Media playback based on sensor data

Information

  • Patent Grant
  • 11825290
  • Patent Number
    11,825,290
  • Date Filed
    Thursday, April 27, 2023
    a year ago
  • Date Issued
    Tuesday, November 21, 2023
    a year ago
Abstract
Example techniques relate to playback based on acoustic signals in a system including a first network device and a second network device. A first network device may detect a presence of a user using a camera and/or infrared sensors. The first network device sends, in response to detecting the presence of the user, a particular signal via the first network interface. The second network device receives data corresponding to the particular signal and plays back an audio output corresponding to the particular signal.
Description
FIELD OF THE DISCLOSURE

The disclosure is related to consumer electronics and, more particularly, to systems, methods, and apparatus to continuously calibrate audio fields.


BACKGROUND

Home theater systems allow the listener to enjoy the cinema experience while in the comfort of their home. To deliver the best possible sound, the systems allow the listener to adjust the sound field, volume and various Digital Signal Processing (DSP) effects.





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and advantages of the presently disclosed technology are better understood with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1 shows an illustration of an example system in which embodiments of the methods and apparatus disclosed herein may be implemented;



FIG. 2A shows an illustration of an example zone player having a built-in amplifier and speakers;



FIG. 2B shows an illustration of an example zone player having a built-in amplifier and connected to external speakers;



FIG. 2C shows an illustration of an example zone player connected to an A/V receiver and speakers;



FIG. 3 shows an illustration of an example controller;



FIG. 4 shows an internal functional block diagram of an example zone player;



FIG. 5 shows an internal functional block diagram of an example controller;



FIG. 6 shows an example pair of zone players having mid-tweeter-mid (MTM) speaker arrangements, including audio filters, and configured as a stereo pair;



FIG. 7 is a flowchart representative of an example method to implement the example apparatus; and



FIG. 8 is a flowchart representative of an example method to implement the example apparatus.





In addition, the drawings are for the purpose of illustrating example embodiments, but it is understood the present disclosure is not limited to the arrangements and instrumentality shown in the drawings.


DETAILED DESCRIPTION
I. Overview

Example systems, methods, and apparatus to calibrate sounds fields are disclosed herein. Real-time sound calibration is achieved through localizing the position of the listener. In some examples, a location sensor such as a video camera and infrared camera detect the position of the listener and then the home theater system software adjusts the sound field. Example systems, methods, and/or apparatus disclosed herein also provide localizing the position of the listener through analyzing packets with associated timestamps. The example systems, methods, and/or apparatus disclosed herein may be used in combination with a multiple-speaker configuration in which the speakers included in the configuration share one or more sources of audio information and play the audio in synchrony.


Some example systems, methods, and/or apparatus provide first triangulating the position of the listener in the listening zone by processing data gathered by location sensors in the listening zone in real-time. Accordingly, such example systems, methods, and/or apparatus provide an audio circuit capable of generating an improved sound field adjusted for the position of the listener. This real-time listener triangulation allows for potentially increased aesthetics in the sound experienced by the listener.


An example method implemented in accordance with the disclosure includes receiving infrared signals through an infrared receiver and video data captured through a video camera at the location sensor, processing the received infrared signals and video data to triangulate the position of the listener via a triangulation algorithm, and generating, through an audio processing component, audio characteristics of a sound field modified by the position of the listener to play through a speaker.


In some embodiments, the location sensors are continuously receiving location data, wherein the continuous receiving of location data allows for tracking the position of the listener as the listener moves enabling real-time sound field calibration.


An example embodiment of apparatus implemented in accordance with the present disclosure includes depth sensors to scan the listening zone, an audio processing component to modify an audio input signal with the location information to form a sound field, first and second audio speakers having first audio characteristics, and a third audio speaker having second audio characteristics, wherein the third speaker is positioned between the first and second audio speakers. Some example apparatus include a digital audio processor to implement the first and second audio characteristics.


In some embodiments, the location sensors include infrared and image cameras which receive infrared signals and image frame data. In some embodiments, the sensors include microphones which receive acoustic wave information. In some embodiments, the acoustic wave information includes a timestamp. In some embodiments, the location sensors receive packets with an associated RSSI signal. In some embodiments, a combination of depth sensors is utilized.


In some embodiments, the apparatus further includes a network interface to receive at least one of the audio input signals, a synchronization signal associated with a multiple-device arrangement, or configuration signal associated with a multiple-device arrangement. In some such embodiments, the second speaker is to be positioned on the outside when in a multiple-device configuration.


In some embodiments, the apparatus further includes a network interface to synchronize the first and second audio output with another audio device. In some such embodiments, the network interface is to receive at least one of the audio signal or a user input.


Although the following discloses example systems, methods, and apparatus including, among other components, firmware and/or software executed on hardware, it should be noted such systems, methods, and/or apparatus are merely illustrative and should not be considered as limiting. For example, it is contemplated any or all of these firmware, hardware, and/or software components could be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, while the following describes example systems, methods, and/or apparatus, the examples provided are not the only way(s) to implement such systems, methods, and/or apparatus.


When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible medium such as a memory, digital versatile disk (DVD), compact disc (CD), Blu-ray, and so on, storing the software and/or firmware.


These embodiments and many additional embodiments are described more below. Further, the detailed description is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations which directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art certain embodiments of the present disclosure may be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments.


Reference herein to “embodiment” means a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one example embodiment of the invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, may be combined with other embodiments.


II. Example Environment

Referring now to the drawings, in which like numerals may refer to like parts throughout the figures, FIG. 1 shows an example system configuration 100 in which one or more of the method and/or apparatus disclosed herein may be practiced or implemented. By way of illustration, the system configuration 100 represents a home with multiple zones. Each zone, for example, represents a different room or space, such as an office, bathroom, bedroom, kitchen, dining room, family room, home theater room, utility or laundry room, and patio. While not shown here, a single zone may cover more than one room or space. One or more of zone players 102-124 are shown in each respective zone. A zone player 102-124, also referred to as a playback device, multimedia unit, speaker, and so on, provides audio, video, and/or audiovisual output. A controller 130 (e.g., shown in the kitchen for purposes of illustration) provides control to the system configuration 100. The system configuration 100 illustrates an example whole house audio system, though it is understood the technology described herein is not limited to its particular place of application or to an expansive system like a whole house audio system 100 of FIG. 1.



FIGS. 2A, 2B, and 2C show example illustrations of zone players 200-204. The zone players 200-204 of FIGS. 2A, 2B, and 2C, respectively, may correspond to any of the zone players 102-124 of FIG. 1. While certain embodiments provide multiple zone players, an audio output may be generated using only a single zone player. FIG. 2A illustrates a zone player 200 including sound producing equipment 208 capable of generating sound or an audio output corresponding to a signal received (e.g., wirelessly and/or via a wired interface). The sound producing equipment 208 of the zone player 200 of FIG. 2A includes a built-in amplifier (not shown in this illustration) and speakers (e.g., a tweeter and two mid-range speakers). In certain embodiments, the zone player 200 of FIG. 2A may be configured to play stereophonic audio or monaural audio. In some embodiments, the zone player 200 of FIG. 2A may be configured as a component in a combination of zone players to play stereophonic audio, monaural audio, and/or surround audio. As described in greater detail below, in some embodiments, the example zone player 200 of FIG. 2A may also transmit a second signal to, for example, other zone player(s) in the same or different zone(s), speaker(s), receiver(s), and so on. Transmission of the second signal may be part of, for example, a system in which multiple zone players, speakers, receivers, and so on, form a network to, for example, present media content in a synchronization or distributed manner.


The example zone player 202 of FIG. 2B includes a built-in amplifier (not shown in this illustration) to power a set of detached speakers 210. The speakers 210 of FIG. 2B may include, for example, any type of loudspeaker. The zone player 202 of FIG. 2B may communicate a signal corresponding to audio content to the detached speakers 210 via wired and/or wireless channels. Instead of receiving and generating audio content as in FIG. 2A, the zone player 202 of FIG. 2B receives the audio content and transmits the same (e.g., after processing the received signal) to the detached speakers 210. Similar to the example zone player 200 of FIG. 2A, in some embodiments the zone player 202 may transmit a second signal, for example, to other zone player(s) in the same or different zone(s), speaker(s), receiver(s), and so on.


The example zone player 204 of FIG. 2C does not include an amplifier, but allows a receiver 214, or another audio and/or video type device with built-in amplification, to connect to a data network 128 of FIG. 1 and to play audio received over the data network 128 via the receiver 214 and a set of detached speakers 216. In addition to the wired couplings shown in FIG. 2C, the detached speakers 216 may receive audio content via a wireless communication channel between the detached speakers 216 and, for example, the zone player 204 and/or the receiver 214. In some embodiments the zone player 202 may transmit a second signal to, for example, other zone player(s) in the same or different zone(s), speaker(s), receiver(s), and so on.


Example zone players include a “Sonos Play:3,” “ZonePlayer® 120,” and “ZonePlayer® 90,” which are offered by Sonos, Inc. of Santa Barbara, Calif. Any other past, present, and/or future zone players may additionally or alternatively be used to implement the zone players of example embodiments disclosed herein. A zone player may also be referred to herein as a playback device, and a zone player is not limited to the particular examples illustrated in FIGS. 2A, 2B, and 2C. For example, a zone player may include a wired or wireless headphone. In other examples, a zone player might include a subwoofer. In yet other examples, a zone player may include a sound bar. In an example, a zone player may include or interact with a docking station for an Apple iPod™ or similar device. In some embodiments, a zone player may relay one or more signals received from, for example, a first zone player to another playback device. In some embodiments, a zone player may receive a first signal and generate an output corresponding to the first signal and, simultaneously or separately, may receive a second signal and transmit or relay the second signal to another zone player(s), speaker(s), receiver(s), and so on. Thus, an example zone player described herein may act as a playback device and, at the same time, operate as a hub in a network of zone players. In such instances, media content corresponding to the first signal may be different from the media content corresponding to the second signal.



FIG. 3 shows an example illustration of a wireless controller 300 in a docking station 302. The controller 300 may correspond to the controlling device 130 of FIG. 1. The controller 300 is provided with a touch screen 304 which allows a user to interact with the controller 300, for example, to retrieve and navigate a playlist of audio items, control operations of one or more zone players, and provide overall control of the system configuration 100. In some examples, the wireless controller 300 may be used to group zone players into stereo and/or other multiple-device configurations. In certain embodiments, any number of controllers may be used to control the system configuration 100. In certain embodiments, there may be a limit on the number of controllers which may control the system configuration 100. The controllers might be wireless like wireless controller 300 or wired to the data network 128. Furthermore, an application running on any network-enabled portable device, such as an iPhone™, iPad™, Android™ powered phone, or any other smart phone or network-enabled device may be used as a controller by connecting to the data network 128. An application running on a laptop or desktop PC or Mac may also be used as a controller. Example controllers include a “Sonos® Controller 200,” “Sonos® Controller for iPhone,” “Sonos® Controller for iPad,” “Sonos® Controller for Android, “Sonos® Controller for Mac or PC,” which are offered by Sonos, Inc. of Santa Barbara, Calif. The flexibility of such an application and its ability to be ported to a new type of portable device is advantageous.


Referring back to the system configuration 100 of FIG. 1, a particular zone may contain one or more zone players. For example, the family room of FIG. 1 contains two zone players 106 and 108, while the kitchen is shown with one zone player 102. Zones may be dynamically configured by positioning a zone player in a room or space and assigning via the controller 130 the zone player to a new or existing zone. As such, zones may be created, combined with another zone, removed, and given a specific name (e.g., “Kitchen”), if so programmed. The zone players 102 to 124 are coupled directly or indirectly to a data network, such as the data network 128 shown in FIG. 1. The data network 128 is represented by an octagon in the figure to stand out from other components shown in the figure. While the data network 128 is shown in a single location, it is understood such a network may be distributed in and around the system configuration 100.


Particularly, the data network 128 may be a wired network, a wireless network, or a combination of both. In some embodiments, one or more of the zone players 102-124 are wirelessly coupled to the data network 128 based on a proprietary mesh network. In some embodiments, one or more of the zone players 102-124 are wirelessly coupled to the data network 128 using a non-mesh topology. In some embodiments, one or more of the zone players 102-124 are coupled via a wire to the data network 128 using Ethernet or similar technology. In addition to the one or more zone players 102-124 connecting to the data network 128, the data network 128 may further allow access to a wide area network, such as the Internet.


In certain embodiments, the data network 128 may be created by connecting any of the zone players 102-124, or some other connecting device, to a broadband router. Other zone players 102-124 may then be added wired or wirelessly to the data network 128. For example, a zone player (e.g., any of zone players 102-124) may be added to the system configuration 100 by simply pressing a button on the zone player itself, which enables a connection to be made to the data network 128. The broadband router may be connected to an Internet Service Provider (ISP), for example. The broadband router may be used to form another data network within the system configuration 100, which may be used in other applications (e.g., web surfing). The data network 128 may also be used in other applications, if so programmed. Further, in certain embodiments, the data network 128 is the same network used for other applications in the household.


In certain embodiments, each zone may play from the same audio source as another zone or each zone may play from a different audio source. For example, someone may be grilling on the patio and listening to jazz music via zone player 124, while someone is preparing food in the kitchen and listening to classical music via zone player 102. Further, someone may be in the office listening to the same jazz music via zone player 110 which is playing on the patio via zone player 124. In some embodiments, the jazz music played via zone players 110 and 124 is played in synchrony. Synchronizing playback amongst zones allows for someone to pass through zones while seamlessly listening to the audio. Further, zones may be put into a “party mode” where all associated zones will play audio in synchrony.


In certain embodiments, a zone contains two or more zone players. For example, the family room contains two zone players 106 and 108, and the home theater room contains at least zone players 116, 118, and 120. A zone may be configured to contain as many zone players as desired, and for example, the home theater room might contain additional zone players to play audio from a 5.1 channel or greater audio source (e.g., a movie encoded with 5.1 or greater audio channels). If a zone contains two or more zone players, such as the two zone players 106 and 108 in the family room, then the two zone players 106 and 108 may be configured to play the same audio source in synchrony, or the two zone players 106 and 108 may be paired to play two separate sounds in left and right channels, for example. In other words, the stereo effects of a sound may be reproduced or enhanced through the two zone players 106 and 108, one for the left sound and the other for the right sound. In certain embodiments, paired zone players may play audio in synchrony with other zone players.


In certain embodiments, three or more zone players may be configured to play various channels of audio which is encoded with three channels or more sound. For example, the home theater room shows zone players 116, 118, and 120, which is connected to a television 132. If the sound is encoded as 2.1 channel audio, then the zone player 116 may be configured to play left channel audio, the zone player 118 may be configured to play right channel audio, and the zone player 120 may be configured to play bass frequencies. Other configurations are possible and depend on the number of zone players and the type of audio. Further, a particular zone may be configured to play a 5.1 channel audio in one instance, such as when playing audio from a movie, and then dynamically switch to play stereo, such as when playing audio from a two channel source.


In certain embodiments, two or more zone players may be sonically consolidated to form a single, consolidated zone player. A consolidated zone player (though made up of multiple, separate devices) may be configured to process and reproduce sound differently than an unconsolidated zone player or zone players which are paired, because a consolidated zone player will have additional speaker drivers from which sound may be passed. The consolidated zone player may further be paired with a single zone player or yet another consolidated zone player. Each playback device of a consolidated playback device is preferably set in a consolidated mode.


According to some embodiments, one may continue to do any of: group, consolidate, and pair zone players, for example, until a desired configuration is complete. The actions of grouping, consolidation, and pairing are preferably performed through a control interface, such as using controller 130, and not by physically connecting and re-connecting speaker wire, for example, to individual, discrete speakers to create different configurations. As such, certain embodiments described herein provide a more flexible and dynamic platform through which sound reproduction may be offered to the end-user.


Sources of audio content to be played by zone players 102-124 are numerous. Music from a personal library stored on a computer or networked-attached storage (NAS) may be accessed via the data network 128 and played. Internet radio stations, shows, and podcasts may be accessed via the data network 128. Music services which let a user stream and download music and audio content may be accessed via the data network 128. Further, music may be obtained from traditional sources, such as a turntable or CD player, via a line-in connection to a zone player, for example. Audio content may also be accessed through AirPlay™ wireless technology by Apple, Inc., for example. Audio content received from one or more sources may be shared amongst the zone players 102 to 124 via the data network 128 and/or the controller 130. The above-disclosed sources of audio content are referred to herein as network-based audio information sources. However, network-based audio information sources are not limited thereto.


III. Example Playback Device

Referring now to FIG. 4, there is shown an example functional block diagram of a zone player 400 in accordance with an embodiment. The zone player 400 of FIG. 4 includes a network interface 402, a processor 408, a memory 410, an audio processing component 412, a module 414, an audio amplifier 416, a speaker unit 418 coupled to the audio amplifier 416, and a location component 424. FIG. 2A shows an example illustration of such a zone player. Other types of zone players may not include the speaker unit 418 (e.g., such as shown in FIG. 2B) or the audio amplifier 416 (e.g., such as shown in FIG. 2C). In addition, other types of zone players may not include an integrated location component 424, but instead, may communicate with an external location component 424 via the network interface 402, for example. Further, it is contemplated the zone player 400 may be integrated into another component. For example, the zone player 400 could be constructed as part of a lamp for indoor or outdoor use.


Referring back to FIG. 4, the network interface 402 facilitates a data flow between zone players and other devices on a data network (e.g., the data network 128 of FIG. 1) and the zone player 400. In some embodiments, the network interface 402 may manage the assembling of an audio source or file into smaller packets which are to be transmitted over the data network or reassembles received packets into the original source or file. In some embodiments, the network interface 402 may further handle the address part of each packet so it gets to the right destination or intercepts packets destined for the zone player 400. Accordingly, in certain embodiments, each of the packets includes an Internet Protocol (IP)-based source address as well as an IP-based destination address.


In some embodiments, the network interface 402 may include one or both of a wireless interface 404 and a wired interface 406. The wireless interface 404, also referred to as a Radio Frequency (RF) interface, provides network interface functions for the zone player 400 to wirelessly communicate with other devices (e.g., other zone player(s), speaker(s), receiver(s), component(s) associated with the data network 128, and so on) in accordance with a communication protocol (e.g., any of the wireless standards IEEE 802.11a, 802.11b, 802.11g, 802.11n, or 802.15). To receive wireless signals and to provide the wireless signals to the wireless interface 404 and to transmit wireless signals, the zone player 400 of FIG. 4 includes one or more antennas 420. The wired interface 406 provides network interface functions for the zone player 400 to communicate over a wire with other devices in accordance with a communication protocol (e.g., IEEE 802.3). In some embodiments, a zone player includes both of the interfaces 404 and 406. In some embodiments, a zone player 400 includes only the wireless interface 404 or the wired interface 406.


In some embodiments, the processor 408 is a clock-driven electronic device configured to process input data according to instructions stored in memory 410. The memory 410 is data storage which may be loaded with one or more software modules 414, which may be executed by the processor 408 to achieve certain tasks. In the illustrated embodiment, the memory 410 is a tangible machine readable medium storing instructions which may be executed by the processor 408. In some embodiments, a task might be for the zone player 400 to retrieve audio data from another zone player or a device on a network. In some embodiments, a task might be for the zone player 400 to send audio data to another zone player or device on a network. In some embodiments, a task might be for the zone player 400 to synchronize playback of audio with one or more additional zone players. In some embodiments, a task might be to pair the zone player 400 with one or more zone players to create a multi-channel audio environment. Additional or alternative tasks may be achieved via the one or more software modules 414 and the processor 408.


The location component 424 may include one or more sensors, transmitters, receivers, detectors, processors, and so on. In order to determine the position of the listener or a plurality of listeners, the location circuit 424 receives location data from sensors. Based on the received location data, the location component 424 is able to generate a listener location, a number of listener locations, and/or a location point based on the number of listener locations. To gather data indicative of the position of the listener and/or listeners, the location circuit 424 communicates with the sensors. In some embodiments, a listener location is a location within a room or area. In some embodiments, a listener location is a location with a home or office space. In some embodiments, a listener location is a location relative to one or more zone players. In some embodiments, a listener location may be another predefined location.


In some embodiments, the location data is communicated to processor 408 for processing. In some embodiments, the location data is communicated to audio processing component 412 for processing. In other embodiments, the location data is processed by the location component 424. The location data may be processed by any other device or component capable of performing calculations.


In one embodiment, the location component 424 includes an image capture device such as a camera. The camera captures image frames with image characteristics. In such embodiments, the captured image frame characteristics include luminance and/or shadowing qualities. The captured image frame characteristics are then communicated to a processor for generating localization information. By comparing changes in luminance and shadowing characteristics of the captured image frames, the processor is able to detect the position of the listener to generate localization information. The generated localization information is then communicated to the audio processing circuit 412.


In another embodiment, the image capture device included in the location component 424 includes an infrared (IR) camera. In such embodiments, the IR camera captures image frame characteristics, including body heat characteristics. The captured image frame characteristics are then communicated to a processor for generating localization information. By comparing changes in body heat signatures, the processor is able to generate localization information. The generated localization information is then communicated to the audio processing component 412.


In another embodiment, an IR transmitter may be carried by the listener as a remote and/or controller (not shown). The remote may be a cellular phone, a personal digital assistant (PDA), or another portable device capable of transmitting an IR signal. The transmitted IR signals may be received by an IR receiver, such as an IR diode, included in the location component 424. These signal pulses are then gathered and communicated to the processor for generating localization data. By analyzing the phase shifts and the time delays associated with the inputted IR signals and the location of the IR receivers, the processor is able to triangulate the position of the listener. This localization information is then communicated to the audio processing circuit 412.


In another embodiment, the location component 424 includes one or more microphones. The microphones are able to gather acoustic wave information from the listener. In some embodiments, the acoustic wave information is generated by the listener. For instance, the listener may generate oratory signals which are received by the microphones included in the location component 424 as acoustic wave information. In some embodiments, the listener carries a remote, such as a cellular phone, a PDA, or another portable device, producing an auditory tone detected by the microphones included in the location component 424. The auditory tone may be in the human audible range, or may be outside of the audible range. By determining the time delay in the acoustic wave information received at the microphones, the processor is able to triangulate the position of the listener. This localization information is then communicated to the audio processing circuit 412.


In another embodiment, the listener carries a remote, such as a cellular phone, PDA, or another portable device, which transmits a control packet. Included in the control packet is an associated Received Signal Strength Indicator (RSSI) signal with a timestamp. The control packet is then received by sensors in the location component 424 of the zone player 400. The gathered control packets are then communicated to the processor. By comparing the information included in the received control packet from the listener with an associated RSSI signal and the time delay, the processor is able to triangulate the position of the listener. This localization information is then communicated to the audio processing circuit 412.


In another embodiment, the location component 424 includes sensors to receive data packets. Wireless signals, for example, transmitted at 2.4 GHz frequency, are absorbed by the human body. The data packets received by the sensors are able to detect changes in the strength of the signal received by the sensor. By comparing the expected signal strength with the actual received signal strength, the processor is able to triangulate the relative position of the listener. This localization information is then communicated to the audio processing component 412.


The audio processing component 412 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor, and so on. In certain embodiments, the audio retrieved via the network interface 402 is processed and/or intentionally altered by the audio processing component 412. In some examples, the audio processing component 412 filters audio signals differently for different speakers 418. Further, the audio processing component 412 may produce analog audio signals. The processed analog audio signals are then provided to the audio amplifier 416 for play back through speakers 418. In addition, the audio processing component 412 may include necessary circuitry to process analog or digital signals as inputs to play from zone player 400, send to another zone player on a network, or both play and send to another zone player on the network. An example input includes a line-in connection (e.g., an auto-detecting 3.5 mm audio line-in connection).


The audio amplifier 416 is a device which amplifies audio signals to a level for driving one or more speakers 418. The one or more speakers 418 may include an individual transducer (e.g., a “driver”) or a complete speaker system which includes an enclosure including one or more drivers. A particular driver may be a subwoofer (for low frequencies), a mid-range driver (middle frequencies), and a tweeter (high frequencies), for example. An enclosure may be sealed or ported, for example.


A zone player 400 may also be referred to herein as a playback device. An example playback device includes a Sonos® Play:3, which is manufactured by Sonos, Inc. of Santa Barbara, California. The Play:3 is an example zone player with a built-in amplifier and speakers. In particular, the Play:3 is a three-driver speaker system which includes a tweeter and two mid-range speakers (also referred to as drivers). When playing audio content via the Play:3, the left audio data of a track is output from the left mid-range speaker, the right audio data of a track is output from the right mid-range driver, and the tweeter outputs center or both left and right audio data for a track. Audio from Internet radio stations, online music and video services, downloaded music, analog audio inputs, television, DVD, and so on, may be played from a Sonos® Play:3. While the Play:3 is an example of a zone player with speakers, it is understood a zone player with speakers is not limited to one with a certain number of speakers (e.g., three speakers as in the Play:3), but rather may contain one or more speakers. Further, a zone player may be part of another device, which might even serve a purpose different than audio (e.g., a lamp).


IV. Example Controller

Referring now to FIG. 5, there is shown an example controller 500, which may correspond to the controlling device 130 in FIG. 1. The controller 500 may be used to facilitate the control of multi-media applications, automation and others in a system. In particular, the controller 500 is configured to facilitate a selection of a plurality of audio sources available on the network and enable control of one or more zone players (e.g., the zone players 102-124 in FIG. 1) through a wireless network interface 508. According to one embodiment, the wireless communications is based on an industry standard (e.g., infrared, radio, wireless standards IEEE 802.11a, 802.11b 802.11g, 802.11n, or 802.15). Further, when a particular audio is being accessed via the controller 500 or being played via a zone player, a picture (e.g., album art) or any other data, associated with the audio source may be transmitted from a zone player or other electronic device to the controller 500 for display.


The controller 500 is provided with a screen 502 and an input interface 514 which allows a user to interact with the controller 500, for example, to navigate a playlist of many multimedia items and to control operations of one or more zone players. The screen 502 on the controller 500 may be a liquid crystal display (LCD) screen, for example. The screen 502 communicates with and is commanded by a screen driver 504 controlled by a microcontroller (e.g., a processor) 506. The memory 510 may be loaded with one or more application modules 512 which may be executed by the microcontroller 506 with or without a user input via the user interface 514 to achieve certain tasks. In some embodiments, an application module 512 is configured to facilitate grouping a number of selected zone players into a zone group and synchronizing the zone players for audio play back. In some embodiments, an application module 512 is configured to control the audio sounds (e.g., volume) of the zone players in a zone group. In operation, when the microcontroller 506 executes one or more of the application modules 512, the screen driver 504 generates control signals to drive the screen 502 to display an application specific user interface accordingly.


The controller 500 includes a network interface 508 which facilitates wireless communication with a zone player. In some embodiments, the commands such as volume control and audio playback synchronization are sent via the network interface 508. In some embodiments, a saved zone group configuration is transmitted between a zone player and a controller via the network interface 508. The controller 500 may control one or more zone players, such as 102-124 of FIG. 1. There may be more than one controller for a particular system. Further, a controller may be integrated into a zone player.


It should be noted other network-enabled devices such as an iPhone®, iPad® or any other smart phone or network-enabled device (e.g., a networked computer such as a PC or Mac®) may also be used as a controller to interact or control zone players in a particular environment. In some embodiments, a software application or upgrade may be downloaded onto a network enabled device to perform the functions described herein.


In some embodiments, a user may create a zone group including at least two zone players from the controller 500. The zone players in the zone group may play audio in a synchronized fashion, so all of the zone players in the zone group play back an identical audio source or a list of identical audio sources in a synchronized manner so no (or substantially no) audible delays or hiccups could be heard. Similarly, in some embodiments, when a user increases the audio volume of the group from the controller 500, the signals or data of increasing the audio volume for the group are sent to one of the zone players and causes other zone players in the group to be increased together in volume.


A user via the controller 500 may group zone players into a zone group by activating a “Link Zones” or “Add Zone” soft button, or de-grouping a zone group by activating an “Unlink Zones” or “Drop Zone” button. For example, one mechanism for ‘joining’ zone players together for audio play back is to link a number of zone players together to form a group. To link a number of zone players together, a user may manually link each zone player or room one after the other. For example, assume there is a multi-zone system which includes the following zones: Bathroom, Bedroom, Den, Dining Room, Family Room, and Foyer.


In some embodiments, a user may link any number of the six zone players, for example, by starting with a single zone and then manually linking each zone to the first zone.


In some embodiments, a set of zones may be dynamically linked together using a command to create a zone scene or theme (subsequent to first creating the zone scene). For instance, a “Morning” zone scene command may link the Bedroom, Office, and Kitchen zones together in one action. Without this single command, the user would need to manually and individually link each zone. The single command might include a mouse click, a double mouse click, a button press, a gesture, or some other programmed action. Other kinds of zone scenes may be programmed.


In some embodiments, a zone scene may be triggered based on time (e.g., an alarm clock function). For instance, a zone scene may be set to apply at 8:00 am. The system may link appropriate zones automatically, set specific music to play, and then stop the music after a defined duration. Although any particular zone may be triggered to an “On” or “Off” state based on time, for example, a zone scene enables any zone(s) linked to the scene to play a predefined audio (e.g., a favorable song, a predefined playlist) at a specific time and/or for a specific duration. If, for any reason, the scheduled music failed to be played (e.g., an empty playlist, no connection to a share, failed Universal Plug and Play (UPnP), no Internet connection for an Internet Radio station, and so on), a backup buzzer may be programmed to sound. The buzzer may include a sound file stored in a zone player, for example.



FIG. 6 shows an example pair of zone players 602, 604 having mid-tweeter-mid (MTM) speaker arrangements, including audio filters, and configured as a stereo pair. Either of the example zone players 602, 604 may be implemented by the zone player 400 of FIG. 4. In particular, each of the example zone players 602, 604 includes an audio processing circuit (e.g., the audio processing circuit 412 of FIG. 4) to implement a set of audio filters, and a plurality of speakers (e.g., the speakers 418 of FIG. 4) to implement a corresponding set of speakers or audio reproduction devices.


An MTM speaker arrangement includes two mid-range speakers 606, 608, 610, 612 (e.g., speakers having a diameter between about 3.5 inches and 6.75 inches, operating in the approximate frequency range of 300-5000 Hz) and a high-range speaker, also known as a tweeter 614, 611 (e.g., 3.5 inch diameter or smaller, operating in the approximate frequency range of 2,000-20,000 Hz) per zone player 602, 604. The example zone players 602, 604 of FIG. 6 may be oriented horizontally, where the centers of the mid-range speakers are substantially level in a horizontal direction, and/or vertically, where the centers of the mid-range speakers are substantially aligned in a vertical direction. The example mid-range speakers 606, 608 are spaced so the centers of the speakers 606, 608 are approximately one-half wavelength of a selected center frequency (e.g., λ0/2) apart. An example center frequency λ0 which may be used to determine the spacing of the example pairs of mid-range speakers 606, 608 and 610, 612 is 1,000 Hz, which has a wavelength of about 344 millimeters (e.g., at sea level at about 20 degrees Celsius). The example tweeter 614 is positioned between the example mid-range speakers 606, 608.


The example zone players 602, 604 include respective audio filters 616, 618. As mentioned above, the example audio filters 616, 618 may be implemented using digital audio processing circuitry, such as a digital audio processor or other digital processing unit. The following example will be described with reference to the example audio filter 616 of FIG. 6. However, the description of the audio filter 616 is also applicable to the example audio filter 618. The operation of the example zone players 602, 604 as a stereo pair with respect to the audio filters 616, 618 is also discussed below. The example zone players 602, 604 may also be operated in other multiple-device arrangements. As used herein “multiple-device” refers to separate sets of speakers, such as multiple-MTM speaker arrangements, and not merely multiple speakers in the same device.


The example audio filter 616 of FIG. 6 is an active filter, which filters the received audio information prior to amplification. The example audio filter 616 includes an audio preprocessing block 620, a first mid-range filter 622, a second mid-range filter 624, and a tweeter filter 626. The example audio preprocessing block 620 may include, for example, audio decoding to decompress and/or otherwise convert an audio information (e.g., an audio file) from a storage format (e.g., compressed) to audio information in a playback format. The audio pre-processing block 620 provides the audio information to the example filters 622-626 for processing.


Some MTM speaker arrangements experience a “narrowing” phenomenon, in which a listener positioned straight in front of the speakers will experience the audio differently than a listener positioned to the left or the right of the speakers. This phenomenon is particularly acute for audio frequencies around the center frequency f0 (e.g., the frequency on which the spacing of the mid-range speakers is based). In some cases, certain frequencies are completely canceled out in some positions relative to the speaker. While this behavior may be desirable in some circumstances, such as when the MTM speakers are oriented vertically (which reduces reflections and/or echoes off of the ceilings and floors), such behavior may be undesirable in others, such as when the MTM speakers are oriented horizontally (which results in a limited range of positions in which the frequency response is consistent and the audio sounds substantially as intended). Unlike such known MTM speaker arrangements, the example zone players 602, 604 of FIG. 6 reduce or eliminate the narrowing phenomenon and increase the angular audibility range (e.g., the range of angles measured from straight in front of the speaker) in which the frequency response is consistent and the sounds from the speakers are heard substantially as intended.


In the example of FIG. 6, the audio filter 616 processes the audio based on the configuration of the zone player 602 in the stereo pair. In particular, the zone player 602 is set up as the left speaker (when viewing from the front). Additionally, the zone player 602 is configured with a horizontal orientation. Thus, the zone player 602 is aware the speaker 606 is the left mid-range speaker and the speaker 608 is the right mid-range speaker for the left zone player 602 of the stereo pair (when viewing from the front). Based on this configuration information, the example audio filter 616 applies a first filtering configuration (e.g., the first mid-range filter 620) to the left (e.g., outer) mid-range speaker 606 and applies a second filtering configuration (e.g., the second mid-range filter 624) to the right (e.g., inner) mid-range speaker 608.


The example audio filter 618 also includes audio preprocessing 628, a first mid-range filter 630, a second mid-range filter 632, and a tweeter filter 634. Like the audio filter 616, the audio filter 618 applies the different filtering configurations to the example mid-range filters 610, 612 based on configuration information for the zone player 604 (e.g., physical orientation, status as right/left speaker of a stereo pair, etc.). In the example of FIG. 6, the audio filter 618 applies the first mid-range filter 630 to the right (e.g., outer) mid-range speaker 612 and applies the second mid-range filter 632 to the left (e.g., inner) mid-range speaker 610. The example audio filters 616, 618 result in the zone players 602, 604 steering audio and expanding the angular field of audibility relative to known MTM speakers.



FIG. 7 is a flow chart describing an example method for calibrating the sound field based on the position of the listener. Operation begins when a zone player is initiated for playback (Block 700). Once initiated, the zone player begins to gather location data (Block 701). Location data is collected by the zone player through sensors included in location component 424, described above in FIG. 4.


In some embodiments, the location information captured by the sensors represents image frame characteristics. In some embodiments, the location data captured by the sensors represents body heat characteristics. In some embodiments, the location information collected by the sensors is radio frequency signals. In some embodiments, the location data collected by the sensors are data packets.


Once the location information is gathered by the location component 424, the location information is processed (Block 710). The gathered location data is processed to determine the position of the listener. In some embodiments, this processed location data defines a “sweet spot” where the sound fields received by the listener are optimized to provide the listener with the most enjoyable playback experience (e.g., optimized imaging, optimized equalization values, optimized volume levels, and so on). In some embodiments, the gathered location data determines the presence of multiple listeners in the listening zone. In some such embodiments, the processed sweet spot adjusts the audio characteristics of the retrieved audio to generate a sound field most suitable for the plurality of detected listeners. For example, in one embodiment, if two listeners were detected in a zone area, the processed sweet spot would engulf both listeners and optimize the audio characteristics of the sound field to account for the two listeners.


In some embodiments, the location data is communicated to processor 408 of FIG. 4 for processing. In some embodiments, the location data is communicated to audio processing component 412 for processing. In other embodiments, the location data is processed by the location component 424. The location data may be processed by any other device or component capable of performing calculations. Through the use of one or more triangulation algorithms and the gathered location information, the position of the listener may be calculated.


The position of the listener is then communicated to the audio processing component 412 of FIG. 4 as localization signals (Block 720). As described above with respect to FIG. 4, the audio processing component 412 may include an audio preprocessing component, an audio enhancement component or a digital signal processor, and so on. The audio retrieved by the zone player via the network interface 402 is processed and/or intentionally altered by the audio processing component 412. In some embodiments, the localization signals may be communicated to and received by a zone player in the same room as a listener or group of listeners. In some embodiments, the localization signals may be communicated to and received by a zone player or zone players with no listeners in the listening area. In some such embodiments, the localization signals may be used by the zone player or zone players to adjust the audio characteristics of the respective output sound field.


The audio processing component 412 then processes and/or intentionally alters the audio retrieved via the network interface 402 in combination with the localization signals (Block 725). In some examples, the audio processing component 412 filters the audio signals differently for different speakers. The processed audio signals output by the audio processing component 412 represent audio characteristics of a sound field adjusted for the position of the listener. In some embodiments, the audio signal may be processed based on a factory set of parameters. In some embodiments, the audio signal may be processed based on a listener set of parameters. In some embodiments, the audio signal may be processed based on a combination of factory and listener sets of parameters. For example, in one embodiment, more or less bass may be output depending on how close a listener is to a particular zone player.


In some examples, the processed audio signals also include additional listener preferences, such as volume levels. For example, in one embodiment, while a song is playing in synchrony in the Dining Room and Family Room of FIG. 1, but the listener is localized only in the Family Room, the listener preference may be to automatically lower the volume of the zone player in the Family Room and raise the volume of the zone player in the Dining Room. In some such embodiments, lowering and raising the volume in this manner may result in a more omni-directional sound field for the listener.


The processed audio signals are then provided to an audio amplifier for playback through speakers (Block 730). In some embodiments, the processed audio signals are communicated to audio amplifier 416 of FIG. 4 for playback through speakers 418 of FIG. 4. In addition, the audio processing component 412 may include necessary circuitry to play from zone player 400, send to another zone player on a network, or both play and send to another zone player on the network.


Referring back to FIG. 1, the listener localization may take place in a multiple-device configuration. For example, the Home Theater Room of FIG. 1 includes at least three zone players. As described above, if a zone or room contains more than one zone player, then the zone players may be synchronized to play the same audio source, or the zone players may be paired to play separate channels. When a zone with multiple zone players is configured, a master zone player is assigned. For instance, in one embodiment, the master zone player may be the first zone player configured in the zone. In another embodiment, the master zone player is selected by the listener. In another embodiment, the master zone player is randomly assigned.


For illustrative purposes, zone player 120 will be labeled as the master zone player. As a result, when zone players 116 and 118 are synched to the Home Theater Room zone, they are labeled as slave zone players. Once a zone player is labeled a master zone player, all slave zone players in the zone communicate information with the master zone player.


Continuing with the example, slave zone players 116 and 118 now communicate all of their information to master zone player 120. Included in the information communicated with master zone player 120 is the location data gathered by the location component 424 of each respective zone player. As a result, master zone player 120 now has the location information from each of the slave zone players 116 and 118, as well as the location information collected by the location component 424 of zone player 120. Master zone player 120 is then able to triangulate the location of the listener with all of the aggregated information. Master zone player 120 then communicates the respective localization information to each of the slave zone players 116 and 118. Each of the zone players 116-120 communicates the received localization information to the audio processing circuit 412 of each respective zone player. As a result, the audio characteristic of the output sound field of each zone player 116-120 is optimized to produce the best listening environment for the listener. For example, the volume level of the zone player or zone players nearest the position of the listener may be reduced based on the position of the listener in relation to the other zone player or zone players.


In some embodiments, the master zone player gathers the location information continuously, or near continuously, resulting in real-time, or substantially real-time, calibration of the sound field as each zone player tracks the listener throughout the listening zone. As the listener moves around in the listening zone, the sweet spot may be adjusted to track the position of the listener. In some embodiments, the master zone player gathers the location information from the slave zone players periodically. For example, the master zone player may gather the location information five times in one second. In some embodiments, the master zone player gathers the location information whenever one of the zone players in the listening zone detects a change in the position of the listener. For example, while the listener sits in a chair, all three zone players 116-120 remain idle; if zone player 116 detects movement by the listener, zone player 116 sends a signal to master zone player 120, which then gathers the location information from all of the zone players 116-120 in order to triangulate the position of the listener.



FIG. 8 is a flow chart describing an example method for listener localization with a multiple-device configuration in a multiple-zone scene. For example, the “Morning” zone scene described above links zone players 112, 110 and 102 in the Bedroom, Office and Kitchen zones, respectively. Operation begins when a zone scene is selected for playback (Block 801). In some embodiments, playback may be initiated through the selection of an audio song with the controller. In another embodiment, playback may be automatically initiated when a preset alarm is activated. Similar to the single-zone, multiple-device configuration, when the zone players are being linked, a master zone player is assigned (Block 805). As previously described, in some embodiments, the master zone player may be the first zone player configured in the zone. In another embodiment, the master zone player is selected by the listener. In another embodiment, the master zone player is randomly assigned.


For illustrative purposes, zone player 112 in the Bedroom zone is labeled the master zone player. If a second zone player is linked to the zone scene (Block 810), then the second zone player is labeled a slave zone player (Block 815). The method waits to see if another zone player is linked with the zone scene (Block 820), and if so, the system returns to Block 815 to label another zone player. Continuing with the example, when zone player 110 is linked with the “Morning” zone scene, it is labeled as a slave zone player (Block 815). The additional linking of zone player 102 in the Kitchen zone returns the method to Block 815, where zone player 102 is also labeled a slave zone player.


In another embodiment, no additional zone players are determined at Block 810 and the method proceeds to Block 825. In another embodiment, no additional zone players are determined at Block 820 and the method proceeds to Block 825.


Continuing with the example, while in the Bedroom, the listener selects a song to play with controller 130 of FIG. 1. As a result, master zone player 112 and slave zone players 110 and 102 begin playing the song in synchrony with each other, as described above. At Block 825, all three zone players (112, 110 and 102) perform a location scan. As described above, the location scan may be performed through a variety of sensors. In some embodiments, the sensors are cameras. In another embodiment, the sensors are IR cameras. In another embodiment, the sensors are microphones. In another embodiment, the sensors are data packet receivers.


Once each zone player has completed its location scan, the location data is communicated to the master zone player (Block 830). In the current example, master zone player 112 gathers the location information from each of the zone players linked in the “Morning” zone scene, zone players 112, 110 and 102. Master zone player 112 then processes the location information with a triangulation algorithm to determine the position of the listener with respect to each of the zone players in the zone scene. In some embodiments, the master zone player 112 communicates a status update to a user, such as through controller 300 of FIG. 3. In some such embodiments, the status update may include information regarding which zone players are active. In other such embodiments, the status update may indicate any changes to the sound field due to the position of a listener. In other such embodiments, the status update may indicate other information being monitored by the master zone player. While triangulating the position of the listener, the master zone player is able to determine there is no listener within the listening zones of zone players 110 and 102 (Block 835). Since there is a listener within the listening zone of zone player 112, localization information is communicated to the zone player (Block 840). Zone player 112 adjusts the audio characteristics of the sound field outputted from zone player 112 as described above in a single-zone, single-device configuration (Block 845). Zone player 112 then performs another location scan (Block 850) and sends the location information back to the master zone player for gathering and processing (Block 830). In some embodiments, as the listener moves around the room, the “sweet spot” is adjusted to track the position of the listener.


In another embodiment, the location information communicated to the master zone player described no listener present in the listening area (Block 835). For instance, since the listener is located in the Bedroom, the zone players in the Office zone and the Kitchen zone are unable to locate a listener. The master zone player then communicates a default sound field command along with the localization information to the zone player (Block 860). In some embodiments, the default sound field is preset by the listener. In some embodiments, the default sound field when no listener is located within the listening zone is to adjust the audio characteristics of the sound field so the volume level is decreased to a minimal level and the other audio characteristics return to a default setting as if the listener were sitting in the middle of the room. In some embodiments, the default sound field when no listener is located within the listening zone is to decrease the volume level of the speakers to the lowest setting. In some embodiments, the default sound field when no listener is located within the listening zone is to turn off the zone player so no sound field is output by the zone player. In some embodiments, the default audio setting when no listener is located within the listening zone is to make no changes to the sound field and leave the audio characteristics of the output sound field the same as they were previously set. Each zone player then adjusts the respective audio characteristics of the outputted sound field to match the default sound field command (Block 865).


The zone player then moves to Block 866, where it waits to perform the next location scan. In some embodiments, the default sound field command communicated to the zone players in Block 860 may also modify the frequency of location scans performed by the zone player. In some embodiments, since slave zone players 110 and 102 have not detected any change in their localization information, they send no location information to master zone player 112. In some embodiments, slave zone players 110 and 102 do less frequent location scans when no listener was previously detected in their respective listening zones. For instance, slave zone players 110 and 102 perform listener scans half as often as they previously were scanning. In some embodiments, slave zone players 110 and 102 perform localization scans more frequently than previously performed. For instance, slave zone players 110 and 102 perform twice as many localization scans than previously performed. In some embodiments, slave zone players 110 and 102 continue to send location information to master zone player 112 with no change in the frequency of location scans. After the waiting period is completed, the zone player then performs a new location scan (Block 870).


In some embodiments, the location scan performed in Block 870 reveals a change in the location information (Block 875) and the new location information is communicated to the master zone player in Block 830. For example, in one embodiment, zone players 110 and 102 were turned off so no sound field was output by the respective zone players at Block 865. At Block 870, zone player 110 reveals the presence of a listener in the zone player 110 listening area. Zone player 110 then resumes audio playback and communicates the new location information to the master zone player (Block 830).


In some embodiments, the location scan performed in Block 870 reveals no change in the location information (Block 875) and the method returns to Block 866 to wait to perform the next location scan.


In another embodiment, listener information communicated to the master zone player 112 in Block 830 determines the presence of a listener in the Kitchen zone as well as the Bedroom zone. In such an example, master zone player 112 and slave zone player 102 may follow the path from Block 835 to Block 840, as described above. As a result, zone players 112 and 102 output adjusted sound fields optimized for each listener. Slave zone player 110 may continue the path from Block 835 to Block 860, as described above.


In another embodiment, location scans are conducted by zone players not in the currently playing zone scene. For example, while the Morning zone scene is playing in synchrony through zone players 112, 110 and 102, zone player 114 in the Bathroom zone also performs a location scan. In some embodiments, zone player 114 detects the presence of a listener in the Bathroom zone listening area and sends the location information to the master zone player 112. Master zone player 112 may then determine if an automatic synching feature is enabled by a listener. In some embodiments, the automatic synching feature is enabled and master zone player 112 automatically adds zone player 114 to the zone scene and continues with Block 815. In some embodiments, the automatic synching feature is disabled and master zone player 112 disregards the location information provided by zone player 114.


In view of the foregoing, it should be apparent disclosed example systems, methods and apparatus may be used to provide a media playback device having improved audio quality and perception. Example systems, methods, and apparatus localize the position of the listener and then filter audio signals for outputting a sound field with audio characteristics optimized for the position of the listener.


Various inventions have been described in sufficient detail with a certain degree of particularity. It is understood to those skilled in the art the present disclosure of embodiments has been made by way of examples only and numerous changes in the arrangement and combination of parts may be resorted without departing from the spirit and scope of the present disclosure as claimed. While the embodiments discussed herein may appear to include some limitations as to the presentation of the information units, in terms of the format and arrangement, the embodiments have applicability well beyond such embodiment, which may be appreciated by those skilled in the art. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.

Claims
  • 1. A system comprising a first network device and a second network device, the first network device comprising: a first audio transducer;a microphone;one or more sensors;a first network interface;at least one first processor; andat least one first non-transitory computer-readable medium storing program instructions that are executable by the at least one first processor such that the first network device is configured to perform first functions comprising: detecting a human presence in sensor data received via at least one sensor of the one or more sensors;causing the second network device to play back a first audio output corresponding to a first signal, wherein causing the second network device to play back the first audio output comprises: based on detecting the human presence, sending the first signal via the first network interface to the second network device; andplaying back, via the first audio transducer, an audio output corresponding to a second signal, and
  • 2. The system of claim 1, wherein the first audio transducer comprises a loudspeaker, wherein the second network device comprises an additional microphone, wherein the second signal comprises speech, and wherein playing back the audio output corresponding to the second signal comprises playing back the speech via the loudspeaker.
  • 3. The system of claim 1, wherein detecting the human presence comprises detecting movement indicating the human presence.
  • 4. The system of claim 3, wherein the one or more sensors comprise a camera, and wherein detecting the movement indicating the human presence comprises detecting the movement indicating the human presence via frames captured by the camera.
  • 5. The system of claim 3, wherein the one or more sensors comprise an infrared sensor, and wherein detecting movement indicating the human presence comprises detecting the movement indicating the human presence in samples captured by the infrared sensor.
  • 6. The system of claim 3, wherein the one or more sensors comprise a sensor configured to detect heat, and wherein detecting the movement indicating the human presence comprises detecting the movement indicating the human presence in samples captured by the sensor configured to detect heat.
  • 7. The system of claim 1, wherein the one or more sensors comprise a depth sensor, and wherein detecting the human presence comprises detecting movement indicating the human presence in sample captured by the depth sensor.
  • 8. The system of claim 1, wherein sending the first signal to the second network device comprises sending the first signal to the second network device via at least one third network device.
  • 9. The system of claim 1, wherein the first network device comprises a lighting fixture.
  • 10. The system of claim 9, wherein the lighting fixture comprises a lamp.
  • 11. The system of claim 1, wherein the first network device comprises an enclosure configured for outdoor use, wherein the enclosure is configured to carry one or more of the first network interface, the first audio transducer, the one or more sensors, the microphone, the at least one first processor, and the at least one first non-transitory computer-readable medium.
  • 12. The system of claim 1, wherein the first functions comprise causing, via the first network interface, a third network device to play back a third audio output corresponding to the first signal, wherein the third audio output is different from both of (i) the first audio output and (ii) a second audio output.
  • 13. The system of claim 1, wherein the first functions further comprise: receiving, via the microphone of the first network device, microphone data comprising speech; andcausing the second network device to play back, via the audio transducer of the second network device, a third audio output, wherein causing the second network device to play back the third audio output comprises: after receiving the microphone data, sending, via the first network interface to the second network device, a third signal comprising the speech, wherein the third audio output is different from the first audio output.
  • 14. A first network device comprising: an audio transducer;a microphone;a network interface;at least one processor; andat least one non-transitory computer-readable medium storing program instructions that are executable by the at least one processor such that the first network device is configured to perform functions comprising: detecting a human presence in sensor data received via at least one sensor of one or more sensors;causing a second network device to play back a first audio output corresponding to a first signal, wherein causing the second network device to play back the first audio output comprises: based on detecting the human presence, sending the first signal via the first network interface to the second network device;receiving, via the network interface, second data representing a second signal from the second network device; andplaying back, via the audio transducer, an audio output corresponding to the second signal.
  • 15. The first network device of claim 14, wherein the audio transducer comprises a loudspeaker, wherein the second network device comprises an additional microphone, wherein the second signal comprises speech, and wherein playing back the audio output corresponding to the second signal comprises playing back the speech via the loudspeaker.
  • 16. The first network device of claim 14, wherein detecting the human presence comprises detecting movement indicating the human presence.
  • 17. The first network device of claim 16, wherein the one or more sensors comprise a camera, and wherein detecting the movement indicating the human presence comprises detecting the movement indicating the human presence via frames captured by the camera.
  • 18. The first network device of claim 16, wherein the one or more sensors comprise an infrared sensor, and wherein detecting movement indicating the human presence comprises detecting the movement indicating the human presence in samples captured by the infrared sensor.
  • 19. The first network device of claim 16, wherein the one or more sensors comprise a sensor configured to detect heat, and wherein detecting the movement indicating the human presence comprises detecting the movement indicating the human presence in samples captured by the sensor configured to detect heat.
  • 20. The first network device of claim 16, wherein the one or more sensors comprise a depth sensor, and wherein detecting the movement indicating the human presence comprises detecting the movement indicating the human presence in sample captured by the depth sensor.
  • 21. The first network device of claim 16, wherein sending the first signal to the second network device comprises sending the first signal to the second network device via at least one third network device.
  • 22. The first network device of claim 16, wherein the first network device comprises a lighting fixture.
  • 23. The first network device of claim 22, wherein the lighting fixture comprises a lamp.
  • 24. The first network device of claim 16, wherein the first network device comprises an enclosure configured for outdoor use, wherein the enclosure is configured to carry one or more of the network interface, the audio transducer, the one or more sensors, the microphone, the at least one processor, and the at least one non-transitory computer-readable medium.
  • 25. The first network device of claim 16, wherein the functions comprise causing, via the first network interface, a third network device to play back a third audio output corresponding to the first signal, wherein the third audio output is different from both of (i) the first audio output and (ii) a second audio output.
  • 26. The first network device of claim 16, wherein the functions further comprise: receiving, via the microphone of the first network device, microphone data comprising speech; andcausing the second network device to play back, via the audio transducer of the second network device, a third audio output, wherein causing the second network device to play back the third audio output comprises: after receiving the microphone data, sending, via the first network interface to the second network device, a third signal comprising the speech, wherein the third audio output is different from the first audio output.
  • 27. A tangible, non-transitory computer-readable medium comprising program instructions that are executable by at least one processor to configure a first network device to: detecting a human presence in sensor data received via at least one sensor of one or more sensors carried by the first network device;causing a second network device to play back a first audio output corresponding to a first signal, wherein causing the second network device to play back the first audio output comprises: based on detecting the human presence, sending the first signal via a network interface to the second network device, wherein the network interface is carried by the first network device;receiving, via the network interface, second data representing a second signal from the second network device; andplaying back, via an audio transducer carried by the first network device, an audio output corresponding to the second signal.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. non-provisional patent application Ser. No. 17/543,014. filed on Dec. 6, 2021, entitled “Media Playback Based on Sensor Data,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 17/543,014 is continuation of U.S. non-provisional patent application Ser. No. 17/207,640, filed on Mar. 20, 2021, and issued as U.S. Pat. No. 11,197,117 on Dec. 7, 2021, entitled “Media Playback Based on Sensor Data,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 17/207,640 is a continuation of U.S. non-provisional patent application Ser. No. 17/104,466, filed on Nov. 25, 2020, and issued as U.S. Pat. No. 11,122,382 on Sep. 14, 2021, entitled “Playback Based on Acoustic Signals,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 17/104,466 is a continuation of U.S. non-provisional patent application Ser. No. 16/658,896, filed on Oct. 21, 2019, entitled “Playback Based on User Settings,” and issued as U.S. Pat. No. 10,945,089 on Mar. 9, 2021, which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 16/658,896 is a continuation of U.S. non-provisional patent application Ser. No. 15/235,598, filed on Aug. 12, 2016, entitled “Playback Based Number of Listeners,” and issued as U.S. Pat. No. 10,455,347 on Oct. 22, 2019, which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 15/235,598 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/166,241, filed on May 26, 2016, entitled “Playback Based on Wireless Signal,” and issued as U.S. Pat. No. 10,334,386 on Jun. 25, 2019, which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 15/166,241 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/056,553, filed on Feb. 29, 2016, entitled “Location Determination According to Auditory Tones,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 15/056,553 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 14/726,921, filed on Jun. 1, 2015, entitled “Sound Field Calibration Using Listener Localization,” and issued as U.S. Pat. No. 9,930,470 on Mar. 27, 2018, which is also incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 14/726,921 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 13/340,126, filed on Dec. 29, 2011, entitled “Sound Field Calibration Using Listener Localization,” which issued as U.S. Pat. No. 9,084,058 on Jul. 14, 2015, and which is also incorporated herein by reference in its entirety.

US Referenced Citations (581)
Number Name Date Kind
4306113 Morton Dec 1981 A
4342104 Jack Jul 1982 A
4504704 Ohyaba et al. Mar 1985 A
4592088 Shimada May 1986 A
4628530 Op De Beek et al. Dec 1986 A
4631749 Rapaich Dec 1986 A
4694484 Atkinson et al. Sep 1987 A
4773094 Dolby Sep 1988 A
4995778 Bruessel Feb 1991 A
5218710 Yamaki et al. Jun 1993 A
5255326 Stevenson Oct 1993 A
5323257 Abe et al. Jun 1994 A
5386478 Plunkett Jan 1995 A
5440644 Farinelli et al. Aug 1995 A
5553147 Pineau Sep 1996 A
5581621 Koyama et al. Dec 1996 A
5754774 Bittinger et al. May 1998 A
5757927 Gerzon et al. May 1998 A
5761320 Farinelli et al. Jun 1998 A
5910991 Farrar Jun 1999 A
5923902 Inagaki Jul 1999 A
5939656 Suda Aug 1999 A
6018376 Nakatani Jan 2000 A
6032202 Lea et al. Feb 2000 A
6072879 Ouchi et al. Jun 2000 A
6111957 Thomasson Aug 2000 A
6256554 DiLorenzo Jul 2001 B1
6363155 Horbach Mar 2002 B1
6404811 Cvetko et al. Jun 2002 B1
6469633 Wachter Oct 2002 B1
6522886 Youngs et al. Feb 2003 B1
6548967 Dowling et al. Apr 2003 B1
6573067 Dib-Hajj et al. Jun 2003 B1
6611537 Edens et al. Aug 2003 B1
6631179 Sifuentes Oct 2003 B1
6631410 Kowalski et al. Oct 2003 B1
6639989 Zacharov et al. Oct 2003 B1
6643744 Cheng Nov 2003 B1
6704421 Kitamura Mar 2004 B1
6721428 Allred et al. Apr 2004 B1
6731760 Pedersen May 2004 B2
6757517 Chang Jun 2004 B2
6760451 Craven et al. Jul 2004 B1
6766025 Levy et al. Jul 2004 B1
6778869 Champion Aug 2004 B2
6798889 Dicker et al. Sep 2004 B1
6862440 Sampath Mar 2005 B2
6916980 Ishida et al. Jul 2005 B2
6931134 Waller, Jr. et al. Aug 2005 B1
6985694 De Bonet et al. Jan 2006 B1
6990211 Parker Jan 2006 B2
7031476 Chrisop et al. Apr 2006 B1
7039212 Poling et al. May 2006 B2
7058186 Tanaka Jun 2006 B2
7072477 Kincaid Jul 2006 B1
7092535 Pedersen et al. Aug 2006 B1
7092537 Allred et al. Aug 2006 B1
7103187 Neuman Sep 2006 B1
7130608 Hollstrom et al. Oct 2006 B2
7130616 Janik Oct 2006 B2
7143939 Henzerling Dec 2006 B2
7187947 White et al. Mar 2007 B1
7236773 Thomas Jun 2007 B2
7289637 Montag et al. Oct 2007 B2
7295548 Blank et al. Nov 2007 B2
7312785 Tsuk et al. Dec 2007 B2
7391791 Balassanian et al. Jun 2008 B2
7477751 Lyon et al. Jan 2009 B2
7483538 McCarty et al. Jan 2009 B2
7483540 Rabinowitz et al. Jan 2009 B2
7489784 Yoshino Feb 2009 B2
7490044 Kulkarni Feb 2009 B2
7492909 Carter et al. Feb 2009 B2
7519188 Berardi et al. Apr 2009 B2
7529377 Nackvi et al. May 2009 B2
7571014 Lambourne Aug 2009 B1
7590772 Marriott et al. Sep 2009 B2
7630500 Beckman et al. Dec 2009 B1
7630501 Blank et al. Dec 2009 B2
7643894 Braithwaite et al. Jan 2010 B2
7657910 McAulay et al. Feb 2010 B1
7664276 McKee Feb 2010 B2
7676044 Sasaki et al. Mar 2010 B2
7689305 Kreifeldt et al. Mar 2010 B2
7697701 Pedersen et al. Apr 2010 B2
7720237 Bharitkar et al. May 2010 B2
7742740 Goldberg et al. Jun 2010 B2
7769183 Bharitkar et al. Aug 2010 B2
7796068 Raz et al. Sep 2010 B2
7835689 Goldberg et al. Nov 2010 B2
7853341 McCarty et al. Dec 2010 B2
7876903 Sauk Jan 2011 B2
7925203 Lane et al. Apr 2011 B2
7949140 Kino May 2011 B2
7949707 McDowall et al. May 2011 B2
7961893 Kino Jun 2011 B2
7970922 Svendsen Jun 2011 B2
7987294 Bryce et al. Jul 2011 B2
8005228 Bharitkar et al. Aug 2011 B2
8014423 Thaler et al. Sep 2011 B2
8042961 Massara et al. Oct 2011 B2
8045721 Burgan et al. Oct 2011 B2
8045952 Qureshey et al. Oct 2011 B2
8050652 Qureshey et al. Nov 2011 B2
8063698 Howard Nov 2011 B2
8074253 Nathan Dec 2011 B1
8103009 McCarty et al. Jan 2012 B2
8116476 Inohara Feb 2012 B2
8126156 Corbett et al. Feb 2012 B2
8126172 Horbach et al. Feb 2012 B2
8131390 Braithwaite et al. Mar 2012 B2
8139774 Berardi et al. Mar 2012 B2
8144883 Pdersen et al. Mar 2012 B2
8160276 Liao et al. Apr 2012 B2
8160281 Kim et al. Apr 2012 B2
8170260 Reining et al. May 2012 B2
8175292 Aylward et al. May 2012 B2
8175297 Ho et al. May 2012 B1
8194874 Starobin et al. Jun 2012 B2
8229125 Short Jul 2012 B2
8233632 MacDonald et al. Jul 2012 B1
8234395 Millington Jul 2012 B2
8238547 Ohki et al. Aug 2012 B2
8238578 Aylward Aug 2012 B2
8243961 Morrill Aug 2012 B1
8264408 Kainulainen et al. Sep 2012 B2
8265310 Berardi et al. Sep 2012 B2
8270620 Christensen Sep 2012 B2
8279709 Choisel et al. Oct 2012 B2
8281001 Busam et al. Oct 2012 B2
8290185 Kim Oct 2012 B2
8291349 Park et al. Oct 2012 B1
8300845 Zurek et al. Oct 2012 B2
8306235 Mahowald Nov 2012 B2
8325931 Howard et al. Dec 2012 B2
8325935 Rutschman Dec 2012 B2
8325944 Duwenhorst et al. Dec 2012 B1
8331585 Hagen et al. Dec 2012 B2
8332414 Nguyen et al. Dec 2012 B2
8379876 Zhang Feb 2013 B2
8385557 Tashev et al. Feb 2013 B2
8391501 Khawand et al. Mar 2013 B2
8392505 Haughay et al. Mar 2013 B2
8401202 Brooking Mar 2013 B2
8433076 Zurek et al. Apr 2013 B2
8452020 Gregg et al. May 2013 B2
8463184 Dua Jun 2013 B2
8483853 Lambourne Jul 2013 B1
8488799 Goldstein et al. Jul 2013 B2
8503669 Mao Aug 2013 B2
8527876 Wood et al. Sep 2013 B2
8577045 Gibbs Nov 2013 B2
8577048 Chaikin et al. Nov 2013 B2
8600075 Lim Dec 2013 B2
8620006 Berardi et al. Dec 2013 B2
8682002 Wihardja et al. Mar 2014 B2
8731206 Park May 2014 B1
8755538 Kwon Jun 2014 B2
8798280 Goldberg et al. Aug 2014 B2
8819554 Basso et al. Aug 2014 B2
8831244 Apfel Sep 2014 B2
8855319 Liu et al. Oct 2014 B2
8862273 Karr Oct 2014 B2
8879761 Johnson et al. Nov 2014 B2
8903526 Beckhardt et al. Dec 2014 B2
8914559 Kalayjian et al. Dec 2014 B2
8930005 Reimann Jan 2015 B2
8934647 Joyce et al. Jan 2015 B2
8934655 Breen et al. Jan 2015 B2
8942252 Balassanian et al. Jan 2015 B2
8965033 Wiggins Feb 2015 B2
8965546 Visser et al. Feb 2015 B2
8977974 Kraut Mar 2015 B2
8984442 Pirnack et al. Mar 2015 B2
8989406 Wong et al. Mar 2015 B2
8995687 Marino, Jr. et al. Mar 2015 B2
8995688 Chemtob et al. Mar 2015 B1
8996370 Ansell Mar 2015 B2
9020153 Britt, Jr. Apr 2015 B2
9021153 Lu Apr 2015 B2
9042556 Kallai et al. May 2015 B2
9065929 Chen et al. Jun 2015 B2
9084058 Reilly et al. Jul 2015 B2
9100766 Soulodre et al. Aug 2015 B2
9106192 Sheen et al. Aug 2015 B2
9179233 Kang Nov 2015 B2
9215545 Dublin et al. Dec 2015 B2
9219460 Bush Dec 2015 B2
9231545 Agustin et al. Jan 2016 B2
9247365 Ellis et al. Jan 2016 B1
9264839 Oishi et al. Feb 2016 B2
9286384 Kuper et al. Mar 2016 B2
9288596 Gossain et al. Mar 2016 B2
9288597 Carlsson et al. Mar 2016 B2
9300266 Grokop Mar 2016 B2
9307340 Seefeldt Apr 2016 B2
9319816 Narayanan Apr 2016 B1
9348824 Coburn, IV May 2016 B2
9355555 Reichert et al. May 2016 B2
9398392 Ridihalgh et al. Jul 2016 B2
9451377 Massey et al. Sep 2016 B2
9462399 Bharitkar et al. Oct 2016 B2
9467779 Iyengar et al. Oct 2016 B2
9472201 Sleator Oct 2016 B1
9473207 McCormack et al. Oct 2016 B2
9489948 Chu et al. Nov 2016 B1
9491499 Wagenaar et al. Nov 2016 B2
9524098 Griffiths et al. Dec 2016 B2
9538305 Lehnert et al. Jan 2017 B2
9538308 Isaac et al. Jan 2017 B2
9544701 Rappoport Jan 2017 B1
9560449 Carlsson et al. Jan 2017 B2
9560460 Chaikin et al. Jan 2017 B2
9584915 Fullam et al. Feb 2017 B2
9596531 Zhang Mar 2017 B1
9609383 Hirst Mar 2017 B1
9615171 O'Neill et al. Apr 2017 B1
9628911 Rabinowitz et al. Apr 2017 B2
9648422 Sheen et al. May 2017 B2
9654073 Apodaca May 2017 B2
9654545 Gossain May 2017 B2
9674625 Armstrong-Muntner et al. Jun 2017 B2
9678708 Bierbower et al. Jun 2017 B2
9686625 Patel Jun 2017 B2
9689960 Barton et al. Jun 2017 B1
9690271 Sheen et al. Jun 2017 B2
9690539 Sheen et al. Jun 2017 B2
9693165 Downing et al. Jun 2017 B2
9699582 Sheerin et al. Jul 2017 B2
9706319 Peters et al. Jul 2017 B2
9706323 Sheen et al. Jul 2017 B2
9715365 Kusano et al. Jul 2017 B2
9723420 Family et al. Aug 2017 B2
9729984 Tan et al. Aug 2017 B2
9736584 Sheen et al. Aug 2017 B2
9743207 Hartung Aug 2017 B1
9743208 Oishi et al. Aug 2017 B2
9749763 Sheen Aug 2017 B2
9763018 McPherson et al. Sep 2017 B1
9781532 Sheen Oct 2017 B2
9788113 Wilberding et al. Oct 2017 B2
9794722 Petrov Oct 2017 B2
9807536 Liu et al. Oct 2017 B2
9810784 Altman et al. Nov 2017 B2
9860662 Jarvis et al. Jan 2018 B2
9864574 Hartung et al. Jan 2018 B2
9910634 Sheen et al. Mar 2018 B2
9913056 Master et al. Mar 2018 B2
9916126 Lang Mar 2018 B2
9952825 Sheen Apr 2018 B2
9984703 Ur et al. May 2018 B2
10045142 McPherson et al. Aug 2018 B2
10111002 Poulad Oct 2018 B1
10114605 Gossain et al. Oct 2018 B2
10125006 Jacobsen et al. Nov 2018 B2
10127006 Sheen Nov 2018 B2
10154359 Sheen Dec 2018 B2
10206052 Perianu Feb 2019 B2
10299054 McPherson et al. May 2019 B2
10299061 Sheen May 2019 B1
10402154 Hartung et al. Sep 2019 B2
10440492 Crockett Oct 2019 B2
10791407 Oishi et al. Sep 2020 B2
10853022 Wilberding Dec 2020 B2
10904691 Tu et al. Jan 2021 B2
20010038702 Lavoie et al. Nov 2001 A1
20010042107 Palm Nov 2001 A1
20010043592 Jimenez et al. Nov 2001 A1
20010053228 Jones Dec 2001 A1
20020022453 Balog et al. Feb 2002 A1
20020026442 Lipscomb et al. Feb 2002 A1
20020072816 Shdema et al. Jun 2002 A1
20020078161 Cheng Jun 2002 A1
20020089529 Robbin Jul 2002 A1
20020124097 Isely et al. Sep 2002 A1
20020126852 Kashani Sep 2002 A1
20020136414 Jordan et al. Sep 2002 A1
20020146136 Carter, Jr. Oct 2002 A1
20030002689 Folio Jan 2003 A1
20030031334 Layton et al. Feb 2003 A1
20030081115 Curry et al. May 2003 A1
20030108212 Yun Jun 2003 A1
20030157951 Hasty, Jr. Aug 2003 A1
20030159569 Ohta Aug 2003 A1
20030161479 Yang et al. Aug 2003 A1
20030161492 Miller et al. Aug 2003 A1
20030179891 Rabinowitz et al. Sep 2003 A1
20030235311 Grancea et al. Dec 2003 A1
20040024478 Hans et al. Feb 2004 A1
20040071294 Halgas, Jr. et al. Apr 2004 A1
20040114771 Vaughan et al. Jun 2004 A1
20040131338 Asada Jul 2004 A1
20040237750 Smith et al. Dec 2004 A1
20050021470 Martin Jan 2005 A1
20050031143 Devantier et al. Feb 2005 A1
20050063554 Devantier et al. Mar 2005 A1
20050147261 Yeh Jul 2005 A1
20050157885 Olney et al. Jul 2005 A1
20050276425 Forrester et al. Dec 2005 A1
20060008256 Khedouri et al. Jan 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060032357 Roovers et al. Feb 2006 A1
20060104454 Guitarte Perez et al. May 2006 A1
20060147057 Aggarwal et al. Jul 2006 A1
20060153391 Hooley et al. Jul 2006 A1
20060195480 Spiegelman et al. Aug 2006 A1
20060225097 Lawrence-Apfelbaum Oct 2006 A1
20070003067 Gierl et al. Jan 2007 A1
20070025559 Mihelich et al. Feb 2007 A1
20070032895 Nackvi et al. Feb 2007 A1
20070038999 Millington Feb 2007 A1
20070086597 Kino Apr 2007 A1
20070087686 Holm et al. Apr 2007 A1
20070116254 Looney et al. May 2007 A1
20070121955 Johnston et al. May 2007 A1
20070142944 Goldberg et al. Jun 2007 A1
20070217619 Hall et al. Sep 2007 A1
20080002839 Eng Jan 2008 A1
20080014989 Sandegard et al. Jan 2008 A1
20080065247 Igoe Mar 2008 A1
20080069378 Rabinowitz et al. Mar 2008 A1
20080077261 Baudino et al. Mar 2008 A1
20080098027 Aarts Apr 2008 A1
20080136623 Calvarese Jun 2008 A1
20080144864 Huon et al. Jun 2008 A1
20080175411 Greve Jul 2008 A1
20080214160 Jonsson Sep 2008 A1
20080232603 Soulodre Sep 2008 A1
20080266385 Smith et al. Oct 2008 A1
20080281523 Dahl et al. Nov 2008 A1
20090003613 Christensen Jan 2009 A1
20090024662 Park et al. Jan 2009 A1
20090047993 Vasa Feb 2009 A1
20090063274 Dublin, III et al. Mar 2009 A1
20090089054 Wang et al. Apr 2009 A1
20090110218 Swain Apr 2009 A1
20090138507 Burckart et al. May 2009 A1
20090147134 Iwamatsu Jun 2009 A1
20090169025 Chen Jul 2009 A1
20090175476 Bottum Jul 2009 A1
20090180632 Goldberg et al. Jul 2009 A1
20090196428 Kim Aug 2009 A1
20090202082 Bharitkar et al. Aug 2009 A1
20090252481 Ekstrand Oct 2009 A1
20090285404 Hsu et al. Nov 2009 A1
20090304194 Eggleston et al. Dec 2009 A1
20090304205 Hardacker et al. Dec 2009 A1
20090316923 Tashev et al. Dec 2009 A1
20100013550 Tanaka Jan 2010 A1
20100095332 Gran et al. Apr 2010 A1
20100104114 Chapman Apr 2010 A1
20100128902 Liu et al. May 2010 A1
20100135501 Corbett et al. Jun 2010 A1
20100142735 Yoon et al. Jun 2010 A1
20100146445 Kraut Jun 2010 A1
20100162117 Basso et al. Jun 2010 A1
20100189203 Wilhelmsson et al. Jul 2010 A1
20100195846 Yokoyama Aug 2010 A1
20100272270 Chaikin et al. Oct 2010 A1
20100296659 Tanaka Nov 2010 A1
20100303248 Tawada Dec 2010 A1
20100303250 Goldberg et al. Dec 2010 A1
20100323793 Andall Dec 2010 A1
20110002471 Wihardja et al. Jan 2011 A1
20110007904 Tomoda et al. Jan 2011 A1
20110007905 Sato et al. Jan 2011 A1
20110029111 Sabin et al. Feb 2011 A1
20110087842 Lu et al. Apr 2011 A1
20110091055 Leblanc Apr 2011 A1
20110135103 Sun et al. Jun 2011 A1
20110150228 Yoon et al. Jun 2011 A1
20110150230 Tanaka Jun 2011 A1
20110150247 Oliveras Jun 2011 A1
20110170710 Son Jul 2011 A1
20110216924 Berardi et al. Sep 2011 A1
20110234480 Fino et al. Sep 2011 A1
20110235808 Kon Sep 2011 A1
20110268281 Florencio et al. Nov 2011 A1
20110293123 Neumeyer et al. Dec 2011 A1
20120032928 Alberth et al. Feb 2012 A1
20120051558 Kim et al. Mar 2012 A1
20120057724 Rabinowitz et al. Mar 2012 A1
20120063615 Crockett et al. Mar 2012 A1
20120093320 Flaks et al. Apr 2012 A1
20120114152 Nguyen et al. May 2012 A1
20120127831 Gicklhorn et al. May 2012 A1
20120140936 Bonnick et al. Jun 2012 A1
20120148075 Goh et al. Jun 2012 A1
20120183156 Schlessinger et al. Jul 2012 A1
20120184335 Kim et al. Jul 2012 A1
20120213391 Usami et al. Aug 2012 A1
20120215530 Harsch Aug 2012 A1
20120237037 Ninan et al. Sep 2012 A1
20120243697 Frye et al. Sep 2012 A1
20120263325 Freeman et al. Oct 2012 A1
20120268145 Chandra et al. Oct 2012 A1
20120269356 Sheerin et al. Oct 2012 A1
20120275613 Soulodre Nov 2012 A1
20120283593 Searchfield et al. Nov 2012 A1
20120288124 Fejzo et al. Nov 2012 A1
20130003981 Lane Jan 2013 A1
20130010970 Hegarty et al. Jan 2013 A1
20130019193 Rhee et al. Jan 2013 A1
20130024880 Moloney-Egnatios et al. Jan 2013 A1
20130028443 Pance et al. Jan 2013 A1
20130051572 Goh et al. Feb 2013 A1
20130066453 Seefeldt Mar 2013 A1
20130108055 Hanna et al. May 2013 A1
20130129102 Li et al. May 2013 A1
20130129122 Johnson et al. May 2013 A1
20130166227 Hermann et al. Jun 2013 A1
20130170647 Reilly et al. Jul 2013 A1
20130173794 Agerbak et al. Jul 2013 A1
20130179535 Baalu et al. Jul 2013 A1
20130202131 Kemmochi et al. Aug 2013 A1
20130211843 Clarkson Aug 2013 A1
20130216071 Maher et al. Aug 2013 A1
20130223642 Warren et al. Aug 2013 A1
20130230175 Bech et al. Sep 2013 A1
20130259254 Xiang et al. Oct 2013 A1
20130279706 Marti et al. Oct 2013 A1
20130305152 Griffiths et al. Nov 2013 A1
20130315405 Kanishima et al. Nov 2013 A1
20130329896 Krishnaswamy et al. Dec 2013 A1
20130331970 Beckhardt et al. Dec 2013 A1
20130346559 Van Erven et al. Dec 2013 A1
20140003611 Mohammad et al. Jan 2014 A1
20140003622 Ikizyan et al. Jan 2014 A1
20140003623 Lang Jan 2014 A1
20140003625 Sheen et al. Jan 2014 A1
20140003626 Holman et al. Jan 2014 A1
20140003635 Mohammad et al. Jan 2014 A1
20140006587 Kusano Jan 2014 A1
20140016784 Sen et al. Jan 2014 A1
20140016786 Sen Jan 2014 A1
20140016802 Sen Jan 2014 A1
20140023196 Xiang et al. Jan 2014 A1
20140029201 Yang et al. Jan 2014 A1
20140032709 Saussy et al. Jan 2014 A1
20140037097 Labosco Feb 2014 A1
20140037107 Marino, Jr. et al. Feb 2014 A1
20140052770 Gran et al. Feb 2014 A1
20140064501 Olsen et al. Mar 2014 A1
20140079242 Nguyen et al. Mar 2014 A1
20140084014 Sim et al. Mar 2014 A1
20140086423 Domingo et al. Mar 2014 A1
20140112481 Li et al. Apr 2014 A1
20140119551 Bharitkar et al. May 2014 A1
20140126730 Crawley et al. May 2014 A1
20140161265 Chaikin et al. Jun 2014 A1
20140169569 Toivanen et al. Jun 2014 A1
20140180684 Strub Jun 2014 A1
20140192986 Lee et al. Jul 2014 A1
20140219456 Morrell et al. Aug 2014 A1
20140219483 Hong Aug 2014 A1
20140226823 Sen et al. Aug 2014 A1
20140226837 Grokop Aug 2014 A1
20140242913 Pang Aug 2014 A1
20140267148 Luna et al. Sep 2014 A1
20140270202 Ivanov et al. Sep 2014 A1
20140270282 Tammi et al. Sep 2014 A1
20140273859 Luna et al. Sep 2014 A1
20140274212 Zurek et al. Sep 2014 A1
20140279889 Luna Sep 2014 A1
20140285313 Luna et al. Sep 2014 A1
20140286496 Luna et al. Sep 2014 A1
20140294200 Baumgarte et al. Oct 2014 A1
20140294201 Johnson et al. Oct 2014 A1
20140310269 Zhang et al. Oct 2014 A1
20140321670 Nystrom et al. Oct 2014 A1
20140323036 Daley et al. Oct 2014 A1
20140334644 Selig et al. Nov 2014 A1
20140341399 Dusse et al. Nov 2014 A1
20140344689 Scott et al. Nov 2014 A1
20140355768 Sen et al. Dec 2014 A1
20140355794 Morrell et al. Dec 2014 A1
20140364056 Belk et al. Dec 2014 A1
20140369519 Leschka et al. Dec 2014 A1
20150011195 Li Jan 2015 A1
20150016642 Walsh et al. Jan 2015 A1
20150023509 Devantier et al. Jan 2015 A1
20150031287 Pang et al. Jan 2015 A1
20150032844 Tarr et al. Jan 2015 A1
20150036847 Donaldson Feb 2015 A1
20150036848 Donaldson Feb 2015 A1
20150043736 Olsen et al. Feb 2015 A1
20150063610 Mossner Mar 2015 A1
20150078586 Ang et al. Mar 2015 A1
20150078596 Sprogis Mar 2015 A1
20150100991 Risberg et al. Apr 2015 A1
20150146886 Baumgarte May 2015 A1
20150149943 Nguyen et al. May 2015 A1
20150161360 Paruchuri et al. Jun 2015 A1
20150195666 Massey et al. Jul 2015 A1
20150201274 Ellner et al. Jul 2015 A1
20150208184 Tan et al. Jul 2015 A1
20150208188 Carlsson et al. Jul 2015 A1
20150220558 Snibbe et al. Aug 2015 A1
20150223002 Mehta et al. Aug 2015 A1
20150223004 Deprez et al. Aug 2015 A1
20150229699 Liu Aug 2015 A1
20150260754 Perotti et al. Sep 2015 A1
20150263692 Bush Sep 2015 A1
20150264023 Reno Sep 2015 A1
20150271616 Kechichian et al. Sep 2015 A1
20150271620 Lando et al. Sep 2015 A1
20150281866 Williams et al. Oct 2015 A1
20150286360 Wachter Oct 2015 A1
20150289064 Jensen et al. Oct 2015 A1
20150358756 Harma et al. Dec 2015 A1
20150382128 Ridihalgh et al. Dec 2015 A1
20160007116 Holman Jan 2016 A1
20160011846 Sheen Jan 2016 A1
20160011850 Sheen et al. Jan 2016 A1
20160014509 Hansson et al. Jan 2016 A1
20160014510 Sheen Jan 2016 A1
20160014511 Sheen et al. Jan 2016 A1
20160014534 Sheen Jan 2016 A1
20160014535 Wilberding et al. Jan 2016 A1
20160014536 Sheen Jan 2016 A1
20160021458 Johnson et al. Jan 2016 A1
20160021473 Riggi et al. Jan 2016 A1
20160021481 Johnson et al. Jan 2016 A1
20160027467 Proud Jan 2016 A1
20160029142 Isaac et al. Jan 2016 A1
20160035337 Aggarwal et al. Feb 2016 A1
20160036404 Fleischmann et al. Feb 2016 A1
20160036881 Tembey et al. Feb 2016 A1
20160037277 Matsumoto et al. Feb 2016 A1
20160061597 De Bruijn et al. Mar 2016 A1
20160070525 Sheen et al. Mar 2016 A1
20160070526 Sheen Mar 2016 A1
20160073210 Sheen Mar 2016 A1
20160088438 O'Keeffe Mar 2016 A1
20160119730 Virtanen Apr 2016 A1
20160140969 Srinivasan et al. May 2016 A1
20160142849 Satheesh et al. May 2016 A1
20160165297 Jamal-Syed et al. Jun 2016 A1
20160192098 Oishi et al. Jun 2016 A1
20160192099 Oishi et al. Jun 2016 A1
20160192100 Rabinowitz et al. Jun 2016 A1
20160212535 Le Nerriec et al. Jul 2016 A1
20160239255 Chavez et al. Aug 2016 A1
20160241907 Pearson Aug 2016 A1
20160246449 Jarske Aug 2016 A1
20160254696 Plumb et al. Sep 2016 A1
20160260140 Shirley et al. Sep 2016 A1
20160309276 Ridihalgh et al. Oct 2016 A1
20160330562 Crockett Nov 2016 A1
20160342201 Jehan Nov 2016 A1
20160353018 Anderson et al. Dec 2016 A1
20160366517 Chandran et al. Dec 2016 A1
20160373860 Leschka et al. Dec 2016 A1
20170026769 Patel Jan 2017 A1
20170041724 Master et al. Feb 2017 A1
20170069338 Elliot et al. Mar 2017 A1
20170083279 Sheen Mar 2017 A1
20170086003 Rabinowitz et al. Mar 2017 A1
20170105084 Holman Apr 2017 A1
20170133011 Chen et al. May 2017 A1
20170142532 Pan May 2017 A1
20170207762 Porter et al. Jul 2017 A1
20170215017 Hartung et al. Jul 2017 A1
20170223447 Johnson et al. Aug 2017 A1
20170230772 Johnson et al. Aug 2017 A1
20170257722 Kerdranvat et al. Sep 2017 A1
20170280265 Po Sep 2017 A1
20170286052 Hartung et al. Oct 2017 A1
20170303039 Iyer et al. Oct 2017 A1
20170311108 Patel Oct 2017 A1
20170374482 McPherson et al. Dec 2017 A1
20180122378 Mixter et al. May 2018 A1
20180376268 Kerdranvat et al. Dec 2018 A1
20190037328 McPherson et al. Jan 2019 A1
20190058942 Garner et al. Feb 2019 A1
20190320278 McPherson et al. Oct 2019 A1
20200005830 Wasada et al. Jan 2020 A1
20200249346 Lim et al. Aug 2020 A1
20200382888 McPherson et al. Dec 2020 A1
20210118429 Shan Apr 2021 A1
20210141050 Janssen et al. May 2021 A1
Foreign Referenced Citations (108)
Number Date Country
1369188 Sep 2002 CN
1447624 Oct 2003 CN
1622694 Jun 2005 CN
1984507 Jun 2007 CN
101032187 Sep 2007 CN
101047777 Oct 2007 CN
101366177 Feb 2009 CN
101478296 Jul 2009 CN
101491116 Jul 2009 CN
101681219 Mar 2010 CN
101754087 Jun 2010 CN
101800051 Aug 2010 CN
102004823 Apr 2011 CN
102318325 Jan 2012 CN
102823277 Dec 2012 CN
102893633 Jan 2013 CN
103491397 Jan 2014 CN
103811010 May 2014 CN
103988523 Aug 2014 CN
104219604 Dec 2014 CN
104247461 Dec 2014 CN
104284291 Jan 2015 CN
104584061 Apr 2015 CN
104967953 Oct 2015 CN
105163221 Dec 2015 CN
102007032281 Jan 2009 DE
0505949 Sep 1992 EP
0772374 May 1997 EP
1133896 Aug 2002 EP
1349427 Oct 2003 EP
1389853 Feb 2004 EP
2043381 Apr 2009 EP
1349427 Dec 2009 EP
2161950 Mar 2010 EP
2194471 Jun 2010 EP
2197220 Jun 2010 EP
2288178 Feb 2011 EP
2429155 Mar 2012 EP
1825713 Oct 2012 EP
2613573 Jul 2013 EP
2591617 Jun 2014 EP
2747081 Jun 2014 EP
2835989 Feb 2015 EP
2860992 Apr 2015 EP
2874413 May 2015 EP
3128767 Feb 2017 EP
2974382 Apr 2017 EP
2986034 May 2017 EP
3285502 Feb 2018 EP
H02280199 Nov 1990 JP
H05199593 Aug 1993 JP
H05211700 Aug 1993 JP
H06327089 Nov 1994 JP
H0723490 Jan 1995 JP
H1069280 Mar 1998 JP
H10307592 Nov 1998 JP
2002502193 Jan 2002 JP
2002101500 Apr 2002 JP
2003143252 May 2003 JP
2003304590 Oct 2003 JP
2005086686 Mar 2005 JP
2005538633 Dec 2005 JP
2006017893 Jan 2006 JP
2006180039 Jul 2006 JP
2006191562 Jul 2006 JP
2006340285 Dec 2006 JP
2007068125 Mar 2007 JP
2007271802 Oct 2007 JP
2007325073 Dec 2007 JP
2008035254 Feb 2008 JP
2008228133 Sep 2008 JP
2009188474 Aug 2009 JP
2010056970 Mar 2010 JP
2010081124 Apr 2010 JP
2010141892 Jun 2010 JP
2011123376 Jun 2011 JP
2011130212 Jun 2011 JP
2011164166 Aug 2011 JP
2011215378 Oct 2011 JP
2011217068 Oct 2011 JP
2013247456 Dec 2013 JP
2013253884 Dec 2013 JP
2014523165 Sep 2014 JP
6356331 Jul 2018 JP
6567735 Aug 2019 JP
1020060116383 Nov 2006 KR
1020080011831 Feb 2008 KR
200153994 Jul 2001 WO
0182650 Nov 2001 WO
200182650 Nov 2001 WO
2003093950 Nov 2003 WO
2004066673 Aug 2004 WO
2007016465 Feb 2007 WO
2011139502 Nov 2011 WO
2013006323 Jan 2013 WO
2013016500 Jan 2013 WO
2013126603 Aug 2013 WO
2014032709 Mar 2014 WO
2014032709 Mar 2014 WO
2014036121 Mar 2014 WO
2014040667 Mar 2014 WO
2015024881 Feb 2015 WO
2015108794 Jul 2015 WO
2015178950 Nov 2015 WO
2016040324 Mar 2016 WO
2016054090 Apr 2016 WO
2016118327 Jul 2016 WO
2017049169 Mar 2017 WO
Non-Patent Literature Citations (497)
Entry
Notice of Allowance dated Aug. 23, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages.
Notice of Allowance dated Feb. 23, 2021, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 8 pages.
Notice of Allowance dated Jun. 23, 2016, issued in connection with U.S. Appl. No. 14/921,781, filed Oct. 23, 2015, 8 pages.
Notice of Allowance dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 5 pages.
Notice of Allowance dated May 23, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 8 pages.
Notice of Allowance dated Nov. 23, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages.
Notice of Allowance dated Oct. 23, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 16 pages.
Notice of Allowance dated Oct. 23, 2020, issued in connection with U.S. Appl. No. 16/555,846, filed Aug. 29, 2019, 5 pages.
Notice of Allowance dated Sep. 23, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 7 pages.
Notice of Allowance dated Sep. 23, 2022, issued in connection with U.S. Appl. No. 17/373,179, filed Jul. 12, 2021, 5 pages.
Notice of Allowance dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 13 pages.
Notice of Allowance dated Jul. 24, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 12 pages.
Notice of Allowance dated May 24, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 5 pages.
Notice of Allowance dated Nov. 24, 2017, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages.
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 7 pages.
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 7 pages.
Notice of Allowance dated Apr. 25, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 8 pages.
Notice of Allowance dated Jan. 25, 2021, issued in connection with U.S. Appl. No. 17/129,670, filed Dec. 21, 2020, 10 pages.
Notice of Allowance dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages.
Notice of Allowance dated Apr. 26, 2023, issued in connection with U.S. Appl. No. 18/058,667, filed Nov. 23, 2022, 8 pages.
Notice of Allowance dated Feb. 26, 2016, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 7 pages.
Notice of Allowance dated Jul. 26, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 12 pages.
Notice of Allowance dated Oct. 26, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 11 pages.
Notice of Allowance dated Feb. 27, 2017, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 9 pages.
Notice of Allowance dated Feb. 27, 2023, issued in connection with U.S. Appl. No. 17/107,157, filed Nov. 30, 2020, 13 pages.
Notice of Allowance dated Jul. 27, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages.
Notice of Allowance dated Jun. 27, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 8 pages.
Notice of Allowance dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 5 pages.
Notice of Allowance dated Oct. 27, 2021, issued in connection with U.S. Appl. No. 17/135,293, filed Dec. 28, 2020, 11 pages.
Notice of Allowance dated Aug. 28, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 5 pages.
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 10 pages.
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 15/211,822, filed Jul. 15, 2016, 9 pages.
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 5 pages.
Notice of Allowance dated Mar. 28, 2023, issued in connection with U.S. Appl. No. 18/058,659, filed Nov. 23, 2022, 10 pages.
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 11 pages.
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 8 pages.
Notice of Allowance dated Aug. 29, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 8 pages.
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages.
Notice of Allowance dated Jul. 29, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 11 pages.
Notice of Allowance dated Mar. 29, 2023, issued in connection with U.S. Appl. No. 17/807,595, filed Jun. 17, 2022, 6 pages.
Notice of Allowance dated Oct. 29, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 9 pages.
Notice of Allowance dated Sep. 29, 2021, issued in connection with U.S. Appl. No. 17/207,640, filed Mar. 20, 2021, 13 pages.
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages.
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 9 pages.
Notice of Allowance dated Mar. 3, 2022, issued in connection with U.S. Appl. No. 17/135,308, filed Dec. 28, 2020, 7 pages.
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 7 pages.
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 7 pages.
Notice of Allowance dated Aug. 30, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 10 pages.
Notice of Allowance dated Dec. 30, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages.
Notice of Allowance dated Jan. 30, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 8 pages.
Non-Final Office Action dated May 15, 2023, issued in connection with U.S. Appl. No. 17/567,311, filed Jan. 3, 2022, 12 pages.
Non-Final Office Action dated Nov. 15, 2021, issued in connection with U.S. Appl. No. 17/135,308, filed Dec. 28, 2020, 19 pages.
Non-Final Office Action dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages.
Non-Final Office Action dated Nov. 16, 2018, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages.
Non-Final Office Action dated Sep. 16, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 11 pages.
Non-Final Office Action dated Jan. 17, 2023, issued in connection with U.S. Appl. No. 17/407,793, filed Aug. 20, 2021, 9 pages.
Non-Final Office Action dated Aug. 18, 2020, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 8 pages.
Non-Final Office Action dated Dec. 18, 2018, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 10 pages.
Non-Final Office Action dated Feb. 18, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 10 pages.
Non-Final Office Action dated Jun. 18, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages.
Non-Final Office Action dated Mar. 18, 2022, issued in connection with U.S. Appl. No. 17/033,818, filed Sep. 27, 2020, 12 pages.
Non-Final Office Action dated Apr. 19, 2023, issued in connection with U.S. Appl. No. 17/807,270, filed Jun. 16, 2022, 19 pages.
Non-Final Office Action dated Aug. 19, 2021, issued in connection with U.S. Appl. No. 17/357,302, filed Jun. 24, 2021, 16 pages.
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 53 pages.
Non-Final Office Action dated Jun. 19, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages.
Non-Final Office Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 7 pages.
Non-Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 6 pages.
Non-Final Office Action dated Aug. 2, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 22 pages.
Non-Final Office Action dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages.
Non-Final Office Action dated Jul. 20, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 13 pages.
Non-Final Office Action dated Jun. 20, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 17 pages.
Non-Final Office Action dated Dec. 21, 2018, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 5, 2018, 13 pages.
Non-Final Office Action dated Jun. 21, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 10 pages.
Non-Final Office Action dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 12 pages.
Non-Final Office Action dated Nov. 21, 2014, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 20 pages.
Non-Final Office Action dated Jun. 22, 2018, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 33 pages.
Non-Final Office Action dated Jun. 22, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 15 pages.
Non-Final Office Action dated Oct. 22, 2019, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 12 pages.
Non-Final Office Action dated Oct. 22, 2021, issued in connection with U.S. Appl. No. 16/949,951, filed Nov. 20, 2020, 10 pages.
Non-Final Office Action dated Jan. 23, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 8 pages.
Non-Final Office Action dated Jun. 24, 2022, issued in connection with U.S. Appl. No. 17/373,179, filed Jul. 12, 2021, 8 pages.
Non-Final Office Action dated May 24, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 14 pages.
Non-Final Office Action dated May 24, 2023, issued in connection with U.S. Appl. No. 18/175,283, filed Feb. 27, 2023, 13 pages.
Non-Final Office Action dated Feb. 25, 2022, issued in connection with U.S. Appl. No. 17/107,157, filed Nov. 30, 2020, 30 pages.
Non-Final Office Action dated Jan. 25, 2023, issued in connection with U.S. Appl. No. 17/816,238, filed Jul. 29, 2022, 10 pages.
Non-Final Office Action dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 9 pages.
Non-Final Office Action dated Sep. 26, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 25 pages.
Non-Final Office Action dated Dec. 27, 2017, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 28 pages.
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 19 pages.
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 19 pages.
Non-Final Office Action dated Jul. 27, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 11 pages.
Non-Final Office Action dated Mar. 27, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 30 pages.
Non-Final Office Action dated Mar. 27, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 11 pages.
Non-Final Office Action dated Jul. 28, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Non-Final Office Action dated May 28, 2021, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 14 pages.
Non-Final Office Action dated Nov. 28, 2017, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 7 pages.
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 12 pages.
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/595,519, filed May 15, 2017, 12 pages.
Non-Final Office Action dated Mar. 29, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 16 pages.
Non-Final Office Action dated Sep. 29, 2022, issued in connection with U.S. Appl. No. 17/340,353, filed Jun. 7, 2021, 8 pages.
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 7 pages.
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 8 pages.
Notice of Allowance dated Aug. 31, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 8 pages.
Notice of Allowance dated Mar. 31, 2020, issued in connection with U.S. Appl. No. 16/538,629, filed Aug. 12, 2019, 9 pages.
Notice of Allowance dated Apr. 4, 2017, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages.
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 15/166,241, filed Aug. 26, 2016, 8 pages.
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 9 pages.
Notice of Allowance dated Feb. 4, 2020, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 7 pages.
Notice of Allowance dated Oct. 4, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 7 pages.
Notice of Allowance dated Apr. 5, 2018, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages.
Notice of Allowance dated Apr. 5, 2023, issued in connection with U.S. Appl. No. 17/562,465, filed Dec. 27, 2021, 10 pages.
Notice of Allowance dated Feb. 5, 2021, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 9 pages.
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 8 pages.
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 8, 2018, 8 pages.
Notice of Allowance dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 16/102,499, filed Aug. 13, 2018, 8 pages.
Notice of Allowance dated May 5, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages.
Notice of Allowance dated May 5, 2022, issued in connection with U.S. Appl. No. 17/316,371, filed May 10, 2021, 10 pages.
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 10 pages.
Notice of Allowance dated Aug. 6, 2020, issued in connection with U.S. Appl. No. 16/564,684, filed Sep. 9, 2019, 8 pages.
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages.
Notice of Allowance dated Apr. 8, 2019, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 8 pages.
Notice of Allowance dated Jul. 8, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 5 pages.
Notice of Allowance dated Jun. 8, 2020, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 8 pages.
Notice of Allowance dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 8 pages.
Notice of Allowance dated May 8, 2018, issued in connection with U.S. Appl. No. 15/650,386, filed Jul. 14, 2017, 13 pages.
Notice of Allowance dated Apr. 9, 2020, issued in connection with U.S. Appl. No. 16/416,593, filed May 20, 2019, 9 pages.
Notice of Allowance dated Jun. 9, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 16 pages.
Notice of Allowance dated May 9, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 7 pages.
Notice of Allowance dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages.
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages.
Papp Istvan et al. “Adaptive Microphone Array for Unknown Desired Speaker's Transfer Function”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY vol. 122, No. 2, Jul. 19, 2007, pp. 44-49.
Pre-Brief Appeal Conference Decision mailed on Mar. 19, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 2 pages.
Preinterview First Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 6 pages.
Preinterview First Office Action dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages.
Preinterview First Office Action dated May 17, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 7 pages.
Preinterview First Office Action dated May 25, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 7 pages.
Presentations at WinHEC 2000, May 2000, 138 pages.
PRISMIQ, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages.
Ross, Alex, “Wizards of Sound: Retouching acoustics, from the restaurant to the concert hall,” The New Yorker, Feb. 23, 2015. Web. Feb. 26, 2015, 9 pages.
Sonos, Inc. v. Google LLC, WDTX Case No. 6:20-cv-00881, Google's Answer and Counterclaims; dated Jan. 8, 2021, 39 pages.
Supplemental Notice of Allowability dated Oct. 27, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 6 pages.
U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages.
U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages.
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54.
Wikipedia, Server(Computing) https://web.archive.org/web/20160703173710/https://en.wikipedia.org/wiki/Server_(computing), published Jul. 3, 2016, 7 pages.
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages.
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages.
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages.
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages.
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages.
Mulcahy, John, “Room EQ Wizard: Room Acoustics Software,” REW, 2014, retrieved Oct. 10, 2014, 4 pages.
Non-Final Action dated Jan. 29, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages.
Non-Final Office Action dated Sep. 16, 2021, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 10 pages.
Non-Final Office Action dated Jul. 21, 2021, issued in connection with U.S. Appl. No. 16/570,679, filed Sep. 13, 2019, 18 pages.
Non-Final Office Action dated Sep. 7, 2021, issued in connection with U.S. Appl. No. 16/994,627, filed Aug. 16, 2020, 11 pages.
Non-Final Office Action dated Mar. 1, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 20 pages.
Non-Final Office Action dated Nov. 1, 2017, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 15 pages.
Non-Final Office Action dated Jun. 2, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 14 pages.
Non-Final Office Action dated Jun. 2, 2017, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 18 pages.
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 12 pages.
Non-Final Office Action dated Oct. 2, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages.
Non-Final Office Action dated Feb. 3, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 12 pages.
Non-Final Office Action dated Jul. 3, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 30 pages.
Non-Final Office Action dated Jan. 4, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 6 pages.
Non-Final Office Action dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 10 pages.
Non-Final Office Action dated Sep. 4, 2019, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 16 pages.
Non-Final Office Action dated Jul. 5, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 8 pages.
Non-Final Office Action dated Jul. 6, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 6 pages.
Non-Final Office Action dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages.
Non-Final Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 30 pages.
Non-Final Office Action dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 5 pages.
Non-Final Office Action dated Jul. 7, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 6 pages.
Non-Final Office Action dated Mar. 7, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 24 pages.
Non-Final Office Action dated Sep. 7, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 12 pages.
Non-Final Office Action dated Jul. 8, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 6 pages.
Non-Final Office Action dated Dec. 9, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Non-Final Office Action dated Apr. 10, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages.
Non-Final Office Action dated Mar. 10, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 10 pages.
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages.
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 13 pages.
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 9 pages.
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 9 pages.
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 14 pages.
Non-Final Office Action dated Feb. 11, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 39 pages.
Non-Final Office Action dated May 11, 2023, issued in connection with U.S. Appl. No. 17/458,673, filed Aug. 27, 2021, 18 pages.
Non-Final Office Action dated Oct. 11, 2017, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages.
Non-Final Office Action dated Oct. 11, 2018, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 13 pages.
Non-Final Office Action dated Mar. 12, 2020, issued in connection with U.S. Appl. No. 16/796,496, filed Feb. 20, 2020, 13 pages.
Non-Final Office Action dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 24 pages.
Non-Final Office Action dated Aug. 13, 2021, issued in connection with U.S. Appl. No. 16/994,874, filed Aug. 17, 2020, 10 pages.
Non-Final Office Action dated Jul. 13, 2016, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 16 pages.
Non-Final Office Action dated Mar. 13, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 20 pages.
Non-Final Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 19 pages.
Non-Final Office Action dated Mar. 14, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 12 pages.
Non-Final Office Action dated May 14, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 15 pages.
Non-Final Office Action dated Oct. 14, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages.
Non-Final Office Action dated Dec. 15, 2022, issued in connection with U.S. Appl. No. 17/807,595, filed Jun. 17, 2022, 16 pages.
Non-Final Office Action dated May 15, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 17 pages.
Non-Final Office Action dated May 3, 2021, issued in connection with U.S. Appl. No. 16/564,766, filed Sep. 9, 2019, 16 pages.
Non-Final Office Action dated Aug. 30, 2019, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 13 pages.
Non-Final Office Action dated May 30, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 9 pages.
Non-Final Office Action dated Sep. 30, 2022, issued in connection with U.S. Appl. No. 17/113,799, filed Dec. 7, 2020, 79 pages.
Non-Final Office Action dated Mar. 31, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 10 pages.
Non-Final Office Action dated May 31, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 7 pages.
Non-Final Office Action dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 11 pages.
Non-Final Office Action dated Jan. 5, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 11 pages.
Non-Final Office Action dated Jul. 6, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 15 pages.
Non-Final Office Action dated Nov. 6, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 13 pages.
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 9 pages.
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 8, 2018, 10 pages.
Non-Final Office Action dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/207,640, filed Mar. 20, 2021, 17 pages.
Non-Final Office Action dated Dec. 9, 2022, issued in connection with U.S. Appl. No. 17/662,282, filed May 6, 2022, 12 pages.
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 18 pages.
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 8 pages.
Notice of Allowance dated Jul. 21, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 8 pages.
Notice of Allowance dated Aug. 4, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 9 pages.
Notice of Allowance dated May 1, 2017, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 13 pages.
Notice of Allowance dated Nov. 2, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Notice of Allowance dated Jun. 3, 2016, issued in connection with U.S. Appl. No. 14/921,799, filed Oct. 23, 2015, 8 pages.
Notice of Allowance dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
Notice of Allowance dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 5 pages.
Notice of Allowance dated Oct. 6, 2022, issued in connection with U.S. Appl. No. 17/582,317, filed Jan. 24, 2022, 9 pages.
Notice of Allowance dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages.
Notice of Allowance dated Dec. 8, 2022, issued in connection with U.S. Appl. No. 17/340,353, filed Jun. 7, 2021, 9 pages.
Notice of Allowance dated Nov. 9, 2016, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 13 pages.
Notice of Allowance dated Feb. 1, 2018, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages.
Notice of Allowance dated Nov. 1, 2021, issued in connection with U.S. Appl. No. 17/103,556, filed Nov. 24, 2020, 5 pages.
Notice of Allowance dated Apr. 10, 2015, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 8 pages.
Notice of Allowance dated Aug. 10, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 6 pages.
Notice of Allowance dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 2 pages.
Notice of Allowance dated Jun. 10, 2020, issued in connection with U.S. Appl. No. 16/713,858, filed Dec. 13, 2019, 8 pages.
Notice of Allowance dated Dec. 11, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 10 pages.
Notice of Allowance dated Feb. 11, 2019, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 5 pages.
Notice of Allowance dated Jul. 11, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 11 pages.
Notice of Allowance dated Mar. 11, 2015, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 7 pages.
Notice of Allowance dated May 11, 2023, issued in connection with U.S. Appl. No. 17/804,372, filed May 27, 2022, 8 pages.
Notice of Allowance dated Apr. 12, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 13 pages.
Notice of Allowance dated Aug. 12, 2019, issued in connection with U.S. Appl. No. 16/416,648, filed May 20, 2019, 7 pages.
Notice of Allowance dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 24 pages.
Notice of Allowance dated Dec. 12, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages.
Notice of Allowance dated Jan. 12, 2022, issued in connection with U.S. Appl. No. 16/994,627, filed Aug. 16, 2020, 7 pages.
Notice of Allowance dated Nov. 12, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 9 pages.
Notice of Allowance dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 7 pages.
Notice of Allowance dated Sep. 12, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 8 pages.
Notice of Allowance dated Apr. 13, 2020, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 10 pages.
Notice of Allowance dated Apr. 13, 2023, issued in connection with U.S. Appl. No. 18/058,639, filed Nov. 23, 2022, 15 pages.
Notice of Allowance dated Feb. 13, 2017, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 8 pages.
European Patent Office, European EPC Article 94.3 dated Oct. 29, 2021, issued in connection with European Application No. 20196286.7, 5 pages.
European Patent Office, European EPC Article 94.3 dated Feb. 3, 2023, issued in connection with European Application No. 19765920.4, 5 pages.
European Patent Office, European EPC Article 94.3 dated Apr. 30, 2021, issued in connection with European Application No. 20196286.7, 5 pages.
European Patent Office, European Examination Report dated May 11, 2018, issued in connection with European Application No. 16748186.0, 6 pages.
European Patent Office, European Extended Search Report dated Jun. 10, 2022, issued in connection with European Application No. 22155834.9, 8 pages.
European Patent Office, European Extended Search Report dated Dec. 11, 2020, issued in connection with European Application No. 20196286.7, 6 pages.
European Patent Office, European Extended Search Report dated Jan. 14, 2022, issued in connection with European Application No. 21171959.6, 12 pages.
European Patent Office, European Extended Search Report dated Mar. 16, 2020, issued in connection with European Application No. 19209551.1, 7 pages.
European Patent Office, European Extended Search Report dated Oct. 16, 2018, issued in connection with European Application No. 17185193.4, 6 pages.
European Patent Office, European Extended Search Report dated Jul. 17, 2019, issued in connection with European Application No. 19167365.6, 7 pages.
European Patent Office, European Extended Search Report dated Mar. 25, 2020, issued in connection with European Application No. 19215348.4, 10 pages.
European Patent Office, European Extended Search Report dated Jun. 26, 2018, issued in connection with European Application No. 18171206.8, 9 pages.
European Patent Office, European Extended Search Report dated Sep. 8, 2017, issued in connection with European Application No. 17000460.0, 8 pages.
European Patent Office, European Office Action dated Nov. 10, 2020, issued in connection with European Application No. 19168800.1, 5 pages.
European Patent Office, European Office Action dated Dec. 11, 2018, issued in connection with European Application No. 15778787.0, 6 pages.
European Patent Office, European Office Action dated Jul. 11, 2019, issued in connection with European Application No. 15778787.0, 10 pages.
European Patent Office, European Office Action dated Sep. 16, 2020, issued in connection with European Application No. 15778787.0, 7 pages.
European Patent Office, European Office Action dated Aug. 19, 2020, issued in connection with European Application No. 17754501.9, 6 pages.
European Patent Office, European Office Action dated Nov. 2, 2018, issued in connection with European Application No. 18171206.8, 6 pages.
European Patent Office, European Office Action dated Jan. 3, 2020, issued in connection with European Application No. 17703876.7, 8 pages.
European Patent Office, European Office Action dated Feb. 4, 2019, issued in connection with European Application No. 17703876.7, 9 pages.
European Patent Office, European Office Action dated Sep. 7, 2020, issued in connection with European Application No. 19161826.3, 6 pages.
European Patent Office, European Office Action dated Jul. 9, 2020, issued in connection with European Application No. 19167365.6, 4 pages.
European Patent Office, European Office Action dated May 9, 2019, issued in connection with European Application No. 18171206.8, 7 pages.
European Patent Office, European Partial Search Report dated Jun. 7, 2019, issued in connection with European Application No. 19161826.3, 17 pages.
European Patent Office, European Search Report dated Jun. 13, 2019, issued in connection with European Application No. 18204450.3, 11 pages.
European Patent Office, European Search Report dated Sep. 13, 2019, issued in connection with European Application No. 19161826.3, 13 pages.
European Patent Office, European Search Report dated Jan. 18, 2018, issued in connection with European Patent Application No. 17185193.4, 9 pages.
European Patent Office, European Search Report dated Jul. 9, 2019, issued in connection with European Application No. 19168800.1, 12 pages.
European Patent Office, Examination Report dated Jul. 12, 2021, issued in connection with European Patent Application No. 17754501.9 6 pages.
European Patent Office, Extended European Search Report dated Jan. 5, 2017, issued in connection with European Patent Application No. 15765555.6, 8 pages.
European Patent Office, Extended Search Report dated Jan. 25, 2017, issued in connection with European Application No. 15765548.1, 7 pages.
European Patent Office, Extended Search Report dated Apr. 26, 2017, issued in connection with European Application No. 15765548.1, 10 pages.
European Patent Office, Office Action dated Nov. 12, 2018, issued in connection with European Application No. 17000460.0, 6 pages.
European Patent Office, Office Action dated Jun. 13, 2017, issued in connection with European patent application No. 17000484.0, 10 pages.
European Patent Office, Office Action dated Dec. 15, 2016, issued in connection with European Application No. 15766998.7, 7 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Nov. 15, 2018, issued in connection with European Application No. 16748186.0, 57 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Apr. 22, 2022, issued in connection with European Application No. 15778787.0, 6 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Sep. 24, 2019, issued in connection with European Application No. 17000460.0, 5 pages.
Ex Parte Quayle Office Action dated Apr. 15, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 7 pages.
Ex Parte Quayle Office Action dated Dec. 26, 2019, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 7 pages.
Excerpts from Andrew Tanenbaum, Computer Networks. 4th Edition. Copyright 2003, 87 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 on Feb. 5, 2021].
Excerpts from Morfey, Christopher L., Dictionary of Acoustics. Copyright 2001, 4 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 on Feb. 5, 2021].
Final Office Action dated Jul. 1, 2022, issued in connection with U.S. Appl. No. 17/033,818, filed Sep. 27, 2020, 13 pages.
Final Office Action dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 19 pages.
Final Office Action dated Apr. 3, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Final Office Action dated Jul. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 10 pages.
Final Office Action dated Jun. 13, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 22 pages.
Final Office Action dated Dec. 14, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 17 pages.
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages.
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 9 pages.
International Bureau, International Preliminary Report on Patentability, dated Aug. 9, 2018, issued in connection with International Application No. PCT/US2017/014596, filed on Jan. 23, 2017, 11 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 15, 2020, issued in connection with International Application No. PCT/US2020/045746, filed on Aug. 11, 2020, 23 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 25, 2019, issued in connection with International Application No. PCT/US2019/048569, filed on Aug. 28, 2019, 13 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 7, 2019, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 9 pages.
International Searching Authority, International Preliminary Report on Patentability dated Mar. 23, 2017, issued in connection with International Patent Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 8 pages.
International Searching Authority, International Preliminary Report on Patentability dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028994 filed on Apr. 22, 2016, 7 pages.
International Searching Authority, International Search Report and Written Opinion dated Jul. 4, 2016, issued in connection with International Application No. PCT/US2016/028994, filed on Apr. 22, 2016, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Jul. 5, 2016, issued in connection with International Application No. PCT/US2016/028997, filed on Apr. 22, 2016, 13 pages.
International Searching Authority, International Search Report and Written Opinion dated Jun. 5, 2015, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 12, 2016, issued in connection with International Application No. PCT/US2016/041179 filed on Jul. 6, 2016, 9 pages.
International Searching Authority, International Search Report and Written Opinion dated Jun. 16, 2015, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 18, 2015, issued in connection with International Application No. PCT/US2015/048954, filed on Sep. 8, 2015, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043116, filed on Jul. 20, 2016, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043840, filed on Jul. 25, 2016, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048942, filed on Sep. 8, 2015, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2016, issued in connection with International Patent Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Jan. 24, 2017, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 17 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 25, 2016, issued in connection with International Application No. PCT/US2016/043109, filed on Jul. 20, 2016, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Sep. 25, 2017, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 16 pages.
International Searching Authority, International Search Report and Written Opinion dated Aug. 3, 2017, in connection with International Application No. PCT/US2017014596, 20 pages.
Japanese Patent Office, English Translation of Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 4 pages.
Japanese Patent Office, Examination Report and Translation dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-185230, 10 pages.
Japanese Patent Office, Japanese Office Action dated Oct. 3, 2017, issued in connection with Japanese Application No. 2017-501082, 7 pages.
Japanese Patent Office, Non-Final Office Action and Translation dated Dec. 10, 2019, issued in connection with Japanese Patent Application No. 2018-213477, 8 pages.
Japanese Patent Office, Non-Final Office Action with Translation dated Apr. 25, 2017, issued in connection with Japanese Patent Application No. 2016-568888, 7 pages.
Japanese Patent Office, Non-Final Office Action with Translation dated Oct. 3, 2017, issued in connection with Japanese Patent Application No. 2017-501082, 3 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Oct. 5, 2021, issued in connection with Japanese Patent Application No. 2020-134012, 10 pages.
Japanese Patent Office, Office Action and Translation dated Jun. 12, 2020, issued in connection with Japanese Patent Application No. 2019-056360, 6 pages.
Japanese Patent Office, Office Action and Translation dated Apr. 13, 2021, issued in connection with Japanese Patent Application No. 2020-048867, 4 pages.
Japanese Patent Office, Office Action and Translation dated Nov. 4, 2020, issued in connection with Japanese Patent Application No. 2019-141349, 6 pages.
Japanese Patent Office, Office Action and Translation dated Mar. 7, 2023, issued in connection with Japanese Application No. 2022-001030, 11 pages.
Japanese Patent Office, Office Action dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-185230, 8 pages.
Japanese Patent Office, Office Action dated Jun. 12, 2018, issued in connection with Japanese Application No. 2018-502729, 4 pages.
Japanese Patent Office, Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 8 pages.
Japanese Patent Office, Office Action dated Aug. 21, 2018, issued in connection with Japanese Application No. 2018-514418, 7 pages.
Japanese Patent Office, Office Action dated Jul. 24, 2018, issued in connection with Japanese Application No. 2018-514419, 5 pages.
Japanese Patent Office, Office Action dated Feb. 4, 2020, issued in connection with Japanese Patent Application No. 2018-500529, 6 pages.
Japanese Patent Office, Office Action dated Jun. 4, 2019, issued in connection with Japanese Patent Application No. 2018-112810, 4 pages.
Japanese Patent Office, Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 8 pages.
Japanese Patent Office, Office Action with English Summary dated Jul. 18, 2017, issued in connection with Japanese Patent Application No. 2017-513171, 4 pages.
Japanese Patent Office, Translation of Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 5 pages.
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861.
John Mark and Paul Hufnagel “What is 1451.4, what are its uses and how does it work?” IEEE Standards Association, The IEEE 1451.4 Standard for Smart Transducers, 14pages.
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages.
“AuEQ for the iPhone,” Mar. 25, 2015, retrieved from the internet: URL:https://web.archive.org/web20150325152629/ http://www.hotto.de/mobileapps/iphoneaueq.html [retrieved on Jun. 24, 2016], 6 pages.
Lei et al. An Audio Frequency Acquision and Release System Based on TMS320VC5509, Instrumentation Technology, Editorial Department Email, Issue 02, 2007, 4 pages.
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages.
Microsoft Corporation, “Using Microsoft Outlook 2003,” Cambridge College, 2003.
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 37 pages.
Final Office Action dated Oct. 14, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 16 pages.
Final Office Action dated Oct. 17, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Final Office Action dated Sep. 17, 2021, issued in connection with U.S. Appl. No. 16/564,766, filed Sep. 9, 2019, 8 pages.
Final Office Action dated Apr. 18, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 16 pages.
Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages.
Final Office Action dated Dec. 18, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 12 pages.
Final Office Action dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 15 pages.
Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 14 pages.
Final Office Action dated Aug. 20, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 22 pages.
Final Office Action dated Oct. 21, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages.
Final Office Action dated Sep. 22, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages.
Final Office Action dated Jan. 25, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages.
Final Office Action dated Mar. 25, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 11 pages.
Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 17 pages.
Final Office Action dated Apr. 3, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 12 pages.
Final Office Action dated Mar. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 13 pages.
Final Office Action dated Aug. 30, 2022, issued in connection with U.S. Appl. No. 17/107,157, filed Nov. 30, 2020, 32 pages.
Final Office Action dated Feb. 5, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 21 pages.
Final Office Action dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 9 pages.
Final Office Action dated Dec. 6, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 18 pages.
Final Office Action dated Apr. 9, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 33 pages.
First Action Interview Office Action dated Mar. 3, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 9 pages.
First Action Interview Office Action dated Jul. 12, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
First Action Interview Office Action dated Jun. 30, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Apr. 5, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 4 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Oct. 7, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 5 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Feb. 16, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 5 pages.
Gonzalez et al., “Simultaneous Measurement of Multichannel Acoustic Systems,” J. Audio Eng. Soc., 2004, pp. 26-42, vol. 52, No. 1/2.
Google LLC v. Sonos, Inc., Declaration of Jeffery S. Vipperman, PHD. In Support of Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 2, 2021, 92 pages.
Google LLC v. Sonos, Inc., Declaration of Michael T. Johnson, Ph. D. Exhibit 2016 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 117 pages.
Google LLC v. Sonos, Inc., Deposition of Jeffrey S. Vipperman, Ph.D. Exhibit 2017 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 183 pages.
Google LLC v. Sonos, Inc., File History of U.S. Appl. No. 61/601,529 Maher. Exhibit 2018 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 14 pages.
Google LLC v. Sonos, Inc., Judgment. Final Written Decision Determining All Challenged Claims Unpatentable for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 15, 2023, 45 pages.
Google LLC v. Sonos, Inc., Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 49 pages.
Google LLC v. Sonos, Inc., Patent Owner Sur-Reply to Petitioner's Reply for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Oct. 12, 2022, 32 pages.
Google LLC v. Sonos, Inc., Petition for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 5, 2021, 88 pages.
Google LLC v. Sonos, Inc., Petitioner's Reply for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Sep. 6, 2022, 30 pages.
Google LLC v. Sonos, Inc., Record of Oral Hearing for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, Dec. 14, 2022, 60 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 15, 2019, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 10 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 20, 2018, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 10 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 20, 2018, issued in connection with International Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2016/043109, filed on Jul. 20, 2016, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2016/043116, filed on Jul. 20, 2016, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028997, filed on Apr. 22, 2016, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 9, 2018, issued in connection with International Application No. PCT/US2016/041179, filed on Jul. 6, 2016, 6 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 7 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048569, filed on Aug. 28, 2019, 11 pages.
International Bureau, International Preliminary Report on Patentability, dated Sep. 24, 2015, issued in connection with International Application No. PCT/US2014/030560, filed on Mar. 17, 2014, 7 pages.
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 8 pages.
Notice of Allowance dated Feb. 13, 2023, issued in connection with U.S. Appl. No. 17/543,430, filed Dec. 6, 2021, 10 pages.
Notice of Allowance dated Jul. 13, 2022, issued in connection with U.S. Appl. No. 17/033,821, filed Sep. 27, 2020, 8 pages.
Notice of Allowance dated Nov. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 8 pages.
Notice of Allowance dated Jul. 14, 2020, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 11 pages.
Notice of Allowance dated Mar. 14, 2019, issued in connection with U.S. Appl. No. 15/343,996, filed Nov. 4, 2016, 8 pages.
Notice of Allowance dated Oct. 14, 2021, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 5 pages.
Notice of Allowance dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 8 pages.
Notice of Allowance dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 5 pages.
Notice of Allowance dated Mar. 15, 2017, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 7 pages.
Notice of Allowance dated May 15, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 9 pages.
Notice of Allowance dated Nov. 15, 2021, issued in connection with U.S. Appl. No. 16/994,874, filed Aug. 17, 2020, 9 pages.
Notice of Allowance dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 10 pages.
Notice of Allowance dated Sep. 15, 2022, issued in connection with U.S. Appl. No. 17/033,818, filed Sep. 27, 2020, 7 pages.
Notice of Allowance dated Feb. 16, 2022, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 9 pages.
Notice of Allowance dated Jul. 16, 2020, issued in connection with U.S. Appl. No. 16/530,324, filed Aug. 2, 2019, 9 pages.
Notice of Allowance dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Notice of Allowance dated May 16, 2019, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 6, 2018, 10 pages.
Notice of Allowance dated Oct. 16, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 10 pages.
Notice of Allowance dated Oct. 16, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 8 pages.
Notice of Allowance dated Sep. 16, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 7 pages.
Notice of Allowance dated Aug. 17, 2022, issued in connection with U.S. Appl. No. 17/316,371, filed May 10, 2021, 9 pages.
Notice of Allowance dated Dec. 17, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 5 pages.
Notice of Allowance dated May 17, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 7 pages.
Notice of Allowance dated Oct. 17, 2019, issued in connection with U.S. Appl. No. 16/542,433, filed Aug. 16, 2019, 9 pages.
Notice of Allowance dated Aug. 18, 2022, issued in connection with U.S. Appl. No. 17/660,185, filed Apr. 21, 2022, 11 pages.
Notice of Allowance dated Mar. 18, 2019, issued in connection with U.S. Appl. No. 16/056,862, filed Aug. 7, 2018, 12 pages.
Notice of Allowance dated Mar. 18, 2021, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 8 pages.
Notice of Allowance dated Oct. 18, 2021, issued in connection with U.S. Appl. No. 16/570,679, filed Sep. 13, 2019, 9 pages.
Notice of Allowance dated Apr. 19, 2023, issued in connection with U.S. Appl. No. 17/113,799, filed Dec. 7, 2020, 7 pages.
Notice of Allowance dated Aug. 19, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages.
Notice of Allowance dated Jan. 19, 2022, issued in connection with U.S. Appl. No. 17/399,294, filed Aug. 11, 2021, 11 pages.
Notice of Allowance dated Jun. 19, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 5 pages.
Notice of Allowance dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 16 pages.
Notice of Allowance dated Sep. 19, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 10 pages.
Notice of Allowance dated Feb. 2, 2022, issued in connection with U.S. Appl. No. 16/949,951, filed Nov. 20, 2020, 8 pages.
Notice of Allowance dated Mar. 2, 2020, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 9 pages.
Notice of Allowance dated Sep. 2, 2021, issued in connection with U.S. Appl. No. 17/357,302, filed Jun. 24, 2021, 10 pages.
Notice of Allowance dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 11 pages.
Notice of Allowance dated Apr. 20, 2022, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 5 pages.
Notice of Allowance dated Nov. 20, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 10 pages.
Notice of Allowance dated Sep. 20, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
Notice of Allowance dated Dec. 21, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages.
Notice of Allowance dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages.
Notice of Allowance dated Jul. 21, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 10 pages.
Notice of Allowance dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 11 pages.
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 16/182,886, filed Nov. 7, 2018, 10 pages.
Notice of Allowance dated Apr. 22, 2021, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 12 pages.
Notice of Allowance dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 9 pages.
Notice of Allowance dated Jun. 22, 2017, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages.
Notice of Allowance dated Mar. 22, 2023, issued in connection with U.S. Appl. No. 17/662,282, filed May 6, 2022, 5 pages.
Advisory Action dated Jul. 1, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 2 pages.
Advisory Action dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 3 pages.
Advisory Action dated Dec. 11, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages.
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 3 pages.
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 3 pages.
Advisory Action dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 3 pages.
Advisory Action dated Jun. 19, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 3 pages.
Advisory Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 3 pages.
Advisory Action dated Nov. 22, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 4 pages.
Advisory Action dated Jun. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 3 pages.
Advisory Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages.
Advisory Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 3 pages.
An Overview of IEEE 1451.4 Transducer Electronic Data Sheets (TEDS) National Instruments, 19 pages.
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages.
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages.
Audio Tron Setup Guide, Version 3.0, May 2002, 38 pages.
“AV Amplifier DSP-Z7”, Yamaha, 2008 [retrieved on Jan. 3, 2022]. Retrieved from the Internet: URL: https://de.yamaha.com/files/download/other_assets/6/318616/DSP-Z7_en.pdf, pp. 1-154.
BeoLab5 User Manual. Bang & Olufsen. Version 1.0, 20 pages [produced by Google in WDTX Case No. 6:20-cv-00881 Answer on Jan. 8, 2021].
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages.
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages.
Burger, Dennis, “Automated Room Correction Explained,” hometheaterreview.com, Nov. 18, 2013, http://hometheaterreview.com/automated-room-correction-explained/ Retrieved Oct. 10, 2014, 3 pages.
Chen, Trista P. et al. VRAPS: Visual Rhythm-Based Audio Playback System. IEEE, Gracenote, Inc., 2010, pp. 721-722.
Chinese Patent Office, Chinese Office Action and Translation dated Apr. 1, 2021, issued in connection with Chinese Application No. 201910395715.4, 8 pages.
Chinese Patent Office, First Office Action and Translation dated Nov. 3, 2021, issued in connection with Chinese Application No. 202011278502.2, 10 pages.
Chinese Patent Office, First Office Action and Translation dated Jun. 19, 2019, issued in connection with Chinese Application No. 201680054189.X, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Feb. 22, 2021, issued in connection with Chinese Application No. 202010187024.8, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 24, 2020, issued in connection with Chinese Application No. 201910978233.1, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Jan. 28, 2021, issued in connection with Chinese Application No. 201680054164.X, 19 pages.
Chinese Patent Office, First Office Action and Translation dated Jun. 29, 2020, issued in connection with Chinese Application No. 201780057093.3, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Feb. 3, 2021, issued in connection with Chinese Application No. 202010095178.4, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Aug. 4, 2020, issued in connection with Chinese Application No. 201910395715.4, 22 pages.
Chinese Patent Office, First Office Action dated Aug. 11, 2017, issued in connection with Chinese Patent Application No. 201580013837.2, 8 pages.
Chinese Patent Office, First Office Action dated Nov. 20, 2018, issued in connection with Chinese Application No. 201580047998.3, 21 pages.
Chinese Patent Office, First Office Action dated Sep. 25, 2017, issued in connection with Chinese Patent Application No. 201580013894.0, 9 pages.
Chinese Patent Office, First Office Action dated Nov. 5, 2018, issued in connection with Chinese Application No. 201680044080.8, 5 pages.
Chinese Patent Office, Office Action dated Nov. 14, 2019, issued in connection with Chinese Application No. 201680040086.8, 9 pages.
Chinese Patent Office, Second Office Action and Translation dated Aug. 26, 2019, issued in connection with Chinese Application No. 201580047998.3, 25 pages.
Chinese Patent Office, Second Office Action dated Jan. 11, 2019, issued in connection with Chinese Application No. 201680044080.8, 4 pages.
Chinese Patent Office, Second Office Action dated Feb. 3, 2019, issued in connection with Chinese Application No. 201580048594.6, 11 pages.
Chinese Patent Office, Second Office Action dated May 6, 2020, issued in connection with Chinese Application No. 201680040086.8, 3 pages.
Chinese Patent Office, Second Office Action with Translation dated Jan. 9, 2018, issued in connection with Chinese Patent Application No. 201580013837.2, 10 pages.
Chinese Patent Office, Third Office Action dated Apr. 11, 2019, issued in connection with Chinese Application No. 201580048594.6, 4 pages.
“Constellation Acoustic System: a revolutionary breakthrough in acoustical design,” Meyer Sound Laboratories, Inc. 2012, 32 pages.
“Constellation Microphones,” Meyer Sound Laboratories, Inc. 2013, 2 pages.
Corrected Notice of Allowability dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 11 pages.
Daddy, B., “Calibrating Your Audio with a Sound Pressure Level (SPL) Meter,” Blue-ray.com, Feb. 22, 2008 Retrieved Oct. 10, 2014, 15 pages.
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages.
Dell, Inc. “Start Here,” Jun. 2000, 2 pages.
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages.
European Patent Office, European EPC Article 94.3 dated Aug. 16, 2021, issued in connection with European Application No. 19765920.4, 5 pages.
Related Publications (1)
Number Date Country
20230269555 A1 Aug 2023 US
Continuations (9)
Number Date Country
Parent 17543014 Dec 2021 US
Child 18308016 US
Parent 17207640 Mar 2021 US
Child 17543014 US
Parent 17104466 Nov 2020 US
Child 17207640 US
Parent 16658896 Oct 2019 US
Child 17104466 US
Parent 15235598 Aug 2016 US
Child 16658896 US
Parent 15166241 May 2016 US
Child 15235598 US
Parent 15056553 Feb 2016 US
Child 15166241 US
Parent 14726921 Jun 2015 US
Child 15056553 US
Parent 13340126 Dec 2011 US
Child 14726921 US