Information
-
Patent Grant
-
6631902
-
Patent Number
6,631,902
-
Date Filed
Thursday, March 30, 200024 years ago
-
Date Issued
Tuesday, October 14, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
-
CPC
-
US Classifications
Field of Search
US
- 271 207
- 271 213
- 271 214
- 271 215
- 271 217
- 271 219
-
International Classifications
-
Abstract
A media storage bin including a floor and a pair of spaced apart walls specifically spaced to receive pieces of media and to retain the pieces of media in a stacked condition. A drop control flap is mounted to an individual one of the spaced walls for delaying the fall of a piece of media into the bin. This wall includes a top surface. A platform for supporting a stack of pieces of media is disposed in the bin, between the wall top surface and the floor. A helical spring is disposed between the platform and the floor for maintaining the top of the media stack at a predetermined distance from the wall top surface to provide thereby a constant fall distance between an individual one of the pieces of media and the wall top surface. This is accomplished in a manner whereby the spring rate enables the platform to drop the thickness of one piece of media for each piece of media added to the top of the stack.
Description
BACKGROUND OF THE INVENTION
The present invention relates generally to printing devices and, more particularly, to a printer media storage bin and method of using the same.
Modern printing devices utilize printheads or drop ejectors that are often mounted in a carriage that is moved back and forth across print media, such as paper or envelopes, for example. During the printing process, as the printheads move across the print media, a control system activates the printheads to deposit or eject ink droplets onto the print media to form images and text.
Throughput is often an important factor in printing processes and, as a result, a printer manufacturer can be under pressure to find techniques for increasing throughput, without diminishing print quality. In some cases, especially in tabletop printers, the goal of high throughput is achieved at a cost of printed media smearing. Such smearing occurs downstream of the printing process, at a place where the printed pieces of media are received and temporarily stored. As a rule, the smearing occurs as a piece of newly printed media rubs across another piece of media, before the ink on the latter has dried.
Designers of conventional printers have realized the problems presented by smearing of the printed media and they have taken steps to eliminate them. One approach to eliminate the smearing problem has been to provide heaters to aid the drying process. Such heaters are relatively large and expensive. In addition, the heaters can present a potential fire hazard and, since they dry the air around the printheads, they create an environment that is detrimental to the printheads. Thus, use of heaters to eliminate smearing may have some utility but the technique itself presents some limitations.
From the foregoing it will be apparent that there is a need for a post-printing technique whereby smearing of media pieces is substantially eliminated, in a safe, effective and efficient manner. Desirably, such a technique would afford increased throughput while enabling good print quality. In addition, it would be advantageous if such a technique utilized inexpensive components and eliminated the need for heating devices.
DISCLOSURE OF THE INVENTION
According to the present invention, there is provided a media storage bin including a floor and a pair of spaced apart walls specifically spaced to receive pieces of media and to retain the pieces of media in a stacked condition. A drop control flap is mounted to an individual one of the spaced walls for delaying the fall of a piece of media into the bin. This wall includes a top surface. A platform for supporting a stack of pieces of media is disposed in the bin, between the wall top surface and the floor. A helical spring is disposed between the platform and the floor for maintaining the top of the media stack at a predetermined distance from the wall top surface to provide thereby a constant fall distance between an individual one of the pieces of media and the wall top surface. This is accomplished in a manner whereby the spring rate enables the platform to drop the thickness of one piece of media for each piece of media added to the top of the stack.
The media storage bin of the present invention affords several advantages. It enables increased throughput without any sacrifice of print quality. It is inexpensive to produce since the control flap is constructed of readily available materials and the helical spring can be procured without difficulty. Importantly, the invention eliminates the need for heaters while providing a simple and reliable technique for stacking pieces of printed media while substantially eliminating rubbing of the pieces during the stacking process. As a result, the smearing problem is substantially eliminated in an efficient and effective manner.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1
is a schematic view of a media storage bin constructed according to the present invention showing one media stack configuration; and
FIG. 2
is a schematic view of a media storage bin constructed according to the present invention showing another media stack configuration.
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiment is to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
In the following detailed description and in the drawings, like elements are identified with like reference numerals. As shown in the drawings for purposes of illustration, the invention is embodied in a novel media storage bin for receiving and stacking printed pieces of media. A drop control flap aids in preventing rubbing one media piece against another, thereby substantially reducing smearing while the spring maintains a constant fall distance for the media pieces.
Referring now to
FIG. 1
of the drawings, there is shown a media storage bin
10
that is constructed according to the present invention. The storage bin
10
is located downstream of a printer, generally indicated by the reference numeral
8
, and the bin
10
receives and stores pieces of media that have undergone a printing process. The printer
8
includes print cartridges
11
,
12
,
13
,
16
and
17
that, responsive to control signals, eject ink droplets onto a piece of media, such as the media piece
22
. The cartridges
11
,
12
,
13
,
14
and
17
are supported on a support
21
that, in turn, rests on a base
24
. The printer
8
includes a media guide
23
for controlling the path of travel of the media piece
22
through the printer
8
and into the bin
10
. In this regard, a pair of drive rollers
25
and
27
, mounted in the guide
23
, propel the media piece
22
along a path shown by the arrows
31
and
33
, into the bin
10
.
The bin
10
is rectangular in shape and it includes a pair of spaced apart walls
36
and
38
that are specifically spaced to accept pieces of printed media. The wall
36
includes a top surface
39
. While it will be appreciated that the present invention is suitable for handling various types of media,
FIG. 1
depicts the pieces of media as envelopes
55
,
57
,
58
and
59
. Thus, where the envelopes
55
,
57
,
58
and
59
are “business” envelopes having a length of about 9 and ⅜ inches, the distance between the walls
36
and
38
is about 9 and ⅝ inches to about 9 and ¾ inches. This distance enables effective stacking of the envelopes in the bin
10
.
The bin
10
includes a floor
41
and a platform
43
for receiving pieces of printed media, such as the envelopes
55
,
57
,
58
and
59
. Each one of the envelopes, such as the envelope
58
, for example, includes a leading edge
52
a
and a trailing edge
52
b.
It will be noted, with reference to
FIG. 1
, that the media pieces, such as the envelope
59
, fall onto the stack
51
with printed indicia, such as the indicia
54
, facing upward. Because of the specific spacing between the walls
36
and
38
, the media pieces fall onto the platform
43
in a manner whereby the media pieces form an orderly stack, such as the stack
51
, in which the leading and trailing edges of the respective individual envelopes are substantially aligned.
The bin
10
includes a drop control flap
53
that is mounted adjacent the wall top surface
39
. The flap
53
is constructed of flexible plastic material and in cross section it curves downwardly, in the direction of the floor
41
. The drop control flap
53
cooperates with an helical spring
45
, disposed between the floor
41
and the platform
43
, to eliminate smearing on printed documents such as the envelopes
55
,
57
,
58
and
59
. Such smearing prevention is accomplished in a novel manner, without any need for heaters.
The smearing prevention technique accomplished by the present invention will be readily understood by reference to FIG.
1
and to the envelope
58
. As shown in the figure, the envelope
58
has undergone the printing process in the printer
8
and is disposed between the envelopes
57
and
59
as all three are falling onto the stack
55
. The envelope
58
includes leading and trailing edges
52
a
and
52
b,
respectively. Propelled by the rollers
25
and
27
, the envelope
58
is moved into the bin
10
so that the leading edge
52
a
strikes the wall
38
. Immediately thereafter, the trailing edge
52
b
engages the drop control flap
53
. Momentary engagement of the envelope
58
with the control flap
53
slows the downward passage of the envelope
58
thereby permitting some drying of the ink on the envelope while enabling the envelope leading edge
52
a
to fall more rapidly than the trailing edge
52
b.
In this manner, the leading edge
52
a
reaches the top of the stack
55
first while the opposite end of the envelope, near the trailing edge
52
b,
follows. As a result, smearing of indicia on the envelope
57
is prevented as the envelope
58
settles gently into place on top of the stack
55
, without rubbing across the previously printed envelope
57
.
A predetermined document fall distance is important in order to achieve an orderly stack of media pieces while eliminating rubbing between pieces. A fall distance D, between the top surface
39
and the top of the media stack
51
is shown in FIG.
1
. In a preferred embodiment of the invention, a distance D of between about one inch and about 3 inches is suitable in the case of printed envelopes. Since the weight of the stack
51
is proportional to the height of the stack, a spring constant for the spring
45
is selected in order to maintain the distance D constant. The spring constant can be expressed by the relationship K=ρg(wL) whereby the spring rate drops the stack
51
one envelope thickness for the weight of each envelope, such as the envelope
55
, set on top of the stack
51
.
The function of the spring
45
can be better understood by reference to
FIG. 2
, wherein like elements are identified with like reference numerals. Here, a media stack
151
is shown that, because of fewer pieces, the stack
151
is shorter, and therefore lighter, than the stack
51
of FIG.
1
. Nevertheless, because of the selected spring constant for the spring
45
, the top of the stack
151
is maintained at a distance d from the top surface
39
that is equal to the distance D of FIG.
1
.
It will be recognized by those skilled in the art that, while envelopes have been described as examples of pieces of printed media, the present invention is not limited to receiving envelopes only. Thus, cards or relatively stiff paper or other media can be processed by the invention.
From the foregoing it will be appreciated that the media storage bin provided by the invention provides an efficient technique for receiving printed media pieces while substantially eliminating the smearing problem. The bin is mechanically simple, easy to assemble and comprised of readily available components. Any need for complicated drying devices, such as heaters, is eliminated, thereby making a more efficient, effective and safe printer possible.
It will be evident that there are additional embodiments and applications which are not disclosed in the detailed description but which clearly fall within the scope of the present invention. The specification is, therefore, intended not to be limiting, and the scope of the invention is to be limited only by the following claims.
Claims
- 1. A media storage bin for receiving printed media, comprising:a media storage bin, said bin including a floor and a pair of spaced apart walls specifically spaced to receive pieces of media and to retain said pieces of media in a stacked condition; a drop control flap, mounted to an individual one of said pair of spaced apart walls, for engaging a piece of media to delay the fall of said piece of media, wherein said drop control flap projects into said bin, said individual one of said spaced apart wall including a top surface; a platform for supporting a stack of pieces of media, said platform being disposed in said bin between said floor and said wall top surface; and a spring disposed between said platform and said floor for maintaining the top of said stack at a predetermined distance from said top surface to provide thereby a constant fall distance between an individual one of said pieces of media and said top surface.
- 2. The media storage bin according to claim 1, wherein said drop control flap is mounted on said wall adjacent said wall top surface.
- 3. The media storage bin according to claim 1, wherein said drop control flap is curved downwardly in the direction of said floor.
- 4. The media storage bin according to claim 1, wherein said drop control flap is composed of resilient material.
- 5. The media storage bin according to claim 1, wherein said spaced walls are separated by a distance that exceeds the length of each one of said pieces of media.
- 6. The media storage bin according to claim 5, wherein said distance is between about ⅛ inch and about ⅜ inch.
- 7. The media storage bin according to claim 1, wherein said spring is a helical spring.
- 8. The media storage bin according to claim 1, wherein said predetermined distance is between about one inch and about three inches.
- 9. A method of collecting a stack of pieces of media comprising the steps of:providing a media storage bin, said bin including a floor and a pair of spaced apart walls specifically spaced to receive pieces of media and to retain said pieces of media in a stacked condition; providing a drop control flap mounted to an individual one of said pair of spaced apart walls and projecting into said bin to engage a piece of media to delay the fall of said piece of media into said bin, said individual one of said spaced apart wall including a top surface; providing a platform in said bin for supporting a stack of pieces of media, said platform being disposed between said floor and said wall top surface; and maintaining the top of said stack of pieces of media at a predetermined distance from said top surface to provide thereby a constant fall distance between an individual one of said pieces of media and said top surface.
- 10. The method of collecting a stack of pieces of media according to claim 9, including maintaining a distance of between about one inch and about three inches between the top of said stacked pieces of media and said top surface during the collection process.
US Referenced Citations (14)