Digital cameras and other types of digital imaging devices store media content on a memory card (e.g., a memory stick (MS) media card, a secure digital (SD) media card, an extreme digital (xD) media card, etc.). Lately, computer devices are being configured having memory card slots to receive the memory card therein to facilitate transfer of the media content on the media card to the computer system (e.g., so that space may be freed up on the media card for additional content). However, transferring the media content in this fashion is time-consuming. For example, a user must turn on the computer system and wait for the computer system to boot, locate an applicable software application to facilitate the media transfer, and even specify where (e.g., what directory or file space) the user would like the media stored on the computer system.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
The preferred embodiments of the present invention and the advantages thereof are best understood by referring to
In the embodiment illustrated in
System 12 comprises a quick-transfer media interface 40 for quickly and automatically downloading and/or transfering media content from media card 32 to computer device 10. In one embodiment of the present invention, quick-transfer media interface 40 comprises an actuatable and/or depressible button 42. However, it should be understood that quick-transfer media interface 40 may comprise other types of elements such as, but not limited to, a pressure-sensitive contact element, thermally-sensitive contact element, slidable switch or otherwise. Further, in some embodiments of the present invention, quick-transfer media interface 40 is disposed in and/or is otherwise configured with media card slot 30 (e.g., actuatable in response to insertion of media card 32 into media card slot 30). In the embodiment illustrated in
In the embodiment illustrated in
In operation, in response to actuation of interface 40, a reduced function operating system of computer device 10 is launched (e.g., an operating system providing a limited number of resources and/or functions instead of a normal or full function operating system). Preferably, the reduced function operating system boots and/or otherwise loads in less time than required for booting and/or loading of a full function operating system, thereby facilitating quick transfer of media content from media card 32 to computer device 10.
In operation, in response to actuation of quick-transfer media interface 40, BIOS 52 automatically launches and/or causes to be launched reduced function OS 62. Further, BIOS 52 automatically determines and stores state data 66 associated with computer device 10 in response to actuation of quick-transfer media interface 40. For example, computer device 10 may be in a sleep and/or suspend state when quick-transfer media interface 40 is actuated. State data 66 enables computer device 10 to be returned to its previous state condition (e.g., after media content transfer is complete or if media content transfer is not possible (e.g., insufficient memory 54 space or no media card 32 coupled to computer system 10)). Thus, in operation, BIOS 52 backs up an amount of data from memory 54 to hard drive 56 (e.g., state data 66) to enable computer device 10 to be returned to its previous state (e.g. an amount of memory 54 needed to execute reduced function OS 62). The state data 66 is thereafter used to return computer device 10 to its previous state. However, it should be understood that other methods and/or elements may be used to save state information of device 10 and return device 10 to its previous state.
Preferably, reduced function OS 62 automatically launches and/or otherwise activates media transfer module 64 to facilitate transfer of media content from media card 32 to memory 54. In some embodiments of the present invention, media transfer module 64 automatically determines whether media card 32 is coupled to computer device 10 (e.g., whether media card 32 is present within media card slot 30 (
Preferably, media transfer module 64 is configured to automatically create a file directory in memory 54 for storing media content 70 thereunder. The file directory may be automatically and/or randomly created by media transfer module 64 or, preferably, created based on previous user input. For example, in some embodiments of the present invention, media transfer module 64 is configured to enable a user to input a file directory name to be used for a quick-transfer of media content (e.g., during a previous full function OS 60 session). In some embodiments of the present invention, media transfer module 64 is configured to enable a user to input a file directory name contemporaneously with the current media content transfer (e.g., during the current reduced function OS 62 session).
In some embodiments of the present invention, media transfer module 64 interfaces with input/output indicator 46 to indicate a status of the media content transfer from media card 32 to computer device 10. For example, as described above, input/output indicator 46 may comprise one or more LEDs 48 or other types of indicator elements for indicating a status of media content transfer. Thus, for example, if media transfer module 64 detects that media card 32 is absent from media card slot 30, media transfer module 64 interfaces with input/output indicator 46 to indicate to a user that media card 32 is absent from media card slot 30 and/or request insertion of media card slot 32 into media card slot 30. In some embodiments of the present invention, media transfer module 64 also interfaces with input/output indicator 46 to provide an indication of whether sufficient space in memory 54 is available for storing media content 70 therein. For example, if the size of media content to be transferred from media card 32 is greater than the available capacity of memory 54, media transfer module 64 causes input/output indicator 46 to indicate to a user that insufficient memory exists for the media transfer.
In some embodiments of the present invention, system 12 is configured to automatically return computer device 10 to a previous state (e.g., the state detected and/or stored in response to actuation of quick-transfer media interface 40). For example, after transfer of media content from media card 32 to computer device 10 is completed, or in response to detecting that insufficient memory 54 space exists for the media transfer or after a predetermined time period has elapsed where no media card 32 is detected within media card slot 30, reduced function OS 62 and/or BIOS 52 automatically returns computer device 10 to a previous state as indicated by state data 66. Thus, for example, if computer device 10 was in a particular sleep and/or suspend state when actuation of quick-transfer media interface 40 was actuated, computer device 10 automatically returns computer device 10 to the particular sleep and/or suspend state.
At decisional block 308, a determination is made whether media card 32 is present and/or fully inserted within media card slot 30 (
If it is determined at decisional block 312 that sufficient space within memory 54 is available for a transfer of the media content from media card 32, the method proceeds to block 314, where media transfer module 64 automatically initiates and/or transfers media content from media card 32 to memory 54. At block 316, media transfer module 64 interfaces with input/output indicator 46 to indicate a status of the media content transfer (e.g., indicating media content transfer in process and/or media content transfer complete). At block 318, computer system 10 is returned to the state stored and/or saved as state data 66 in response to actuation of quick-transfer media interface 40.
Thus, embodiments of the present invention enable a quick transfer of media content from media card 32 to computer device 10. Further, embodiments of the present invention enable the transfer of media content from media card 32 to a notebook computer 14 while the notebook computer 14 is in a closed position.