1. Field of the Invention
This invention relates to a media multi-feed rejection apparatus, comprising: a plurality of feed rollers; a feed roller driving means operatively connected to one of the plurality of feed rollers; a clutch means operatively connected to the other of the plurality of feed rollers; and a single channel encoder means operatively connected to the clutch means to measure a rotation of the other of the plurality of feed rollers.
2. Description of the Related Art
Double feeding of media is not desirable because the printing mechanism will assume that the at least two sheets of media are one sheet of media and print the image across both sheets of media. Also, the double feeding of media may create a media jam in the media handling mechanism. Prior to the present invention, as set forth in general terms above and more specifically below, it is known, in the media handling art to employ a variety of techniques to prevent double feeding of media. Such techniques include various sensors along the media handling path that are used to detect double feeding of media. Also, various mechanisms are utilized to interact with the media in order to prevent double feeding of media. While such systems have met with a modicum of success, none of these systems employ an encoder that monitors the rotation of a counter-rotating roller during the multi-feed rejection process in order to determine the shortest time required to eliminate all excess sheets. Consequently, a more advantageous media double feeding elimination system, then, would be provided if an encoder that monitors the rotation of a counter-rotating roller during the multi-feed rejection process is utilized to determine the shortest time required to eliminate all excess sheets.
It is apparent from the above that there exists a need in the art for a velocity mode encoder that is used to determine the optimum time to stop a multi-feed rejection process on a counter-rotating roller feed system. It is a purpose of this invention to fulfill this and other needs in the art in a manner more apparent to the skilled artisan once given the following disclosure.
Generally speaking, an embodiment of this invention fulfills these needs by providing a media multi-feed rejection apparatus, comprising: a plurality of feed rollers; a feed roller driving means operatively connected to one of the plurality of feed rollers; a clutch means operatively connected to the other of the plurality of feed rollers; and a single channel encoder means operatively connected to the clutch means to measure a rotation of the other of the plurality of feed rollers.
In certain preferred embodiments, one of the plurality of feed rollers is comprised of a counter-rotating tire. Also, the feed roller driving means is further comprised of a motor. Also, the clutch means is further comprised of slip torque clutch. Also, the clutch means is operatively connected to the feed roller driving means. Finally, the single channel encoder means is further comprised of a velocity mode only encoder.
In another further preferred embodiment, a single channel encoder is used to determine the optimum time to stop a multi-feed rejection process on a counter-rotating roller feed system by monitoring the rotation of a counter-rotating roller during the multi-feed rejection process to determine the shortest time required to eliminate all excess sheets.
The preferred media multi-feed rejection apparatus, according to various embodiments of the present invention, offers the following advantages: ease-of-use; reduced power consumption; reduced power dissipation; reduced noise; reduced mechanical wear; decreased likelihood of media multi-feed; and reduced time to determine the shortest time required to eliminate all excess sheets. In fact, in many of the preferred embodiments, these factors of reduced power consumption, reduced power dissipation, reduced noise, reduced mechanical wear, decreased likelihood of media multi-feed, and reduced time to determine the shortest time required to eliminate all excess sheets are optimized to an extent that is considerably higher than heretofore achieved in prior, known media multi-feed rejection systems.
The above and other features of the present invention, which will become more apparent as the description proceeds, are best understood by considering the following detailed description in conjunction with the accompanying drawings, wherein like characters represent like parts throughout the several views and in which:
With reference first to
With respect to
With respect to
As shown in
With respect to
With respect to
As discussed above, during a specific multi-media feed separation sequence, drive motor 16 is operated at a constant speed to induce separation of the multi-media feed. Encoder 56 is conventionally sampled and a velocity of lower feed roller 6 is determined. The velocity of lower feed roller 6 is conventionally compared against a target value. If the velocity of lower feed roller 6 is above the target value, it can be assumed that a multi-media feed separation is being performed and should be allowed to continue. Conversely, if the velocity of lower feed roller 6 is below the target value, it can be assumed that no multi-media feed is present at the nip between upper feed roller 4 and lower feed roller 6. It is to be understood that a maximum time limit may be imposed on how long the velocity of lower feed roller 6 can be maintained above the target value. If the maximum time limit is exceeded, multi-feed media rejection apparatus 2 is checked/observed to determine if excessive slippage is occurring at the nip between upper feed roller 4 and lower feed roller 6.
It is to be understood that the present invention can be embodied in any computer-readable medium for use by or in connection with an instruction-execution system, apparatus or device such as a computer/processor based system, processor-containing system or other system that can fetch the instructions from the instruction-execution system, apparatus or device, and execute the instructions contained therein. In the context of this disclosure, a “computer-readable medium” can be any means that can store a program for use by or in connection with the instruction-execution system, apparatus or device. The computer-readable medium can comprise any one of many physical media such as, for example, electronic, magnetic, or semiconductor media. More specific examples of a suitable computer-readable medium would include, but are not limited to, a portable magnetic computer diskette such as floppy diskettes or hard drives, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory, or a portable compact disc. It is to be understood that the computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted or otherwise processed in a single manner, if necessary, and then stored in a computer memory.
Those skilled in the art will understand that various embodiment of the present invention can be implemented in hardware, software, firmware or combinations thereof. Separate embodiments of the present invention can be implemented using a combination of hardware and software or firmware that is stored in memory and executed by a suitable instruction-execution system. If implemented solely in hardware, as in an alternative embodiment, the present invention can be separately implemented with any or a combination of technologies which are well known in the art (for example, discrete-logic circuits, application-specific integrated circuits (ASICs), programmable-gate arrays (PGAs), field-programmable gate arrays (FPGAs), and/or other later developed technologies. In preferred embodiments, the present invention can be implemented in a combination of software and data executed and stored under the control of a computing device.
It will be well understood by one having ordinary skill in the art, after having become familiar with the teachings of the present invention, that software applications may be written in a number of programming languages now known or later developed.
Once given the above disclosure, many other features, modifications or improvements will become apparent to the skilled artisan. Such features, modifications or improvements are, therefore, considered to be a part of this invention, the scope of which is to be determined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5028043 | Karolyi | Jul 1991 | A |
5449162 | Saito et al. | Sep 1995 | A |
5647584 | Beaudreau et al. | Jul 1997 | A |
20030067108 | Marra et al. | Apr 2003 | A1 |
20050061825 | Willoughby et al. | Mar 2005 | A1 |
20050184447 | Tsukamoto et al. | Aug 2005 | A1 |
20070096385 | Mandel et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
6312856 | Nov 1994 | JP |
9020438 | Jan 1997 | JP |
63027368 | Feb 1998 | JP |
2000168983 | Jun 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20070247509 A1 | Oct 2007 | US |