Media is commonly supplied in either reams or stacks of individual sheets or as a roll. During its use, the media is fed to the device that interacts with the media, such as a printer or a scanner. Malfunctions, such as jams, often occur during the feeding of media. In many instances, such malfunctions are the result of the quantity of print media being at a certain level. Such malfunctions are frequently difficult to remedy and cause prolonged delays.
As further shown by
In one particular embodiment, each segment is formed by applying a material to edges 16 while faces 14 extend parallel to one another, wherein the marking material is distinct from the material of media 12 providing faces 14 and edges 16. In one particular embodiment, the marking material may have a different color than the material providing edges for faces 14 and edges 16. In another embodiment, the marking material may comprise or may have a distinct chemical composition or a distinct texture as compared to the material providing faces 14 and edges 16. In still another embodiment, segments 20 may be formed by removing portions of the material providing faces 14 and edges 16 rather than adding marking material. In particular embodiments, segments 20 may be formed during the formation of the material providing faces 14 and edges 16.
In addition to enabling the identification of and distinguishing of individual edges 16 or material of media 12, segments 20 may also be configured to assist users or individuals in loading input 24 with media 12 or in visually determining a quantity of media 12. Segments 20 may be configured so as to have visually distinguishable ends between outer most edges 16. In one embodiment, segments 20 extend along arcuate or linear lines so as to not intersect one another and so as to have distinct end points. In another embodiment, segments 20 have distinct colors. In yet another embodiment, segments 20 extend along a common arcuate or linear line such that segments 20 are contiguous with one another, wherein segments 20 are distinguishable from one another by differing thicknesses. In still another embodiment, segments 20 may have distinct end points and have distinct thicknesses. Because segments 20 are visually distinguishable from one another along edges 16, segments 20 demarcate predefined quantities of media 12. For example, segments 20 applied to sheets of media 12 may be used to visually indicate to a user (without requiring the user to use a sensor or other device) a predetermined quantity of sheets of media 12 to assist the individual in loading media 12 into device 10 or to assist the individual in determining whether a sufficient quantity of media 12 exists for a particular job. In another application, segments 20 formed on a roll of media 12 may also be used to assist an individual to visually determine (without the use of a sensor or other electronic device) whether a sufficient quantity of the roll of media 12 exists for a particular job. In particular applications, segments 20 may alternatively be substantially identical to one another and not visually distinguishable from one another, wherein the sole purpose of segments 20 is to enable individual edges 16 to be distinguished from one another for evaluation.
Media interaction system 10 interacts with media 12 and generally includes input 24, output 26, feed 28, media interaction device 30, sensor 32, controller 38, user interface 34, and memory 36. Input 24 comprises one or more structures configured to receive media 12 and to store media 12 until portions of media 12 are interacted upon by device 30. In one embodiment, input 24 may comprise a tray configured to store and contain media 12. In another embodiment, input 24 may comprise a reel configured to support a roll of media 12. The exact configuration of input 24 may be varied depending upon the configuration of media 12.
Output 26 comprises one or more structures through which interacted upon media 12 is ejected from system 10. In one particular embodiment, output 26 may comprise a tray for storing interacted upon media ejected from system 10. In another embodiment, output 26 may simply comprise a slot or opening formed within housing 40 of system 10 which encloses each of the components of system 10.
Media feed 28 comprises a mechanism configured to transport media 12 from input 24 to media interaction device 30. In one embodiment, feed 28 may additionally be configured to move media 12 relative to media interaction device 30 as device 30 interacts with the media 12. In particular embodiments, media feed 28 may include one or more motors communicating with and under the control of controller 38, wherein the one or more motors drives an arrangement of belts, pulleys, rollers and the like to drive and move media 12 along a media path from input 24, across interaction device 30 and to output 26.
Media interaction device 30 comprises a device configured to interact with media 12 in one or more fashions. In one embodiment, media interaction device 30 is configured to form an image upon faces 14 of media 12. For example, in one embodiment, media interaction device 30 may include one or more inkjet printheads in communication with and under the control of controller 30 which dispense ink or other fluid upon faces 14. In one embodiment, media interaction device 30 may include an array of stationary printheads. In another embodiment, media interaction device 30 may include one or more printheads which are moved relative to faces 14 of media 12 by a carriage in communication with and under the control of controller 38. In still another embodiment, media interaction device 30 may comprise an electrophotographic printing system (laser printer) which includes a photoconductive drum and which applies dry or liquid toner to faces 14 of media 12. In still other embodiments, media interaction device 30 may be configured to form images upon faces 14 using other printing or image-forming technology.
In still other embodiments, media interaction device 30 may alternatively be configured to scan or read data or images from surfaces 14 of media 12.
Sensor 32 comprises a device configured to interact with edges 16 of media 12 to identify the particular edges 16 of media 12 using segments 20. In one particular embodiment, sensor 32 includes one or more light emitting diodes which emit light towards edges 16 and one or more photo diode sensors which sense reflected light from edges 16. In such an embodiment, sensor 32, comprising an optical sensor, detects variations in the absorption of light by portions of edges 16 including segments 20 and those portions of edges 16 which do not include segments 20. In other embodiments, sensor 32 may alternatively be configured to detect variations in magnetic, chemical or other attributes of portions of edges 16 which include segments 20 and other portions of edges 16 which do not include segments 20. In one particular embodiment, sensor 32 is configured to sense segments 20 upon edges 16 prior to media 12 being moved by feed 28. In another embodiment, sensor 32 may be configured to sense segments 20 upon edges 16 as media 12 is being moved by feed 28 or during interaction with media 12 by device 30. In still another embodiment, sensor 32 may be configured to sense segments 20 upon edges 16 as media 12 is located in other portions of a media path between input 24 and output 26.
User interface 34 comprises a device configured to interface or interact with a user of system 10. User interface 34 is in communication with and under control of controller 38. In one embodiment, user interface 34 includes a visual display such as a monitor or screen. In another embodiment, user interface 34 may communicate with a user through audible sounds or signals. In one embodiment, user interface 34 is contained and supported by housing 40 of system 10. In another embodiment, user interface 34 may comprise a distinct monitor or sound device from the remainder of system 10 within housing 40, wherein interface 34 communicates either through wires or wirelessly with controller 38. In particular embodiments, user interface 34 may further be configured to receive input from a user. User interface 34 provides information to a user of system 10 in response to control signals generated by controller 38 based upon signals or data received from sensor 32.
Memory 36 is configured to store information or data received from controller 38. Memory 36 may comprise one or more of programmable readable memory, non-erasable read-only memory or random access memory. Memory 36 may comprise digital memory in the form of a hard-wired circuitry or may comprise fixed or portable memory such as optical memory (e.g., CDs, DVDs), magnetically encodable memory (e.g., tape, floppy disk), or other forms.
Controller 38 comprises a processor in communication with feed 28, interaction device 30, sensor 32, user interface 34 and memory 36. For purposes of this disclosure, the term “processor” shall mean shall mean a conventionally known or future developed processing unit that executes sequences of instructions contained in a memory. Execution of the sequences of instructions causes the processing unit to perform steps such as generating control signals. The instructions may be loaded in a random access memory (RAM) for execution by the processing unit from a read only memory (ROM), a mass storage device, or some other persistent storage. In other embodiments, hard wired circuitry may be used in place of or in combination with software instructions to implement the functions described. Controller 38 is not limited to any specific combination of hardware circuitry and software, nor to any particular source for the instructions executed by the processing unit. Controller 38 receives signals from sensor 32 corresponding to individual edges 16 detected by sensor 32. Controller 38 generates control signals which cause user interface 34 to provide quantity information regarding media 12. In one embodiment, controller 38 generates control signals which cause user interface 34 to indicate a quantity of media 12 (e.g., number of sheets, length of roll, amount of surface area) remaining by input 24 and within system 10 or the quantity of media 12 which has been consumed during a particular print job or scanning job or from a certain point in time. Controller 38 may also be configured to generate control signals which cause user interface 34 to alert a user to the improper media quantity. For example, controller 34 may generate control signals which cause user interface 34 to alert or notify a user that an insufficient quantity of media 12 exists for a desired printing or scanning task or that media supply 24 contains an excessive quantity of media 12 for proper operation of system 10.
In yet another embodiment, controller 38 additionally or alternatively is configured to generate control signals in response to receiving data or information from sensor 42 relating to a malfunctioning of system 10, wherein controller 38 identifies individual edges 16 which are being manipulated by feed 28 or which are being interacted by device 30 during the malfunction. Controller 38 generates control signals which cause user interface 34 to identify to the user the particular edge or portion of media 12 which may have caused the malfunction. Additionally or alternatively, controller 38 further stores the identified portion of media 12 during which the malfunctioning occurred in memory 36. This stored information correlating the malfunctioning of system 10 to particular portions of media 12 being transported or interacted upon may be used by controller 38 to diagnose and evaluate causes for malfunctioning of system 10. For example, in one embodiment, sensor 42 may be configured to detect paper jams within feed 28. During a particular paper jam, controller 38 identifies the particular portion of media 12 (i.e., a particular sheet or a particular portion of a roll) which was being handled by feed 28 during the jam. This information is stored in memory 36. Controller 38 may be configured to analyze data collected over time to identify patterns or trends. For example, based upon such information, controller 38 may determine that paper jams more frequently occur with a particular portion of media 12 (i.e., a particular sheet or a particular portion of a roll). Controller 38 may further be configured to adjust the control and operation of feed 28 or system 10 to adapt to the particular edge 16 and portion of media 12 being transported or interacted upon in the future to prevent future paper jams or future malfunctions. Alternatively, controller 38 may be configured to provide such information which is evaluated by separate or distinct processors.
At the same time, segments 120A-120E further enable individual edges 16 of individual sheets 113 to be distinguished from one another by sensor 32 (shown in
As further shown by
As shown by
Although segments 370 and 372 are illustrated as communicating an up or down direction of media 312, segments 370 and 372 may alternatively be reoriented 90 degrees so as to point to a side of media 312, such as one of edges 160, in those applications where interaction with media 312 and the performance of system 10 is sensitive to the location of edge 160 when media 312 is loaded into system 10. Although segments 370 and 372 are illustrated as extending along a predefined quantity of sheets 313 of media 312, segments 370 and 372 may alternatively extend along an entirety of edge 16. Although segments 370 and 372 are illustrated as being used in conjunction with segments 320A, 320B and 320C, segments 370 and 372 may alternatively be utilized with a fewer number of such segments 320A, 320B, 320C or alone along edge 16. Although two segments are illustrated as pointing in a particular direction along edge 116, a single segment having a varying thickness (so as to form a point or triangle) may alternatively be used to communicate a suggested orientation of media 312.
As further shown by
Overall, the segments provided on edges 16 of media 12, 112, 212, 312, 412 and 512 visually demarcate to a user predefined quantities of the media such that the individual can quickly, easily and with relatively good accuracy separate out or divide the media into distinct quantities of less than the entire quantity for loading into input 24 of system 10. As a result, media 12, 112, 212, 312, 412 and 512 assist in the prevention of overloading of input 24 which cause system 10 to malfunction or may cause jamming of the media within system 10. The segments along edges 16 of the media also enable the user to quickly determine with relatively accuracy the quantity of media remaining available for use. At the same time, the segments employed along edges 16 of media 12, 112, 212, 312, 412 and 512 also enable sensor 32 to individually identify particular portions, such as individual sheets or individual windings, of the media. As a result, media 12, 112, 212, 312, 412 and 512 also enable controller 38 to alert the users of system 10 as to the quantity of media remaining within system 10 and to track and diagnose malfunctions of system 10 which may be caused by media passing through system 10. Based upon such diagnosis, users may split stacks or reams of media to reduce malfunctions such as feeding or jamming issues.
Although the present invention has been described with reference to example embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, although different example embodiments may have been described as including one or more features providing one or more benefits, it is contemplated that the described features may be interchanged with one another or alternatively be combined with one another in the described example embodiments or in other alternative embodiments. Because the technology of the present invention is relatively complex, not all changes in the technology are foreseeable. The present invention described with reference to the example embodiments and set forth in the above definitions is manifestly intended to be as broad as possible. For example, unless specifically otherwise noted, the definitions reciting a single particular element also encompass a plurality of such particular elements.