Media feeder devices are used in many types of machines including scanners, printers, fax machines, photocopiers, shredders, etc. Media feeder devices typically include feeder transport mechanisms to load and advance sheets of media into the machines. For instance, a feeder transport mechanism advances sheets of media so that a particular action or task may be performed on the sheets of media. For example, by advancing the sheets of media, the feeder transport mechanism permits the sheets of media to be scanned, printed, faxed, copied, or shredded by a machine.
Features of the present disclosure are illustrated by way of example and not limited in the following figure(s), in which like numerals indicate like elements, in which:
For simplicity and illustrative purposes, the present disclosure is described by referring mainly to an example thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure. As used herein, the terms “a” and “an” are intended to denote at least one of a particular element, the term “includes” means includes but not limited to, the term “including” means including but not limited to, and the term “based on” means based at least in part on.
Disclosed herein are examples of media transport apparatuses and methods to proactively prevent occurrences of media transport jams based on feedback received from a sensor positioned within the media transport apparatuses. In various examples, feedback is received from multiple sensors in the media transport apparatuses. A media jam, for example, occurs when a sheet of media, such as paper, vellum, etc., gets stuck or lodged inside the media transport apparatus. Accordingly, the media jam may result in damaged media that is either trapped inside or output from the media transport apparatus.
According to disclosed examples, media may be loaded within a media path width of a media transport apparatus of a media feeder apparatus. The media path width, for instance, is the width of the opening of the media transport apparatus. A first sensor may be positioned outside of a media action area, in which the media action area is within the media path width. The media action area, for instance, is the width of the area of the media transport apparatus where a particular task is performed on media. For example, the media action area may be the width of one or more scan bars that are used to perform the task of scanning the media, the width that a print dispenser traverses to perform the task of printing on the media, the width of a plurality of blades that are used to perform the task of shutting the media, etc. In any case, the width of the media action area is less than the media path width according to the disclosed examples.
According to an example, when media is incorrectly loaded within the media path width of the media transport apparatus, the first sensor is positioned within the media transport apparatus to detect an edge or side border of the media and to notify a controller of the media feeder apparatus. That is, the first sensor may detect that the media has been loaded outside of the media action area by a given distance. The controller may then determine that the media has been incorrectly loaded with too much offset and prevent the media from being advanced through the document transport to proactively prevent a media jam. Offset, for instance, may refer to the media being loaded in a manner that is outside of the media action area. In this regard, the controller may instruct a user interface of the media feeder apparatus to display a message with proper media transport apparatus loading procedures for a user to reload the media into the media transport apparatus.
A second sensor may be positioned outside of the media action area within the media path width on a side opposite of the first sensor. The controller may prevent media from being advanced though the media transport apparatus due to an offset loading error for the media if one of the first sensor and second sensor detects an edge or side border of the media during the loading of the media. The controller may also prevent the media from being advanced to the media transport apparatus due to a media size error (e.g., the media sheet is too wide) if both the first sensor and the second sensor detect edges of the media during the loading of the media. In either case, the controller may instruct a user interface of the media feeder apparatus to display a message with proper procedures or guidelines for a user to reload the media into the media transport apparatus. According an example, an intermediate sensor may be positioned between the first sensor and the second sensor to detect the presence of the media in the media transport apparatus.
According to another example, the media may be advanced within the media path width of the media transport apparatus. While the media is being advanced in the media transport apparatus, at least one of the first sensor and the second sensor may detect an edge or a side border of the media, and thus, alert the controller that the advancement of the media is skewed or off-center. That is, the first sensor or the second sensor may detect that the media has been advanced outside of the media action area by a given distance. In response to the alert, the controller may calculate a skew rate to determine whether the media may be advanced further without causing a media transport jam. To calculate the skew rate, the controller may evaluate a progression distance of the advancement of a portion of the media prior to the detection of the edge of the media, assess a margin distance between the at least one of the first sensor and the second sensor and the end of the media path width; and estimate whether the margin distance permits the advancement of a remaining portion of the media without causing a media transport jam. If the estimated margin distance permits the advancement of a remaining portion of the media without causing a media transport jam, the controller may advance the remaining portion of the media through the media transport apparatus. If the estimated margin distance does not permit the advancement of a remaining portion of the media without causing a media transport jam, the controller may halt advancement of the media and display an alert to a user.
Thus, the disclosed examples may prevent common media transport jam scenarios from occurring. The disclosed examples may prevent the advancement or feeding of media or documents wider than a permitted media size, prevent the feeding of media that are loaded with too much offset from the center of the media path width, and detect skewed media during advancement to stop the advancement before a media transport jam occurs. Other media feeder apparatus react after a media transport jam occurs or prevents media transport jams through routine maintenance and publishing of user media loading instructions. Neither of these approaches, however, addresses the tendency of users to load media incorrectly into the media transport apparatus or prevents damage to the original media during a media transport jam. In this regard, the disclosed examples may provide the technical benefits of proactive sensing of unsafe media load and feed conditions to protect media originals that may be incorrectly loaded, too wide, or too skewed to be safely handled by the media transport apparatus of the media feeder apparatus.
With reference to
The controller 110, which may be a processor, microprocessor, micro-controller, an application specific integrated circuit (ASIC), or the like, is to perform various processing functions in the media feeder apparatus 100. The processing functions may include the functions of the sensor module 112, feeder module 114, and the skew module 116 of the controller 110.
The sensor module 112 may receive feedback or notifications from the media sensors 120A-N that the presence of media and/or a media edge have been detected. The media sensors 120A-N may include, but are not limited to optical sensors, position sensors, proximity sensors, and flags to detect the presence of media and/or a media edge. The sensor module 112, for example, may determine that the media is offset, too wide, or skewed along a media path based on the notifications of the media sensors 120A-N. The feeder module 114 may instruct the media transport apparatus 130 to advance or halt the advancement of media that has been loaded into the media transport apparatus 130. The skew module 116 may calculate a skew rate to determine whether the media may continue to be advanced without causing media transport jam. In this example, modules 112-116 are circuits implemented in hardware. In another example, the modules 112-116 may be machine readable instructions stored on a non-transitory computer readable medium and executed by the controller 110 as discussed further below.
The controller 110 may be coupled to the data store 115 and the user interface 140 by a bus (not shown). The bus may be a communication system that transfers data between various components of the media feeder apparatus 100. In examples, the bus may be a Peripheral Component Interconnect (PCI), Industry Standard Architecture (ISA), PCI-Express, HyperTransport®, NuBus, a proprietary bus, and the like. The data store 115 may include physical memory such as a hard drive, an optical drive, a flash drive, an array of drives, or any combinations thereof, and may include volatile and/or non-volatile data storage.
The media transport apparatus 130 may include an opening to receive loaded media. The media transport apparatus 130 may also include media transport rollers to advance the media along a media path. According to an example, the media transport rollers may be powered by a motor, such as an actuator. For example, the controller 110 may instruct the motor to advance or halt the advancement of the media via the media transport rollers. The user interface 140, for example, may be a display including a touchpad or a touchscreen to display messages or notifications to a user of the media feeder apparatus 100.
In the example of
In the example of
In the example of
In block 510, the sensor module 112 of the controller 110 may determine that a media is loaded within a media path width of a media transport apparatus. In block 520, sensor module 112 may receive a notification from an offset sensor that a side border of the media has been detected. The offset sensor may be positioned outside of a media action area and the media action area may be within the media path width. Thus, the advancement of the media through the media transport apparatus may be halted in response to receipt of the notification from the offset sensor, as shown in block 530. According to an example, the controller 110 may display at least one of a message with proper media transport apparatus loading procedures for the media and an offset loading error message in response to receipt of the notification from the offset sensor. Method 500 will now be described in greater detail with reference to method 600 in
In block 605, the sensor module 112 of controller 110 may detect that media has been loaded into a media path width of a media transport apparatus. For example, the sensor module 112 may detect that the media has been loaded in response to feedback received from an intermediate sensor. The intermediate sensor may be positioned in between a media action area and in between a first edge sensor and a second edge sensor as discussed further below. Accordingly, the intermediate sensor may detect the presence of the media due to its position within the media path width of the media transport apparatus.
Once the loading of the media has been detected, the sensor module 112 may determine whether the media is loaded correctly into the media transport apparatus based on whether one or both of the first edge sensor and the second edge sensor are triggered in response to detecting the presence of an edge of the media. According to an example, the first edge sensor and the second edge sensor are positioned outside of a media action area and on opposite sides within the media path width. As a result, the first edge sensor and the second edge sensor may detect the presence of opposite edges of the media.
In response to one of the first edge sensor and the second edge sensor detecting an edge of the media, the sensor module 112 may determine that the media was loaded incorrectly due to an offset, as shown in block 615. Thus, the feeder module 114 does not advance the media through the media transport apparatus, and the sensor module 112 may instruct a user interface of the media feeder apparatus to display a message with proper center loading procedures for the user, as shown in block 620.
In response to both of the first edge sensor and the second edge sensor detecting opposite edges of the media, the sensor module 112 may determine that the media was loaded incorrectly because the media is too wide for the media action area, as shown in block 625. Thus, the feeder module 114 may does advance the media through the media transport apparatus, and the sensor module 112 may instruct a user interface of the media feeder apparatus to display a message with proper media size guidelines for the user, as shown in block 630.
If none of the edge sensors are triggered in block 610, the feeder module 114 may advance the media within the media path width of the media transport apparatus, as shown in block 635. During the advancement of the media, the sensor module 112 may determine if that at least one of the first edge sensor and a second edge sensor detects an edge of the media. If none of the edge sensors are triggered, the feeder module 114 may continue to advance the media as shown in block 635.
However, if the sensor module 112 determines that at least one of the edge sensors are triggered, then the skew module 116 may calculate a skew rate for the advancement of the media as shown in block 645. The skew rate, for instance, is calculated to determine whether the media can be further advanced without causing a media transport jam.
According to an example, the skew rate is calculated by evaluating a progression distance of the advancement of a portion of the media prior to the detection of the edge of the media by the triggered edge sensor and assessing a margin distance between the triggered edge sensor the end of the media path width. Based on the progression distance in the margin distance, the skew module 116 may accurately estimate whether the margin distance permits the advancement of a remaining portion of the media without causing a media transport jam.
In this regard, if the skew module 116 determines in block 645 that a media transport jam will not occur based on the calculated skew rate, then the feeder module 114 may continue the advancement of the remaining portion of the media, as shown in block 635. On the other hand, if the skew module 116 determines in block 645 that a media transport jam will occur based on the calculated skew rate, the feeder module 114 may halt the advancement of the media as shown in block 650 and the skew module 116 may instruct the user interface of the media feeder apparatus to display a message alerting the user of a potential media transport jam, as shown in block 655.
Some or all of the operations set forth in the methods 500 and 600 may be contained as utilities, programs, or subprograms, in any desired computer accessible medium. In addition, methods 500 and 600 may be embodied by computer programs, which may exist in a variety of forms both active and inactive. For example, they may exist as machine readable instructions, including source code, object code, executable code or other formats. Any of the above may be embodied on a non-transitory computer readable storage medium.
Examples of non-transitory computer readable storage media include computer system RAM, ROM, EPROM, EEPROM, and magnetic or optical disks or tapes. It is therefore to be understood that any electronic device capable of executing the above-described functions may perform those functions enumerated above.
Turning now to
The computer-readable medium 710 may store instructions to perform methods 500 and 600. For example, the computer-readable medium 710 may include machine readable instructions such as sensor detection instructions 712 to determine whether at least one edge sensor detects an edge of media during the loading or advancement the media, feeder advancement instructions 714 to advance media that is loaded within a media path width of the media transport apparatus, and skew rate calculation instructions 716 to calculate a skew rate for the advancement of the media. Accordingly, the computer-readable medium 710 may include machine readable instructions to perform methods 500 and 600 when executed by the controller 702.
What has been described and illustrated herein are examples of the disclosure along with some variations. The terms, descriptions and figures used herein are set forth by way of illustration only and are not meant as limitations. Many variations are possible within the scope of the disclosure, which is intended to be defined by the following claims—and their equivalents—in which all terms are meant in their broadest reasonable sense unless otherwise indicated.
Number | Date | Country | |
---|---|---|---|
Parent | 15570225 | Oct 2017 | US |
Child | 16437859 | US |