Image-forming devices are frequently used to form images on media, such as paper and other types of media. Image-forming devices include laser printers, inkjet printers, and other types of printers and other types of image-forming devices. Media is commonly moved through an image-forming device as the device forms the image on the media. The image-forming mechanism of the device, such as an inkjet-printing mechanism, may move in a direction perpendicular to that in which the media moves through the image-forming device. Alternatively, the image-forming mechanism may remain in place while the media moves past it.
For high-quality image formation, the movement of the media through an image-forming device is desirably precisely controlled. If the media moves more than intended, there may be gaps in the resulting image formed on the media, whereas if the media moves less than intended, there may be areas of overlap in the resulting image. In certain environments, such as commercial and industrial environments, both high-quality image formation and fast throughput are desired. However, advancing media through an image-forming device quickly can be antithetical to precise control of such media advancement. Precisely controlled, and fast, media advancement can thus be difficult to achieve.
An embodiment of the invention advances media at a first speed to an interim position based on signals from a first sensor having a first accuracy. While the media is advancing at the first speed, signals are accumulated from a second sensor having a second accuracy greater than the first accuracy. Upon the media reaching the interim position, an actual position of the media is adjusted based on the signals accumulated from the second sensor.
The drawings referenced herein form a part of the specification. Features shown in the drawing are meant as illustrative of only some embodiments of the invention, and not of all embodiments of the invention, unless explicitly indicated, and implications to the contrary are otherwise not to be made.
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized, and logical, mechanical, and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Controlling Media Advancement Using Sensors Having Different Accuracies
To control the advancement of the media 102, there are two sensors: an optical sensor 114, and an image-recognition sensor 117. An encoder disc 112 is situated on the roller shaft 108, and rotates as the roller shaft 108 rotates. The encoder disc 112 has a pattern of lines printed thereon at a given pitch, such as 200 lines per inch, that the optical sensor 114 reads, or senses, as the encoder disc 112 rotates through the optical sensor 114. The sensor 114 in response outputs a pulsed signal, such as a digital or analog signal, based on the lines read. A mechanism 115 associated with the optical sensor 114 converts the incremental encoding provided by the sensor 114 into an absolute encoding, and thus an absolute measure of the angle of the roller shaft 108.
The sensor 114 is more generally a high-resolution, low-accuracy sensor. It is a high-resolution sensor in that the sensor 114 is able to constantly provide signals regarding the positioning of the media 102. As the roller shaft 108 rotates, the encoder disc 112 also rotates, and the sensor 114 is able to constantly provide signals. The sensor 114 is a low-accuracy sensor in that the signals that it provides do not necessarily reflect the actual positioning of the media 102. This is because the sensor 114 reflects movement, or rotation, of the roller shaft 108, which is an indirect indication of movement, or advancement, of the media 102. If the media 102 slips on the roller 106, for instance, the signals provided by the sensor 114 will not accurately reflect the advancement of the media 102.
By comparison, the image-recognition sensor 117 includes two area-of-vision detectors 116 and 118 that directly monitor the displacement of the media 102. Each of the detectors 116 and 118 is able to sense an image of the media 102 as the media 102 passes thereover. The detector 116 first senses an image of the media 102. When the detector 118 has detected the same image, the length of time that has passed is employed to determine how far the media 102 has advanced. Thus, the images are utilized to determine how far the media 102 has advanced.
The image-recognition sensor 117 is more generally a low-resolution, high-accuracy sensor. The image-recognition sensor 117 is a high-accuracy sensor because it directly reflects movement, or advancement, of the media 102. That is, the image-recognition sensor 117 directly senses the media 102, as opposed to indirectly indicating positioning of the media 102. The image-recognition sensor 117 is a low-resolution sensor because it provides signals only periodically at discrete moments in time, when the image captured by the detector 116 subsequently is captured by the detector 118. During other times, the image-recognition sensor 117 is not able to provide signals regarding the positioning of the media 102.
Thus, advancement of the media 102 by the media-advance mechanism 100 can be monitored and controlled by using the sensors 114 and 117. The sensor 114 provides constant, low-accuracy signals, whereas the sensor 117 provides periodic, high-accuracy signals. The accuracy of the sensor 114 in the signals it can provide regarding the positioning of the media 102 is therefore lower than the accuracy of the sensor 117 in the signals the sensor 117 can provide regarding the positioning of the media 102. However, the resolution of the sensor 114 in terms of the frequency of the signals it can provide is greater than the resolution of the sensor 117.
That is, the resolution of a sensor, such as the sensor 114 or the sensor 117, is related to the frequency at which the sensor captures images, and the speed at which media, such as the media 102, moves relative to the sensor. A high-resolution sensor, for instance, captures images of media with greater frequency as the media moves relative to the sensor than does a low-resolution sensor. Thus, a sensor that may capture 100 images of the media as the media has moved one inch past the sensor has a higher resolution than does a sensor that may capture 10 images of the media as the media has moved one inch past the sensor. This means that the former sensor captures images more frequently than the latter sensor does, such that the higher-resolution sensor captures images at a greater frequency than does the lower-resolution sensor. In other words, a lower-resolution sensor captures images less often than does a higher-resolution sensor.
While the media 102 advances in the high-speed mode 208, the low-accuracy but high-resolution sensor 114 is primarily used to track the position of the media 102. That is, the media 102 is primarily advanced to the interim position based on constant signals received from the high-resolution sensor 114. However, the high-accuracy but low-resolution sensor 117 will provide periodic signals, which are accumulated. These signals are accumulated from the sensor 117 at the times indicated by the boxes 212A, 212B, 212C, 212D, 212E, and 212F, collectively referred to as the boxes 212. At the time indicated by the circle 214, the media 102 has advanced to the interim position, and advancement is no longer conducted in the high-speed mode 208.
At the interim position, the actual position of the media 102 is determined as substantially as possible by utilizing the accumulated signals from the sensor 117. While moving in the high-speed mode 208, the media 102 may have slipped, for instance, on the roller 106, which the signals from the sensor 114 do not reflect, but which the signals from the sensor 117 do reflect. Therefore, the actual position of the media 102 at the time indicated by the circle 214 is determined based on the accumulated signals from the sensor 117, before the media 102 begins to advance again, in the low-speed mode 210. It is noted that the profile 206 in the high-speed mode 208 is trapezoid shaped, whereas the profile 206 in the low-speed mode 210 is substantially trapezoid shaped.
In the low-speed mode 210, the media 102 is advanced from its interim position, as may have been adjusted based on the accumulated signals from the sensor 117, to a desired final position at the end of the profile 206. In the low-speed mode 210, advancement of the media 102 is determined by the high-resolution but low-accuracy sensor 114. Because the media 102 advances much more slowly in the low-speed mode 210 than in the high-speed mode 208, the potential for media slippage is greatly reduced, and thus the accuracy of the sensor 114 is sufficient to control movement of the media 102 from the interim to the final position in the low-speed mode 210.
Method for Controlling Media Advancement
The media is first advanced in a high-speed mode to an interim position, based on constant signals received from the low-accuracy, but high-resolution, sensor (302). While the media is advancing in the high-speed mode, periodic signals received from the high-accuracy, but low-resolution, sensor are accumulated, (304). These periodic signals are accumulated without slowing advancement of the media. Once the media reaches the interim position, the actual position of the media is adjusted based on the accumulated signals received from the high-accuracy sensor (306).
The periodic signals from the high-accuracy sensor more accurately denote the actual position of the media than the constant signals from the low-accuracy sensor. The position of the media is not adjusted when these periodic signals are received, but once the advancement of the media has exited the high-speed mode. Finally, the media is advanced in a low-speed mode to a desired final position (308). The media may be advanced in the low-speed mode based on the constant signals received from the low-accuracy sensor. The speed at which the media travels in the low-speed mode is less than the speed at which the media traveled in the high-speed mode.
Once the media 102 has reached the interim position 406, the periodic signals from the high-accuracy sensor that have been accumulated are employed to more accurately denote the actual position of the media 102. That is, the actual position of the media 102 as denoted by the periodic signals from the high-accuracy sensor may vary from the interim position 406 of the media 102 as denoted by the constant signals from the low-accuracy sensor. Therefore, the interim position 406 of the media 102 is adjusted based on the periodic signals received from the high-accuracy sensor. Finally, in the low-speed mode, the media 102 is advanced from the interim position 406 of the media 102, as has been adjusted, to the final position 408, as indicated by the arrow 412.
Image-Forming Device
The media-advance mechanism 100 advances media through the image-forming device 500, whereas the image-forming mechanism 502 forms an image on the media as the media is advanced by the media-advance mechanism 100. The image-forming mechanism 502 may be an inkjet-printing mechanism, another type of fluid-ejecting mechanism, a laser-printing mechanism, or another type of image-forming mechanism. Where the image-forming mechanism 502 is an inkjet-printing mechanism, the image-forming device 500 may be considered an inkjet printer, whereas where the image-forming mechanism 502 is a laser-printing mechanism, the image-forming device 500 may be considered a laser printer, and so on.
The controller 504 is hardware, software, or a combination of hardware or software, and can be the firmware of the image-forming device 500. The controller 504 at least controls the media-advance mechanism 100 to advance the media in accordance with a speed-time profile as has been described, such as the speed-time profile 206 of
Alternative Embodiments and Conclusion
It is noted that, although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. Other applications and uses of embodiments of the invention, besides those described herein, are amenable to at least some embodiments. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and equivalents thereof.
For example,
Number | Name | Date | Kind |
---|---|---|---|
5940105 | Hayami | Aug 1999 | A |
6118832 | Mayrargue et al. | Sep 2000 | A |
6412907 | Castelli et al. | Jul 2002 | B1 |
20020037191 | Lesniak et al. | Mar 2002 | A1 |
20020097291 | Castelli et al. | Jul 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040207673 A1 | Oct 2004 | US |