spurgat et al. | Nov 2002 | A1 |
20020189426 | Hirade et al. | Dec 2002 | A1 |
20020189429 | Qian et al. | Dec 2002 | A1 |
20020199043 | Yin | Dec 2002 | A1 |
20030002688 | Kanevsky et al. | Jan 2003 | A1 |
20030007001 | Zimmerman | Jan 2003 | A1 |
20030018799 | Eyal | Jan 2003 | A1 |
20030037254 | Fischer et al. | Feb 2003 | A1 |
20030046434 | Flanagin et al. | Mar 2003 | A1 |
20030050092 | Yun | Mar 2003 | A1 |
20030074457 | Kluth | Apr 2003 | A1 |
20030076301 | Tsuk et al. | Apr 2003 | A1 |
20030076306 | Zadesky | Apr 2003 | A1 |
20030079038 | Robbin et al. | Apr 2003 | A1 |
20030095096 | Robbin et al. | May 2003 | A1 |
20030097379 | Ireton | May 2003 | A1 |
20030104835 | Douhet | Jun 2003 | A1 |
20030127307 | Liu et al. | Jul 2003 | A1 |
20030128192 | van Os | Jul 2003 | A1 |
20030133694 | Yeo | Jul 2003 | A1 |
20030153213 | Siddiqui et al. | Aug 2003 | A1 |
20030156503 | Schilling et al. | Aug 2003 | A1 |
20030167318 | Robbin et al. | Sep 2003 | A1 |
20030176935 | Lian et al. | Sep 2003 | A1 |
20030182100 | Plastina et al. | Sep 2003 | A1 |
20030221541 | Platt | Dec 2003 | A1 |
20030229490 | Etter | Dec 2003 | A1 |
20030236695 | Litwin, Jr. | Dec 2003 | A1 |
20040001395 | Keller et al. | Jan 2004 | A1 |
20040001396 | Keller et al. | Jan 2004 | A1 |
20040012556 | Yong et al. | Jan 2004 | A1 |
20040019658 | Plastina et al. | Jan 2004 | A1 |
20040055446 | Robbin et al. | Mar 2004 | A1 |
20040066363 | Yamano et al. | Apr 2004 | A1 |
20040069122 | Wilson | Apr 2004 | A1 |
20040076086 | Keller | Apr 2004 | A1 |
20040078383 | Mercer et al. | Apr 2004 | A1 |
20040086120 | Akins, III et al. | May 2004 | A1 |
20040094018 | Ueshima et al. | May 2004 | A1 |
20040103411 | Thayer | May 2004 | A1 |
20040125522 | Chiu et al. | Jul 2004 | A1 |
20040165302 | Lu | Aug 2004 | A1 |
20040177063 | Weber et al. | Sep 2004 | A1 |
20040198436 | Alden | Oct 2004 | A1 |
20040210628 | Inkinen et al. | Oct 2004 | A1 |
20040216108 | Robbin | Oct 2004 | A1 |
20040224638 | Fadell et al. | Nov 2004 | A1 |
20040242224 | Janik et al. | Dec 2004 | A1 |
20040246275 | Yoshihara et al. | Dec 2004 | A1 |
20040255135 | Kitaya et al. | Dec 2004 | A1 |
20040267825 | Novak et al. | Dec 2004 | A1 |
20050015254 | Beaman | Jan 2005 | A1 |
20050053365 | Adams et al. | Mar 2005 | A1 |
20050060240 | Popofsky | Mar 2005 | A1 |
20050060542 | Risan et al. | Mar 2005 | A1 |
20050108754 | Carhart et al. | May 2005 | A1 |
20050111820 | Matsumi et al. | May 2005 | A1 |
20050122315 | Chalk et al. | Jun 2005 | A1 |
20050123886 | Hua et al. | Jun 2005 | A1 |
20050146534 | Fong et al. | Jul 2005 | A1 |
20050149213 | Guzak et al. | Jul 2005 | A1 |
20050149872 | Fong et al. | Jul 2005 | A1 |
20050152294 | Yu et al. | Jul 2005 | A1 |
20050156047 | Chiba et al. | Jul 2005 | A1 |
20050160270 | Goldberg et al. | Jul 2005 | A1 |
20050166153 | Eytchison et al. | Jul 2005 | A1 |
20050216855 | Kopra et al. | Sep 2005 | A1 |
20050218303 | Poplin | Oct 2005 | A1 |
20050234983 | Plastina et al. | Oct 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050246324 | Paalasmaa et al. | Nov 2005 | A1 |
20050248555 | Feng et al. | Nov 2005 | A1 |
20050257169 | Tu | Nov 2005 | A1 |
20050259064 | Sugino et al. | Nov 2005 | A1 |
20050259524 | Yeh | Nov 2005 | A1 |
20050259758 | Razzell | Nov 2005 | A1 |
20050270276 | Sugimoto et al. | Dec 2005 | A1 |
20060013414 | Shih | Jan 2006 | A1 |
20060025068 | Regan et al. | Feb 2006 | A1 |
20060026424 | Eto | Feb 2006 | A1 |
20060061563 | Fleck | Mar 2006 | A1 |
20060068760 | Hameed et al. | Mar 2006 | A1 |
20060071899 | Chang et al. | Apr 2006 | A1 |
20060088228 | Marriott et al. | Apr 2006 | A1 |
20060092122 | Yoshihara et al. | May 2006 | A1 |
20060094409 | Inselberg | May 2006 | A1 |
20060095502 | Lewis et al. | May 2006 | A1 |
20060098320 | Koga et al. | May 2006 | A1 |
20060135883 | Jonsson et al. | Jun 2006 | A1 |
20060145053 | Stevenson et al. | Jul 2006 | A1 |
20060152382 | Hiltunen | Jul 2006 | A1 |
20060155914 | Jobs et al. | Jul 2006 | A1 |
20060170535 | Watters et al. | Aug 2006 | A1 |
20060173974 | Tang | Aug 2006 | A1 |
20060190577 | Yamada | Aug 2006 | A1 |
20060190980 | Kikkoji et al. | Aug 2006 | A1 |
20060221057 | Fux et al. | Oct 2006 | A1 |
20060221788 | Lindahl et al. | Oct 2006 | A1 |
20060265503 | Jones et al. | Nov 2006 | A1 |
20060272483 | Honeywell | Dec 2006 | A1 |
20060277336 | Lu et al. | Dec 2006 | A1 |
20070014536 | Hellman | Jan 2007 | A1 |
20070028009 | Robbin et al. | Feb 2007 | A1 |
20070038941 | Wysocki et al. | Feb 2007 | A1 |
20070055743 | Pirtle et al. | Mar 2007 | A1 |
20070061759 | Klein | Mar 2007 | A1 |
20070089057 | Kindig | Apr 2007 | A1 |
20070106660 | Stern et al. | May 2007 | A1 |
20070124679 | Jeong et al. | May 2007 | A1 |
20070129062 | Pantalone et al. | Jun 2007 | A1 |
20070135225 | Nieminen et al. | Jun 2007 | A1 |
20070248311 | Wice et al. | Oct 2007 | A1 |
20070255163 | Prineppi | Nov 2007 | A1 |
20080055228 | Glen | Mar 2008 | A1 |
20080134287 | Gudorf et al. | Jun 2008 | A1 |
20100077338 | Matthews et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
43 34 773 | Apr 1994 | DE |
44 45 023 | Jun 1996 | DE |
0 127 139 | May 1984 | EP |
0578604 | Jan 1994 | EP |
0 757 437 | Feb 1997 | EP |
0 813 138 | Dec 1997 | EP |
0 863 469 | Sep 1998 | EP |
0 917 077 | May 1999 | EP |
0 982 732 | Mar 2000 | EP |
1 028 425 | Aug 2000 | EP |
1028426 | Aug 2000 | EP |
1 076 302 | Feb 2001 | EP |
1 213 643 | Jun 2002 | EP |
1 289 197 | Mar 2003 | EP |
1 503 363 | Feb 2005 | EP |
1536612 | Jun 2005 | EP |
1 566 743 | Aug 2005 | EP |
1566948 | Aug 2005 | EP |
1 372 133 | Dec 2005 | EP |
1 686 496 | Aug 2006 | EP |
2 370 208 | Jun 2002 | GB |
2384399 | Jul 2003 | GB |
2399639 | May 2005 | GB |
59-023610 | Feb 1984 | JP |
03-228490 | Oct 1991 | JP |
04-243386 | Aug 1992 | JP |
6-96520 | Apr 1994 | JP |
8-235774 | Sep 1996 | JP |
9-50676 | Feb 1997 | JP |
9-259532 | Oct 1997 | JP |
2000-90651 | Mar 2000 | JP |
2000-224099 | Aug 2000 | JP |
2000-285643 | Oct 2000 | JP |
2000-299834 | Oct 2000 | JP |
2000-311352 | Nov 2000 | JP |
2000-339864 | Dec 2000 | JP |
2001-236286 | Aug 2001 | JP |
2001-312338 | Nov 2001 | JP |
2002-076977 | Mar 2002 | JP |
2002-175467 | Jun 2002 | JP |
2003-188792 | Jul 2003 | JP |
2003-259333 | Sep 2003 | JP |
2003-319365 | Nov 2003 | JP |
2004-021720 | Jan 2004 | JP |
2004-219731 | Aug 2004 | JP |
2004-220420 | Aug 2004 | JP |
20010076508 | Aug 2001 | KR |
WO 0133569 | Jun 1995 | WO |
WO 9516950 | Jun 1995 | WO |
9817032 | Apr 1998 | WO |
WO 9928813 | Jun 1999 | WO |
WO 0022820 | Apr 2000 | WO |
WO 0165413 | Sep 2001 | WO |
WO 0167753 | Sep 2001 | WO |
WO 0225610 | Mar 2002 | WO |
WO 03023786 | Mar 2003 | WO |
WO 03036457 | May 2003 | WO |
WO 03067202 | Aug 2003 | WO |
2004061850 | Jul 2004 | WO |
WO 2004055637 | Jul 2004 | WO |
WO 2004084413 | Sep 2004 | WO |
WO 2004104815 | Dec 2004 | WO |
WO 2005031737 | Apr 2005 | WO |
2005048644 | May 2005 | WO |
WO 2005008505 | Jul 2005 | WO |
2005109781 | Nov 2005 | WO |
WO 2006040737 | Apr 2006 | WO |
2006071364 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070156962 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
60756096 | Jan 2006 | US |