Embodiments of the invention relate to printers. In particular, some embodiments of the invention relate to media loading and handling components for printers.
Printers may be used in a variety of applications and may employ multiple differing printing technologies. For example, printers may be used for barcode printing, card printing, mobile printing, and kiosk printing applications while employing inkjet, direct thermal, thermal transfer, and intermediate thermal transfer printing technologies.
Applicant has identified a number of deficiencies and problems associated with the use, operation, and performance of conventional printers and, more particularly, with various media handling components of the same. Through applied effort, ingenuity, and innovation, Applicant has solved many of these identified problems by developing a solution that is embodied by the present invention, which is described in detail below.
Embodiments of the present invention may provide an improved media handling system, and in particular, an improved media transport assembly configured to mitigate variations in tension load on the media.
An example embodiment of the present invention may include a media transport assembly configured to transport media under a tension load. The media transport assembly may include a biased guide roller configured to apply a biasing force to the media, where the biased guide roller may be configured to move against the biasing force in response to variations of the tension load. The biased guide roller may be moved against the biasing force in response to an increase in the tension load. The media transport assembly may also include a top guide roller positioned above the media path and a bottom guide roller positioned below the media path.
The media transport assembly of example embodiments may also include a hinged access assembly that is rotatably movable between an open position and a closed position relative to a base member. The biased guide roller and the top roller may be mounted to the hinged access assembly. The hinged access assembly may be retained in the closed position by a latch mechanism. The media transport assembly may also include a stationary roller, where the biased guide roller may be located between the bottom guide roller and the stationary guide roller. A media feed path may be defined along a top side of the bottom guide roller, a bottom side of the biased guide roller, and a top side of the stationary guide roller. The media feed path may be substantially U-shaped when the biased guide roller is in a retracted position.
Example embodiments of the present invention may include a media transport assembly that is configured to transport media drawn from a media supply roll to a media path, the media supply roll being positioned in either a first position above the media path or a second position below the media path. The media transport assembly may include a top guide roller positioned above the media path, where the top guide roller may be configured to engage and direct the media to the media path from the supply roll in response to the supply roll being disposed in the first position. The media transport assembly may also include a bottom guide roller positioned below the media path, where the bottom guide roller may be configured to engage and direct the media to the media path from the supply roll in response to the supply roll being disposed in the second position.
Media transport assemblies according to example embodiments may include a hinged access assembly rotatably movable between an open position and a closed position relative to a base member, where the top guide roller may be attached to the hinged access assembly and where the bottom guide roller may be attached to the base member. The media transport assembly may also include a biased guide roller configured to apply a biasing force to the media and where the biased guide roller may be configured to move against the biasing force in response to variations of a tension load of the media. The biased guide roller may be attached to the hinged access assembly.
Further example embodiments of the present invention may include a media transport assembly configured to transport media under a tension load. The media transport assembly may include a hinged access assembly that is rotatably movable between an open position and a closed position, wherein the hinged access assembly includes a biased guide roller that is configured to apply a biasing force to the media when the hinged access assembly is disposed in the closed position, and where the biased guide roller is configured to move against the biasing force in response to variations in the tension load. The biased guide roller may be spaced apart from the media when the hinged access assembly is disposed in the open position.
Example embodiments of a media transport assembly according to the present invention may include a top guide roller and a bottom guide roller, where the top guide roller may be attached to the hinged access assembly. The media transport assembly may also include a stationary roller, where a media feed path may be defined between the top guide roller and the bottom guide roller, below the biased guide roller, and above the stationary guide roller. The top guide roller may be attached to the hinged access assembly. The bottom guide roller and the stationary guide roller may be attached to a base member of the media transport assembly. The media feed path may be defined between the hinged access assembly and the base member. The hinged access assembly may be maintained in the closed position with a latch mechanism.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Various embodiments of the present invention are directed to providing improved media handling components (e.g., media transport assemblies, media guide rollers, etc.) for printers. While the disclosed improvements may be used in any type of printer, the foregoing description describes such improvements in connection with kiosk printers simply for illustration purposes.
A variety of applications exist for publicly-used, stand-alone printers, or so-called “kiosk printers.” These include printing of receipts at gas pumps, automatic teller machines (ATMs), and self-service checkout locations at retail stores, amongst others. Kiosk printers are generally constructed to advance a web of continuous print media through a nip defined between a printhead and platen for printing and to advance a printed web portion further downstream for presentation to a user. The printed web portion may be torn-off by the user or cut from the remainder of the media roll.
As will be discussed below in accordance with
The biased guide roller 40 is attached to a biasing element such as the depicted spring 42 and is configured to move upwardly and downwardly within a slot 44. In the depicted embodiment, the spring 42 is connected to a fixed component of the printer 100 such as a base or frame and is biased to position the biased guide roller 40 away from the stationary guide roller 22 in a retracted position as shown in
In the depicted embodiment, the spring 42 is a helical coil spring while in other embodiments differing springs or biasing elements may be used. In some embodiments, the spring 42 have may possess a spring stiffness between 0.5 lbs/inch to 1.5 lbs/inch for media supply rolls of 6 inches to 10 inches in diameter. However, in other embodiments, for example, in embodiments using larger or smaller media supply rolls, or larger or smaller platen drive motors, springs having a differing spring stiffness may be used to effectively dampen anticipated media tension shocks and discontinuities.
Optionally, media may be configured in a fan-fold (i.e., stacked, folded continuous media) in which media may be drawn in to the media transport assembly 20 from a stack. Such media may be used, for example in airport boarding passes. In such an embodiment, both the bottom guide roller 30 and the top guide roller 35 may be engaged by the media as it is received by the media transport assembly 20.
The depicted hinged access assembly 75 supports (via a bracket, frame or other means) the upper guider roller 35 and the biased guide roller 40 as shown. The hinged access assembly 75 is thus structured to provide for easy media loading and threading by users. For example, in reference to
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included herein. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application claims the benefit of U.S. Provisional Application No. 61/413,192, filed Nov. 12, 2010, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61413192 | Nov 2010 | US |