In some image forming devices, media registration mechanisms have been incorporated into the media path in order to help align a sheet of print media (hereinafter referred to as “print media”). Aligning the print media helps to orient it in a consistent position for imaging or outputting.
In prior media registration mechanisms, moving belts were angled towards a registration fence to achieve media registration. When the print media came into contact with the angled belts, the print media was carried into and against the fence.
In other image forming devices, vacuum rotor technology has been used to orient the print media in a consistent position for imaging or outputting. Vacuum rotor technology uses vacuum suction cups to grab print media from one imaging station by applying a vacuum to the suction cups, swing the print media about an arc to the next imaging station, and then drop off the print media to the next imaging station.
It will be appreciated that the illustrated boundaries of elements (e.g., boxes or groups of boxes) in the figures represent one example of the boundaries. One of ordinary skill in the art will appreciate that one element may be designed as multiple elements or that multiple elements may be designed as one element. An element shown as an internal component of another element may be implemented as an external component and vice versa.
Further, in the accompanying drawings and description that follow, like parts are indicated throughout the drawings and description with the same reference numerals, respectively. The figures are not drawn to scale and the proportions of certain parts have been exaggerated for convenience of illustration.
Illustrated in
The registered print media can then be advanced to a first image forming mechanism 115 where an image may be formed onto the print media. Optionally, the print media may pass through the first image forming mechanism 115 without being imaged. The first image forming mechanism 115 may be embodied in a variety of different ways depending on the type of image forming device 100. For example, the first image forming mechanism 115 may include an electrophotographic imaging mechanism, a laser imaging mechanism, an inkjet mechanism, a thermal printing mechanism, a digital image reproduction mechanism, or other type of printing mechanism.
With further reference to
Once the print media exits the media flipping mechanism 120, the print media can be fed to a media registration mechanism 125 configured to align the print media in a relatively consistent position and orientation prior to imaging. A media registration mechanism will also be referred to as an alignment mechanism. In one embodiment, the media registration mechanism 125 is configured to align print media against one of two opposing registration walls depending on whether an imaging job request designates single-sided or duplex imaging.
With further reference to
Once the print media is imaged by the second image forming mechanism 130, the print media can be moved along the media path to an output station 135. For example, the output station 135 can be one or more output trays or other devices from which a user can receive the imaged print media.
In one embodiment, the image forming device 100 can be configured to perform at least two different imaging operations. In one imaging operation, the image forming device 100 can be used for single-sided imaging of multiple sheets of print media. For example, when single sided imaging is designated, the first and second image forming mechanisms 115, 130 can be used to image the same side of alternate sheets of print media.
Illustrated in
Illustrated in
Once the edge A of the second sheet of print media P is registered against the first registration wall, the second sheet of print media P can then be advanced to the second image forming mechanism 130 where an image can be formed on the front side of the second sheet of print media P (which is the same side as the front side of the first sheet of print media). The second sheet of print media P can then be advanced to the output station 135. In this manner, alignment of the same side edge of the print media P (e.g., the edge A in this embodiment) against the first registration wall can assure that the image is formed on the front side of the second sheet of print media P in the same position and orientation as the image formed on the front side of the first sheet of print media P.
In one embodiment, the operation of the image forming device 100 can be synchronized to image two sheets of print media in approximately one imaging cycle. For example, a sheet of print media can be fed to the second image forming mechanism 130 while the first image forming mechanism 115 is forming an image on a different sheet of print media. Likewise, a sheet of print media can be fed to the first image forming mechanism 115, while the second image forming mechanism 130 is forming an image on a different sheet of print media. Accordingly, the two sequences illustrated in
In another imaging operation, the image forming device 100 can be used for duplex imaging. For example, when duplex imaging is designated, the first image forming mechanism 115 can form an image on a front side of a sheet of print media and the second image forming mechanism 130 can form an image on a back side of the same sheet of print media (opposite the first side).
Illustrated in
The print media P can then be advanced to the media flipping mechanism 120 to flip the print media P in a manner such that the edge A and the edge B of the print media P are reversed. For example, the media flipping mechanism 120 can rotate the print media P about an axis that extends through the center of the print media P in a direction substantially parallel to the media path C. Accordingly, after the print media P has been flipped, the leading edge L of the print media P remains as the leading edge L, the edge A and the edge B are reversed, and the back side is flipped and exposed to be imaged upon. Of course, the flipping mechanism 120 can be configured to flip the print media in other ways.
With further reference to
For example, in the media registration mechanism 125, the edge A of the print media P (which is the same side edge of the print media P that was aligned against the first registration wall in the media registration mechanism 110) can be aligned against a second registration wall, opposing the first registration. The print media P can then be advanced to the second image forming mechanism 130 where an image is formed on the back side of the print media P. In this manner, alignment of the same edge of the print media P (e.g., the edge A in this embodiment) against the second registration wall assures that the image formed on the back side of the print media P is positioned and oriented properly with respect to the image formed on the front side of the print media P. For example, when a border is imaged on the front side of the print media P, the second image forming mechanism 130 can form another border on the back side of the print media P that is substantially aligned with the border on the front side of the print media P. The borders can be substantially aligned with each other because the same edge of the print media was used to align the print media P prior to the imaging on both sides of the print media P.
Illustrated in
With further reference to
In one embodiment, the first and second belts 315, 320 can be positioned substantially parallel to each other (e.g., side-by-side) and substantially parallel to and between the first and second registration walls 305, 310. The first and second belts 315, 320 can be configured to travel in a closed loop path such that the belts 315, 320 can move the print media P along the media path C.
In one embodiment, the first and second belts 315, 320, individually, act as conveyers that can move the print media P in a linear direction substantially parallel to the media path C. However, in combination, the first and second belts 315, 320 are configured to shift or rotate the print media P toward a selected one of the registration walls 305, 310 when the print media P simultaneously engages the first and second belts 315, 320.
For example, the first and second belts 315, 320 can be configured to be selectively driven at different speeds in at least two different speed ratios. Thus, when the print media P simultaneously engages both the belts 315, 320, the belts can selectively steer the print media P towards the first registration wall 305 or the second registration wall 310 depending on their relative speeds. In general, to steer the print media toward a selected registration wall, belts that are positioned closer to the selected registration wall are driven at a slower speed than belts positioned further away. In this manner, the media registration mechanism 300 can be dynamically configurable in two alignment states in order to selectively align the print media P along one of the registration walls 305, 310.
In a first alignment state, the media registration mechanism 300 can be configured to drive the first belt 315 at a speed less than the speed of the second belt 320 such that a speed ratio between the speed of the first belt 315 and the speed of the second belt 320 is less than 1:1. When the first and second belts 315, 320 are configured to be driven at such a speed ratio, the first and second belts 315, 320, upon concurrently engaging the print media P, cause the print media P to rotate towards the first registration wall 305 in the direction, represented by arrow D, as the print media P moves along the media path C. The print media P can continue to rotate towards the first registration wall 305 until the edge A of the print media P contacts and is substantially aligned against the first registration wall 305. In other words, because of the difference in relative speeds between the first and second belts 315, 320 (where the first belt 315 is operated at a speed slower than the second belt 320), the print media P is skewed towards the first registration wall 305.
In a second alignment state, the speeds of the first and second belts 315, 320 may be reversed or changed such that the speed of the first belt 315 is greater than the speed of the second belt 320. For example, the belts are driven at a second speed ratio where the speed of the first belt 315 and the speed of the second belt 320 have a ratio greater than 1:1. When the first and second belts 315, 320 are configured to be driven at the second speed ratio, the first and second belts 315, 320, upon concurrently engaging the print media P, cause the print media P to rotate towards the second registration wall 310 in the direction, represented by arrow E, as the print media P moves along the media path C. The print media P can continue to rotate towards the second registration wall 305 until edge B of the print media P contacts and is substantially aligned against the second registration wall 310.
To selectively drive the first and second belts 315, 320 at different speeds in at least two different speed ratios, the media registration mechanism 300 may further include drive means coupled to the first and second belts 315, 320. In one embodiment, the drive means includes a drive mechanism 325. The drive mechanism 325 can include a motor 330 and a drive shaft 335 coupled to the motor 330. In one embodiment, the motor 330 can be a bi-directional motor configured to be selectively rotated in a clockwise or counterclockwise direction which, as described further below, will cause the speeds of the first and second belts 315, 320 to change. For purposes of simplicity and establishing a reference direction in the drawings, the clockwise direction is a direction opposite the media path A and the counterclockwise direction is the same direction as the media path A.
In one embodiment, the drive shaft 335 can be coupled to each belt via a coupling mechanism. In general, each coupling mechanism can include multiple rollers, shafts, and drive belts configured to selectively change the speeds of each belt. For example, the first belt 315 can be coupled to the drive shaft 335 via a first coupling mechanism. The first coupling mechanism can include a first shaft 340 coupled to the drive shaft via a first drive belt 345. The first shaft 340 can include a downstream one-directional roller 350 having a radius. The roller 350 will be referred to as a downstream roller since it is downstream along the media path C relative to an upstream roller 370. The downstream one-directional roller 350 can be configured to be driven when the first shaft 340 is operated in a counterclockwise direction and idled when the first shaft 340 is operated in a clockwise direction. The downstream one-directional roller 350 is drivingly engaged to the first belt 315 such that the first belt 315 is driven when the downstream one-directional roller 350 is driven. Obviously, the downstream one-directional roller 350 can be configured to be driven when the first shaft 340 is operated in a clockwise direction and idled when the first shaft 340 is operated in a counterclockwise direction. It will be appreciated that one-way clutches, one-directional ratchet-type couplings, or other mechanical components that allow, for example, only one direction of rotation may be used instead of one-directional rollers to achieve the same effect.
The first coupling mechanism can further include a first geared shaft 355 coupled to the drive shaft 335 via a third drive belt 360. The first geared shaft 355 can be engaged with a second geared shaft 365 to reverse the rotation of the second geared shaft 365 when the first geared shaft 355 is rotated. For example, when the drive shaft 335 is rotated in the clockwise direction, the first geared shaft 355 would rotate in the clockwise direction and the second geared shaft 365 would rotate in the counterclockwise direction. The second geared shaft 365 can include an upstream one-directional roller 370 having a radius that is less than the radius of the downstream one-directional roller 350. The upstream one-directional roller 370 can be configured to be driven when the second geared shaft 365 is operated in a counterclockwise direction and idled when the second geared shaft 365 is operated in a clockwise direction. The upstream one-directional roller 370 is drivingly engaged to the first belt 315 such that the first belt 315 is driven when the upstream one-directional roller 370 is driven. Obviously, the upstream one-directional roller 370 can be configured in an opposite manner as well depending on the configuration of the other rollers.
With further reference to
The second coupling mechanism can further include a third geared shaft 390 coupled to the drive shaft 335 via a fourth drive belt 392. The third geared shaft 390 is engaged with a fourth geared shaft 394 to reverse the rotation of the fourth geared shaft 394 when the third geared shaft 390 is rotated. The fourth geared shaft 394 can include an upstream one-directional roller 396 having a radius that is greater than the radius of the downstream one-directional roller 385. The upstream one-directional roller 396 can be configured to be driven when the fourth geared shaft 394 is operated in the counterclockwise direction and idled when the fourth geared shaft 394 is operated in the clockwise direction. The upstream one-directional roller 396 is drivingly engaged to the second belt 320 such that the second belt 320 is driven when the upstream one-directional roller 396 is driven. Obviously, the upstream one-directional roller 396 can be configured in an opposite manner as well depending on the configuration of the other rollers.
In one embodiment, the drive mechanism 325 can be configured to cause the print media to align against the first registration wall 305. For example,
When the drive shaft 335 is rotated in the clockwise direction, the first and third geared shafts 355, 390 are rotated in the clockwise direction via the third and fourth drive belts 360, 392, respectively, which travel in the direction represented by arrows F. The rotation of the first and third geared shafts 355, 390 in the clockwise direction causes the second and fourth geared shafts 365, 394 to rotate in the counterclockwise direction. Since the upstream one-directional rollers 370, 396 are configured to be operated in the counterclockwise direction, the upstream one-directional rollers 370, 396 are driven by the second and fourth geared shafts 365, 394, respectively. Accordingly, in this embodiment, the upstream one-directional rollers 370, 396 are the “driving” rollers that dictate the speeds of the first and second belts 315, 320, respectively, while the downstream one-directional rollers 350, 385 are the “idle” rollers.
Simultaneously, when the drive shaft 335 is rotated in the counterclockwise direction, the first and second shafts 340, 375 are rotated in the counterclockwise direction via the first and second drive belts 345, 380, respectively, which also travel in the direction F. Since the downstream one-directional rollers 350, 385 are configured to be operated in the counterclockwise direction, the first and second shafts 340, 375 do not engage the downstream one-directional rollers 350, 365, respectively. Accordingly, the downstream one-directional rollers 350, 365 are not driven by the first and second shafts 340, 375 when the drive shaft 335 is rotated in the counterclockwise direction. It will be appreciated that the downstream one-directional rollers 350, 385 can still rotate in the counterclockwise direction even though the drive shaft 335 is rotated in the counterclockwise direction because the first and second belts 315, 320 are drivingly engaged with the downstream one-directional rollers 350, 385. However, as previously mentioned, the speeds of the first and second belts 315, 320 are dictated by the upstream one-directional rollers 370, 396, respectively, since they are the “driving” rollers in this example.
When the rear one-dimensional rollers 370, 396 are driven, the linear speeds of the first and second belts 315, 320 can be the product of the radius of the upstream one-dimensional rollers 370, 396, respectively, multiplied by the angular speed of the drive shaft 335. Accordingly, when the drive shaft 335 is driven at one angular speed, the first and second belts 315, 320 are driven at different linear speeds since the upstream one-dimensional rollers 370, 396, respectively, of the drive shaft 335 have different radii. Thus, when the drive shaft 335 is rotated in the clockwise direction, the speed of the first belt 315 (represented by arrow G) is less than the speed of the second belt 320 (represented by arrow H, which is longer than arrow G to illustrate the difference in speeds) because the radius of the upstream one-dimensional roller 370 is less than the radius of the upstream one-dimensional roller 396.
In one embodiment, a percentage difference between the speed of the first belt 315 and the second belt 320 can be proportional to the percentage difference between the radii of the rear one-directional rollers 370, 396. For example, if the radius of the upstream one-directional roller 370 is 5% less than the radius of the upstream one-directional roller 396, then the speed of the first belt 315 is 5% less than the speed of the second belt 320. In one embodiment, the radius of the upstream one-directional roller 370 is between about 1% and about 5% greater than the radius of the upstream one-directional roller 396. Of course, other desired percentage ratios can be used.
When print media P is carried by the first and second belts 315, 320, the slower belt (e.g., the first belt 315 in the above example) creates drag on a portion of the print media P relative to a portion of the print media P in contact with the faster belt (e.g., the second belt 320 in the above example). The difference in belt speeds causes the print media P to rotate towards the slower belt (e.g., the first belt 315) in the direction D. Thus, the print media P will move towards the first registration wall 305 causing edge A of the print media P to contact and substantially align against the first registration wall 305. In other words, when the first belt 315 is traveling at a speed less than the second belt 320, the print media P is steered towards the first registration wall 305 while the print media P continues to move along the media path C.
With the above configuration, the drive mechanism 325 can be dynamically re-configured to cause the print media to align against the second registration wall 310. For example,
When the drive shaft 335 is rotated in the counterclockwise direction, the first and second shafts 340, 375 are rotated in the counterclockwise direction via the first and second drive belts 345, 380, respectively, which travel in the direction represented by arrows I. Since the downstream one-directional rollers 350, 385 are configured to be operated in the counterclockwise direction, the downstream one-directional rollers 350, 385 are driven by the first and second shafts 340, 375, respectively. Accordingly, in this embodiment, the downstream one-directional rollers 350, 385 are the “driving” rollers that dictate the speeds of the first and second belts 315, 320, respectively, while the upstream one-directional rollers 370, 396 are the “idle” rollers.
Simultaneously, when the drive shaft 335 is rotated in the counterclockwise direction, the first and third geared shafts 355, 390 are rotated in the counterclockwise direction via the third and fourth drive belts 360, 392, respectively, which also travel in the direction I. The rotation of the first and third geared shafts 355, 390 in the counterclockwise direction causes the second and fourth geared shafts 365, 394 to rotate in the clockwise direction. Since the upstream one-directional rollers 370, 396 are configured to be operated in the counterclockwise direction, the first and second shafts 340, 375 do not engage the upstream one-directional rollers 370, 396, respectively. Accordingly, the upstream one-directional rollers 370, 396 are not driven when the drive shaft 335 is rotated in the counterclockwise direction. It will be appreciated that the upstream one-directional rollers 370, 396 can still rotate in the counterclockwise direction even though the drive shaft 335 is rotated in the counterclockwise direction because the first and second belts 315, 320 are drivingly engaged with the upstream one-directional rollers 370, 396. However, as previously mentioned, the speeds of the first and second belts 315, 320 are controlled in part by the downstream one-directional rollers 350, 385, respectively, since they are the “driving” rollers in this example.
In this example, the rotation of the drive shaft 335 can be selectively reversed by the motor 330 (e.g., rotated in the counterclockwise direction) such that the downstream one-directional rollers 350, 385 become the “driving” rollers, while the upstream one-directional rollers 370, 396 become the “idle” rollers. Accordingly, the speed of the first belt 315 (represented by arrow J) is greater than the speed of the second belt 320 (represented by arrow K, which is shorter than arrow J to illustrate the difference in speeds) because the diameter of the downstream one-dimensional roller 350 is greater than the diameter of the downstream one-dimensional roller 385.
When print media P is carried by the first and second belts 315, 320, the slower belt (e.g., the second belt 320 in the above example) creates drag on a portion of the print media P relative to a portion of the print media P in contact with the faster belt (e.g., the first belt 315 in the above example) The difference in belt speeds causes the print media P to rotate towards the slower belt (e.g., the second belt 320) in the direction E. Thus, the print media P will move towards the second registration wall 310 causing edge B of the print media P to contact and substantially align against the second registration wall 310.
Thus, the linear speeds of the first and second belts 315, 320 can be dynamically and selectively changes by reversing the “driving” rollers of each belt. If the “driving” roller is larger in diameter, the belt will travel faster than when a smaller diameter is used assuming the drive shaft 335 is maintained at a relatively constant speed. Once again, by configuring the first and second belts 315, 320 to travel at different relative speeds, the print media can be caused to rotate towards the slower belt.
In another embodiment, the drive means may include separate motors to independently and selectively drive each of the first and second belts 315, 320 at different speeds. It will be appreciated that other types of drive means may be used including any mechanical, electromechanical, electromagnetic components, or combinations thereof to selectively drive the first and second belts 315, 320 at different speeds.
Illustrated in
The third belt 405 can be configured to engage the print media and move it relative to the first and second registration walls 305, 310 simultaneously with the first and second belts 315, 320. In one embodiment, the third belt 405 can be configured to move the print media P in a linear direction substantially parallel to the media path C and the first and second registration walls 305, 310.
In one embodiment, the first, second, and third belts 315, 320, 405 can be configured to be selectively driven at different speeds in order to selectively steer the print media P towards the first registration wall 305 or the second registration wall 310. For example, the first, second, and third belts 315, 320, 405 can be configured to be driven at different speeds such that the third belt 405 is driven at a speed greater than the second belt 320, which is driven at a speed greater than the first belt 315. This difference in belt speeds causes the print media P to rotate towards the first registration wall 305 when the print media P is carried along the media path C by the first, second, and third belts 315, 320, 405. Hence, the speed of each belt increases as the distance between each belt and the first registration wall 305.
In this embodiment, the first, second, and third belts 315, 320, 405 can be dynamically re-configured to change the speeds of the belts such that the third belt 405 is driven at a speed less than the second belt 320, which is driven at a speed less than the first belt 315. This difference in speeds can cause the print media P to rotate towards the second registration wall 310 when the print media P engages the first, second, and third belts 315, 320, 405. Thus, the speed of each belt increases as the distance between each belt and the second registration wall 310 increases. In another embodiment, the speeds of the outer belts (e.g., the first and third belts 315, 405) can be selectively changed when the rotation direction of the drive shaft 335 is reversed, while the speed of the inside belt (e.g., the second belt 320) can remain constant. To accomplish this, the upstream and downstream one-directional rollers (i.e., 385, 396) of the second belt 320 would have substantially the same radius.
In one embodiment, the media registration mechanism 400 can further include a third coupling mechanism coupled to the drive shaft 335 and the third belt 405 to selectively change the speeds of the third belt 405. The third coupling mechanism can include a third shaft 410 coupled to the drive shaft via a drive belt 415. The third shaft 410 can include a downstream one-directional roller 420 having a radius that is less than the other two downstream one-directional rollers 350, 385. The downstream one-directional roller 420 can be configured to be driven when the third shaft 410 is operated in a counterclockwise direction and idled when the third shaft 410 is operated in a clockwise direction. The downstream one-directional roller 420 is drivingly engaged to the third belt 405 such that the third belt 405 is driven when the downstream one-directional roller 420 is driven.
The third coupling mechanism can further include one geared shaft 425 coupled to the drive shaft 335 via another drive belt 430. The geared shaft 425 can be engaged with another geared shaft 435 to reverse the rotation of the geared shaft 435 when the geared shaft 425 is rotated. For example, when the drive shaft 335 is rotated in the clockwise direction, the geared shaft 425 would rotate in the clockwise direction and the geared shaft 435 would rotate in the counterclockwise direction. The geared shaft 435 can include an upstream one-directional roller 440 having a radius that is less than the other two upstream one-directional rollers 370, 396. The upstream one-directional roller 440 can be configured to be driven when the geared shaft 435 is operated in a counterclockwise direction and idled when the geared shaft 435 is operated in a clockwise direction. The upstream one-directional roller 440 is drivingly engaged to the third belt 405 such that the third belt 405 is driven when the upstream one-directional roller 440 is driven.
Illustrated in
With reference to
To align the print media substantially against a selected registration wall, the multiple belts can be selectively driven at different speeds such that the speeds of the multiple belts decrease towards the selected registration wall (block 510). Accordingly, the net effect of driving the multiple belts at different speeds causes the print media to skew towards and substantially align against the selected registration wall while still moving along the media path. Optionally, to align the print media substantially against the other registration wall, the speeds of the multiple belts can be selectively reversed or changed such that the speeds of the multiple belts decrease towards the other registration wall. Accordingly, the net effect of driving the multiple belts at different speeds causes the print media to skew towards and substantially align against the other registration wall while still moving along the media path.
Illustrated in
As shown in
As shown in
As shown in
Illustrated in
As shown in
As shown in
As shown in
While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Number | Name | Date | Kind |
---|---|---|---|
2729136 | Feick et al. | Jan 1956 | A |
3902715 | Hubler et al. | Sep 1975 | A |
4266762 | Kramer et al. | May 1981 | A |
4335971 | deMey, II | Jun 1982 | A |
4511242 | Ashbee et al. | Apr 1985 | A |
4693463 | Schwebel et al. | Sep 1987 | A |
4930766 | Garavuso | Jun 1990 | A |
5078384 | Moore | Jan 1992 | A |
5167409 | Higeta | Dec 1992 | A |
5278624 | Kamprath et al. | Jan 1994 | A |
5394222 | Genovese | Feb 1995 | A |
5540370 | Ring | Jul 1996 | A |
5678159 | Williams et al. | Oct 1997 | A |
5791644 | Regimbal et al. | Aug 1998 | A |
5794176 | Milillo | Aug 1998 | A |
6324377 | Ando et al. | Nov 2001 | B2 |
6454256 | Boguhn et al. | Sep 2002 | B1 |
6485010 | Lamothe | Nov 2002 | B1 |
6712356 | Daout et al. | Mar 2004 | B2 |
20030016970 | Omata et al. | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
0485786 | May 1992 | EP |
0956969 | May 2000 | EP |
2063830 | Jun 1981 | GB |
58026741 | Feb 1983 | JP |
10053355 | Feb 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20050035538 A1 | Feb 2005 | US |