Media width sensing

Information

  • Patent Grant
  • 9883063
  • Patent Number
    9,883,063
  • Date Filed
    Thursday, July 6, 2017
    7 years ago
  • Date Issued
    Tuesday, January 30, 2018
    7 years ago
Abstract
Printing a graphic media product is described. The media product has an indicia marked on a media substrate. An installation of a supply of the media substrate is detected. A sensor is activated based on the detection of the installation. The activated sensor measures a width of the installed media substrate. A center position of the media substrate is computed based on the measured width. The marking of the indicia upon the media substrate is aligned relative to the computed center position of the media substrate.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. patent application Ser. No. 14/923,723 for Media Width Sensing filed Oct. 27, 2015 (and published Apr. 27, 2017 as U.S. Patent Publication No. 2017/0118355). Each of the foregoing patent application and patent publication is hereby incorporated by reference in its entirety.


TECHNOLOGY FIELD

The present invention relates generally to printing. More particularly, example embodiments of the present invention relate to alignment of printed indicia on media substrates.


BACKGROUND

Generally speaking, graphic media products present information visually to viewers. The graphic media products may comprise symbols, one dimensional (1D) and two dimensional (2D) data patterns such as barcodes and matrix code patterns, text, graphics, images, emblems, and other indicia (collectively, “indicia”), which may be marked on a blank media substrate by various printing systems (“printers”).


The clarity with which a printer marks the indicia on the medium is significant to the effectiveness with which the graphic media product presents the information and thus, to the intelligibility, legibility, and usefulness of the information to the viewers. To promote the clear marking of the indicia, various clarity criteria, expectations, specifications, and standards have emerged and/or been established.


For example, data patterns may be printed to comply with a programmed quality specification, and/or to quality standards promulgated by the American National Standards Institute (ANSI), International Electrotechnical Commission (IEC) International Organization for Standardization (ISO), and other authorities. Thus, 1D Universal Product Code (UPC) and 2D matrix data patterns may be specified to comply with quality specifications set forth in the ‘ANSI/UCC5’ standard.


Further, 1D International (or/also “European”) Article Number (EAN) and UPC/EAN linear barcode patterns may be specified to comply with quality specifications set forth in the ‘ISO/IEC 12516’ standard. PDF417 data code patterns pattern, which comprise four vertical bar symbols disposed over 17 horizontally disposed spacer symbols, may be specified to comply with the ISO/EC-15438 standard. Quick Response (QR), Han Xin, and other 2D data patterns may be specified to comply with quality specifications set forth in the ‘ISO/IEC 15415’ standard. Text may be printed to conform to any of a variety of specified fonts, styles, and/or optical character recognition (OCR) standards.


In addition to specific application to the appearance with which the indicia themselves are marked, the position at which the indicia are marked upon the media substrate may also be significant to the effectiveness with which the graphic media product presents the information and thus again, to the intelligibility, legibility, and usefulness of the information to the viewers. Some graphic media products may be used with applications in which the accuracy with which the indicia are marked on the media substrate may be especially significant.


For example, labels are typically applied onto containers and packaging used for dispensing medicines, such as narcotics, radiopharmaceuticals and other therapeutic or diagnostic drugs. As such, the labels may be applied for the purpose of providing important information to users of the item. The information may relate to the safe use of the items and/or precautions, “side-effects,” hazards, and/or dangers associated with using the item.


In such uses, the print quality specifications may comprise significant rigor with respect to strictures for heightened levels of accuracy in relation to a specified target position, and precision in relation to the uniformity with which the markings are applied repetitively to the specified target positions over a printing run of multiple labels or other print products. Printers are thus designed and configured to position the marking of the indicia onto the media substrate. For example, some printers may be configured for a ‘left justification’ of the markings, or for center tracking.


The media substrate may comprise a web of paper, plastic, or other materials upon which the indicia may be marked. The media substrate may comprise a stack of individual blank pages disposed in a tray, from which it may be drawn by a feed mechanism of the printer and fed into a marking mechanism thereof for the marking of the indicia thereon. The web may also, or alternatively, comprise a rolled configuration disposed upon a spool, or an accordion-like configuration disposed in a magazine.


The indicia may comprise a pattern formed by application of plurality of dots or other picture elements (pixels) of a marking agent, such as an ink or a thermally sensitive marking material, by the printing mechanism to the media substrate. The media width may be measured in relation to the total number of dots or other pixels along a horizontal line from one lateral edge of the media substrate to the opposite lateral edge thereof.


Printers may be left justifying or center tracking. Left justifying printers align the printing with reference to the left-most lateral edge of the media substrate. Center tracking printers align the marking of the indicia relative to a center position of the media substrate. The center position runs longitudinally in relation to the direction of feed and/or print, and parallel and equidistant to each of the opposite lateral edges of the media substrate.


With center tracking printers, users' knowledge of the correct width of the media substrate, and configuring a corresponding setting are significant to correct printing of media products conforming to quality standards and specifications, and the clear communication of information presented therewith. Errors relating to the correct width measurement and the corresponding setting configurations can lead to printing failures or faulty and/or ‘out-of-specification’ print products.


Such errors may relate to erroneous manual calculations or unit conversion performed by the users, the precision of the measurement devices or accuracy of estimates and the effects of measurement related deviation factors. The errors may also relate to the use of external tools, such as associated software and/or printer webpages, to configure the printer settings corresponding to the media width.


Moreover, the errors are associated with a single media measuring process cycle. A media width measurement cycle begins anew upon a subsequent change to a medium of a different width. Thus, errors relating to media width measurement and setting configuration may recur or deteriorate, with subsequent failures or faulty, out-of-specification print products.


It could be useful, therefore, to reduce reliance on users' knowledge and memory in configuring correct width settings for various media substrates. It could also be useful to configure the width settings with sufficient correctness for printing of media products in conformance to quality standards and specifications, and to promote the clear communication of information presented therewith. Further, it could be useful to reduce errors relating to the correct width measurement and the corresponding setting configurations, and related occurrence of printing failures or faulty and/or out-of-specification print products.


SUMMARY

Accordingly, in one aspect, an example embodiment of the present invention relates to printing a graphic media product. Example embodiments reduce reliance on users' knowledge and memory in configuring correct width settings for various media substrates. Example embodiments configure the width settings with sufficient correctness for printing of media products in conformance to quality standards and specifications, and to promote the clear communication of information presented therewith. Further, example embodiments reduce errors relating to the correct width measurement and the corresponding setting configurations, and related occurrence of printing failures or faulty and/or out-of-specification print products.


An example embodiment of the present invention relates to a system for printing a graphic media product. The graphic media product comprises an indicia marked upon a media substrate. The system comprises a print mechanism, a detector, a sensor, and a processor operable for computing a center position of the media substrate.


The print mechanism is operable for marking the indicia upon the media substrate. The detector is operable for detecting an installation of a supply of the media substrate for feeding to the print mechanism, and for activating the sensor based on the detection of the installation of the media substrate. The sensor is operable for measuring a width of the installed media substrate. The processor is operable for computing a center position of the media substrate based on the measured width. The marking of the indicia is aligned relative to the computed center position of the media substrate.


In an example embodiment of the present invention, the media substrate comprises a plurality of marks. The marks are disposed along at least one line perpendicular to a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and/or equidistant between a pair of opposing lateral edges thereof, and each of the a pair of opposing lateral edges. The media substrate may also comprise a plurality of gaps between each of the marks. The gaps comprise a shade and/or a brightness at least approximating a shade or a brightness of the media substrate. The marks comprise a shade and/or a brightness darker than that of the gaps. In an example embodiment, the measuring the width of the installed media substrate with the activated sensor, and/or the computing the center position of the media substrate based on the measured width, comprises counting the gaps, and/or counting the marks.


An example embodiment of the present invention relates to a method for printing a graphic media product. The media product comprises an indicia marked on a media substrate. An installation of a supply of the media substrate is detected. A sensor is activated based on the detection of the installation. The activated sensor measures a width of the installed media substrate. A center position of the media substrate is computed based on the measured width. The marking of the indicia upon the media substrate is aligned relative to the computed center position of the media substrate. An example embodiment may be implemented in which the system summarized above is operable for performing the method for printing a graphic media product.


An example embodiment of the present invention relates to a graphic media product, which is printed by a process for marking an indicia upon a media substrate. The printing process may comprise one or more of the method steps summarized above.


An example embodiment of the present invention relates to a non-transitory computer readable storage medium comprising instructions, which when executed by one or more computer processors controls and/or causes performance of the method for printing a graphic media product summarized above.


The foregoing illustrative summary, as well as other example features, functions and/or aspects of embodiments of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description of example embodiments and each figure (“FIG.”) of the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a typical left justifying printer, for comparison to an example embodiment of the present invention;



FIG. 2A depicts an example center tracking printer in a “desktop printing” use, according to an embodiment of the present invention;



FIG. 2B depicts an example center tracking printer configuration, according to an embodiment of the present invention;



FIG. 3A depicts an example of centered printing, according to an embodiment of the present invention;



FIG. 3B depicts an example of off-center printing, for comparison to an embodiment of the present invention;



FIG. 4 depicts an example system for printing a graphic media product, according to an embodiment of the present invention;



FIG. 5 depicts a flowchart for an example method for printing a graphic media product, according to an embodiment of the present invention;



FIG. 6A depicts an example 1D ‘drag’ mode media product, according to an embodiment of the present invention;



FIG. 6B depicts an example 1D ‘picket fence’ mode media product, according to an embodiment of the present invention;



FIG. 6C depicts an example 2D media product, according to an embodiment of the present invention;



FIG. 6D depicts an example text based media product, according to an embodiment of the present invention; and



FIG. 7 depicts an example computer and network platform, with which an embodiment of the present invention may be practiced.





DESCRIPTION OF EXAMPLE EMBODIMENTS

Example embodiments of the present invention are described in relation to systems and methods for printing an indicia on a graphic medium. In an example embodiment, a system for printing the indicia on the graphic medium comprises an indicia marked upon a media substrate. The system comprises a print mechanism, a detector, a sensor, and a processor operable for computing a center position of the media substrate.


The print mechanism is operable for marking the indicia upon the media substrate. The detector is operable for detecting an installation of a supply of the media substrate for feeding to the print mechanism, and for activating the sensor based on the detection of the installation of the media substrate. The sensor is operable for measuring a width of the installed media substrate. The processor is operable for computing a center position of the media substrate based on the measured width. The marking of the indicia is aligned relative to the computed center position of the media substrate.


Overview.


An example embodiment of the present invention relates to a method for printing a graphic media product. The media product comprises an indicia marked on a media substrate. An installation of a supply of the media substrate is detected. A sensor is activated based on the detection of the installation. The activated sensor measures a width of the installed media substrate. A center position of the media substrate is computed based on the measured width. The marking of the indicia upon the media substrate is aligned relative to the computed center position of the media substrate.


The media substrate is fed to a print head along a direction of the feeding and the printing of the graphic media product. The computed center position is located along a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof.


The media substrate is fed in a direction of the feeding and the printing of the graphic media product, and the length of the plane may be measured over the surface of the fed media substrate. The length may be measured along the longitudinal line on which the computed center position is located.


The computation of the center position of the media substrate based on the measured width may comprise tracking a number of setting adjustments inputted in relation to configuring a setting corresponding to the measured width.


Prior to the marking of the indicia, the media substrate is blank. As used herein, the term “blank” may refer to a substantially unmarked substrate of the print medium.


A substantially blank print media substrate supplied for printing graphic media products. As used in this sense, the term “substantially blank” refers to the media substrate comprising an unmarked state in relation to any printed indicia, except for any identifiers, descriptors, and/or “watermarks” or other security (or other) features, which if present, are intended to typically escape common perceptual notice not directed specifically thereto. The substantially blank media substrate comprises, in this sense, virgin media ready to be marked with the printed indicia.


In an example embodiment, the substantially blank media substrate does comprise a plurality of marks such as dots, disposed along at least one line perpendicular to one or more of a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof, and each of the a pair of opposing lateral edges.


The media substrate further comprises a plurality of gaps between each of the marks, wherein the gaps comprise one or more of a shade or a brightness at least approximating a shade or a brightness of the media substrate, wherein the marks comprise one or more of a shade or a brightness darker than that of the gaps. An example embodiment may be implemented in which, while the dots or other marks and/or the gaps between them are detectable by a sensor, they are neither readily, or intentionally noticeable or perceptible to users of the media (unless, e.g., knowledgeable users are specifically seeking to observe them), nor will they substantially mar or interfere with, or comprise a readily noticeable component of, or artifact displayed with, information presented by substantive indicia marked (e.g., subsequently) upon the media substrate.


The measuring of the width of the installed media substrate with the activated sensor, and/or the computing the center position of the media substrate based on the measured width may comprise counting the marks. Alternatively or additionally, the measuring of the width of the installed media substrate with the activated sensor, and/or the computing the center position of the media substrate based on the measured width may comprise counting the gaps between the marks.


An example embodiment of the present invention relates to a graphic media product, which is printed by a process for marking an indicia upon a media substrate. The printing process may comprise one or more of the method steps described above.


An example embodiment of the present invention relates to a non-transitory computer readable storage medium comprising instructions, which when executed by one or more computer processors controls and/or causes performance of the method for printing a graphic media product described above.


An example embodiment of the present invention relates to a system for printing a graphic media product. The graphic media product comprises an indicia marked upon a media substrate. The system comprises a print mechanism, a detector, a sensor, and a processor operable for computing a center position of the media substrate. The print mechanism is operable for marking the indicia upon the media substrate. The detector is operable for detecting an installation of a supply of the media substrate for feeding to the print mechanism, and for activating the sensor based on the detection of the installation of the media substrate. The sensor is operable for measuring a width of the installed media substrate. A processor is operable for computing a center position of the media substrate based on the measured width. The marking of the indicia is aligned relative to the computed center position of the media substrate.


The system may also comprise a feeder mechanism. The feeder is operable for feeding the media substrate to the print mechanism. The media substrate is fed along a direction of the feeding and the printing of the graphic media product.


The computed center position is located along a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof. The sensor may be operable further for measuring the length of the plane over the surface of the fed media substrate. The length may be measured along the longitudinal line on which the computed center position is located.


The system may further comprise an input mechanism. The input mechanism is operable for inputting one or more setting adjustments over an adjustment range in relation to configuring a setting corresponding to the measured width inputted.


In an example embodiment of the present invention, the media substrate comprises a plurality of marks. The marks are disposed along at least one line perpendicular to a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and/or equidistant between a pair of opposing lateral edges thereof, and each of the a pair of opposing lateral edges. The media substrate may also comprise a plurality of gaps between each of the marks. The gaps comprise a shade and/or a brightness at least approximating a shade or a brightness of the media substrate. The marks comprise a shade and/or a brightness darker than that of the gaps. In an example embodiment, the measuring the width of the installed media substrate with the activated sensor, and/or the computing the center position of the media substrate based on the measured width, comprises counting the gaps, and/or counting the marks.


The graphic media product comprises the indicia marked upon the media substrate. The print medium may comprise a thermally markable material. The thermally markable material is heat sensitive. A thermal print head (TPH) printing mechanism is operable for marking the indicia upon the thermally sensitive medium by controllably heating dots or other pixels at target positions distributed over the marking surface of the media substrate, which correspond to components of the indicia, such as portions of a symbol. At each of the locally heated positions, the medium may darken chemically from a lighter shade or color to a darker shade or color (or vice versa), or a thermally transferred material may be transferred from a marking substrate to darken a lighter colored or shaded media substrate base (or vice versa).


Other media substrates may be marked by other techniques. For example, the media substrate may comprise paper, plastic, and/or other markable materials. Paper based print media may be marked with ink based marking materials. Metallic or other media substrates may be etched by lasers, or with print mechanisms operable for controllably applying a chemical etching material such as acids or other solvents.


Example embodiments of the present invention are thus useful for printing graphic media products. Example embodiments reduce reliance on users' knowledge and memory in configuring correct width settings for various media substrates. Example embodiments configure the width settings with sufficient correctness for printing of media products in conformance to quality standards and specifications, and to promote the clear communication of information presented therewith. Further, example embodiments reduce errors relating to the correct width measurement and the corresponding setting configurations, and related occurrence of printing failures or faulty and/or out-of-specification print products.


Example Center Tracking Printing System.


An example embodiment of the present invention relates to a system for printing a graphic media product. The center tracking printing system may comprise a feature of a printer apparatus used in a desk-top of other (e.g., industrial) use, environment, situation, application, circumstance, endeavor, etc.



FIG. 2A depicts an example center tracking printer 20 in a “desktop printing” use, according to an embodiment of the present invention. A media substrate 21 is loaded into a supply magazine, such as a “paper tray.” The media substrate has a horizontal width 25, which spans the substrate 21 from a left edge 29 to an opposing right edge 28. A center line ‘0’ runs longitudinally over the length of the substrate 21 equidistant between the left edge 29 and the right edge 21. The centerline 0 is tracked and the marking of an indicia on the substrate is aligned in relation to the tracked centerline.



FIG. 1 depicts a typical left justifying printer 10, for comparison to an example embodiment of the present invention. In contrast with example embodiments of the present invention, the left justifying printer 10 aligns a marking of indicia on a substrate 11 in relation to the left-most edge 19 of the substrate 19, which has a width 15.



FIG. 2B depicts an example configuration of the center tracking printer 20, according to an embodiment of the present invention. The printer 20 comprises a sensor 44 operable for measuring the lateral width 25 of a media substrate 21, such as a label or other indicia may be marked. The width 25 of the media 21 substrate may correspond to the optimum or maximum width with which a TPH or other print head may operate. The sensor may be operable for measuring the media width by counting a number of equally sized dots 28 (or other pixel styles), and/or gaps 27 between the dots 28, laterally between the left edge 29 of the substrate 21 to the right edge 23 thereof.


For example, the TPH width 25 may comprise a span of 800 dots. A label or other media product of three inches (3 in.) width spans 600 dots and/or gaps. In an example embodiment, the sensor 44 automatically configures a corresponding printing width to span the 600 dots, etc. width. Moreover, the processor 45 computes the longitudinal 0 centerline equidistant between the left media edge 29 and the right media edge 23 and aligns the marking of the label or other indicia upon the substrate in relation to the computer centerline. Truncated data 26 may appear to the left and the right of the label 21, each comprising a span of 100 dots, etc.



FIG. 3A depicts an example of centered printing, according to an embodiment of the present invention. The substrate of a graphic media product 31 comprises a first edge 381, and a second edge 389. The second edge 389 is parallel to and opposite from the first edge 381. Relative to the orientation of the indicia marked in the printout area 21, e.g., in which text symbols may be read (and/or graphic symbols observed) in a “right-side-up” orientation, the first edge 381 may comprise an “upper” edge, and the second edge 389 may comprise a “lower” edge, of the media products 31 (and 32).


A target area 33 corresponds to (e.g., matches spatially, covered by) the target position comprises an upper bound separated by a first designated distance, e.g., two vertical displacement units, from the computer 0 centerline of the graphic medium substrate 31, and a lower bound separated by a second designated distance, e.g., also two vertical displacement units, from the computer 0 centerline of the graphic medium substrate. In the centered printout 333, the printout 335 is positioned on, over, or within the target area 366, in alignment with the computer 0 centerline. The computer 0 centerline runs longitudinally over the substrate 31 equidistant from the upper edge 381 and the lower edge 389; five units from each of the edges. As used herein the term “centered” refers to the marking of the printout within the target position 33, disposed over the area and thus, with equidistant separation between its upper edge and its lower edge from the computed 0 centerline.



FIG. 3B depicts an example of off-center printing 39, for comparison to an embodiment of the present invention. While the vertical displacement of the upper edge of the printout area 39 from the computed 0 centerline of the media product 381 has increased to three vertical displacement units in the off-center printout 39, the vertical displacement of the lower edge to the computed 0 centerline has decreased to one unit. Example embodiments of the present invention align the printing of the printout area 39 in relation to the computed 0 centerline, and thus promote the production of the centered printout 31, while deterring production of off center printouts, such as the printout 39.


Example System for Printing a Graphic Media Product.


An example embodiment of the present invention relates to a system for printing a graphic media product. FIG. 4 depicts an example system 40 for printing a graphic media product 445, according to an embodiment of the present invention. The graphic media product 445 comprises an indicia 444 marked upon a blank media substrate 442. The system 40 comprises a print mechanism 47, a detector 42, a sensor 44, and a processor 45 operable for computing a center position 443 of the media substrate 442.


The print mechanism 47 is operable for marking the indicia 444 upon the blank media substrate 442. The detector 42 is operable for detecting an installation of a supply 41 of the media substrate for feeding to the print mechanism, and for activating the sensor 44 based on the detection of the installation of the media substrate supply 41.


The detector 42 may detect the presence of the media substrate supply 41 based on a ‘media loaded’ indication 413, which may correspond to, e.g., electrically closing an electromechanical switch, optically activating (or deactivating) a photoelectric cell, ultrasonic detection, etc. The detector 42 may activate the sensor 44 with a ‘media supply present’ signal 414.


Upon activation by the detector 42, the sensor 44 is operable for measuring a lateral width 411 of the installed media substrate 41, such as over a surface of a portion (e.g., page) 441 of the media substrate, and for providing a corresponding media width signal 412 to a processor 45. The processor 45 is operable for computing the center position 443 of the media substrate (441, 442, 443) based on the measured width 411. The marking of the indicia 444 is aligned relative to the computed center position 443 of the media substrate 442, etc. For example, the processor 45 may control the print mechanism to align the marking of the indicia 444 according to the computer center position 443.


The system 40 may also comprise a feeder mechanism (“feeder”) 43. The feeder 43 is operable for feeding the media substrate 442 to the print mechanism 47. The media substrate is fed along a direction 699 of the feeding and the printing of the graphic media product 445.


The computed center position 443 is located along a line running longitudinally along a length of a plane corresponding to a surface of the media substrate (442, 443) and equidistant between a pair of opposing lateral edges thereof. The sensor 44 may be operable further for measuring the length 419 of the plane over the surface of the fed media substrate. The length 419 may be measured along the longitudinal line on which the computed center position is located, or along a line parallel thereto.


The system may further comprise an input mechanism 475. The input mechanism 475 is operable for inputting one or more setting adjustments over an adjustment range in relation to configuring a setting corresponding to the measured width inputted.


In an example embodiment of the present invention, the media substrate comprises a plurality of marks 28 (FIG. 2B). The marks 28 are disposed along at least one line perpendicular to a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and/or equidistant between a pair of opposing lateral edges thereof, and each of the a pair of opposing lateral edges.


The media substrate may also comprise a plurality of gaps 27 between each of the marks 28. The gaps 27 comprise a shade and/or a brightness at least approximating a shade or a brightness of the media substrate. The marks comprise a shade and/or a brightness darker than that of the gaps. In an example embodiment, the measuring the width of the installed media substrate with the activated sensor 44, and/or the computation by the processor 45 of the center position 443 of the media substrate based on the measured width 411, comprises counting the gaps 27, and/or counting the dots or other marks 28.


The system 40 is operable for performing a printing process. An example embodiment of the present invention relates to a method for printing a graphic media product.


Example Method for Printing a Graphic Media Product.



FIG. 5 depicts a flowchart for an example method 50 for printing a graphic media product, according to an embodiment of the present invention. The system 40 (FIG. 4) may be operable for performing the example method 50.


In step 51, an installation of a supply of the media substrate is detected.


In step 52, a sensor is activated based on the detection of the installation.


In step 53, the activated sensor measures a width of the installed media substrate.


In step 54, a center position of the media substrate is computed based on the measured width.


In step 55, the marking of the indicia upon the media substrate is aligned relative to the computed center position of the media substrate.


The media substrate is fed to a print head along a direction of the feeding and the printing of the graphic media product. The computed center position is located along a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof.


The media substrate is fed in a direction of the feeding and the printing of the graphic media product, and the length of the plane may be measured over the surface of the fed media substrate. The length may be measured along the longitudinal line on which the computed center position is located (or a line parallel thereto).


The computation of the center position of the media substrate based on the measured width may comprise tracking a number of setting adjustments inputted in relation to configuring a setting corresponding to the measured width.


An example embodiment of the present invention relates to a non-transitory computer readable storage medium comprising instructions, which when executed by one or more computer processors controls and/or causes performance of a method for printing a graphic media product, such as the printing method 50, described above.


An example embodiment of the present invention relates to a graphic media product, which is printed by a process for marking an indicia upon a media substrate. The printing process may comprise one or more of the steps of the method 50, described above.


Example Graphic Media Products.


As used herein, the term “graphic media product” relates an indicia marked on a media substrate. Graphic media products may present or convey information visually, graphically, etc. to viewers.


The indicia may comprise one or more symbols. For example, the symbols may comprise text based information, such as alphanumeric, and/or character or syllabary based text. The symbol may also (or alternatively) comprise ideographic, pictographic, or emblematic based graphics, images, or data patterns.


For effective information presentation, data patterns may be subject to compliance with quality specifications promulgated by various standardization authorities. Such standards authorities include the American National Standards Institute (ANSI), International Electrotechnical Commission (IEC) International Organization for Standardization (ISO), and others.


For example, 1D Universal Product Code (UPC) and 2D matrix data patterns may be specified to comply with quality specifications set forth in the ‘ANSI/UCC5’ standard. Linear (1D) barcode patterns may be specified to comply with quality specifications set forth in the ‘ISO/IEC 12516’ standard. Quick Response (QR), Han Xin, and other 2D data patterns may be specified to comply with quality specifications set forth in the ‘ISO/IEC 15415’ standard



FIG. 6A depicts an example 1D bar code pattern 610, according to an embodiment of the present invention. The 1D bar code symbol 610 is depicted as though printed in a ‘ladder’ or ‘drag’ mode on the print medium 611.



FIG. 6B depicts another example 1D bar code pattern 620, according to an embodiment of the present invention. The 1D bar code symbol 622 is depicted as though printed in a ‘picket fence’ mode on a print medium 622.


The bar code symbols 610 and 620 each comprise a plurality of bar elements 66a and a plurality of space elements 68b. The space elements 68b are disposed in parallel with the bar elements 66a. In the drag mode, the bar code symbol 610 is printed parallel to the direction of printing 699. In the picket fence mode, the bar code symbol 620 is printed in a perpendicular orientation to the direction of printing 699.


The bar code symbols 610 and 620 may each comprise data patterns related to, for example, an International (or “European”) Article Number and/or Universal Product Code (EAN/UPC symbology) pattern, PDF417 (ISO/EC-15438 related) pattern, which comprise four of the vertical bar like symbols 66a disposed over 17 of the horizontally disposed spacer symbols 68b), 1D dot code pattern, or other 1D symbols.



FIG. 6C depicts an example 2D matrix code pattern 650, according to an embodiment of the present invention. The 2D matrix code pattern 650 comprises a matrix of 2D graphic symbol parts, such as squares and other rectangle and polygons, printed on a print medium 655. The matrix data pattern 650 may comprise a 2D data pattern related to, for example, quick-response (QR) and/or Han Xin graphical or geometric data matrices, or other 2D symbols.



FIG. 6D depicts an example text based code pattern 640, according to an embodiment of the present invention. The text based code pattern 640 comprises alphanumeric, character, or syllabary based text or other text related graphic symbol parts (e.g., OCR patterns), printed on a print medium 644. The code pattern 640 may comprise human readable and optical character recognition (OCR) readable symbol parts, such as numbers, letters, characters, and syllables printed on a print medium 644. The data pattern 640 may comprise a 2D data pattern related to, for example, OCR-B or OCR-A, or other 2D symbols.


The print media 611, 622, 644, and 655 each move longitudinally in a direction 699 of respective printing operations. The print media 611, 622, 644, and 655 may each comprise paper for receiving ink based markings, thermally sensitive paper, or plastic or other material. The print media 611, 622, 644, and 655 may be disposed in a web configuration, which is significantly longer than it is wide. The direction of printing 699 is parallel to a longitudinal axis of the print media 611, 622, 644, and 655, along which the media move.


The printing system 40 prints the symbols 610, 620, 640, and 650 on the respective web media 611, 622, 644, and 655 according to a printing process (e.g., method 50; FIG. 5). An example embodiment may be implemented in which print logic generates a print command based on a reference pattern, to be printed centered in the target position. The print command and related reference pattern is used by a print driver to activate and energize print elements of the printing mechanism 47.


Responsive to the print command, for example, the activated and energized print mechanism 47 marks a part of the bar codes 610 and 620, matrix code 650 and/or text pattern 640 based on the reference pattern 305 and the media 611, 622, 644, and/or 655, respectively, advance in the direction 699. Each time that the media is advanced, a print driver activates elements of the print mechanism 112 for the marking of subsequent bar elements 66a, and spacing of parallel space elements 66b, onto a segment (e.g., portion) onto the media 611, 622, and 655, and/or the text pattern portions onto the medium 644.


As the printed portions of the media 611, 622, 644 and 655 advance through the print mechanism 47, the output printed graphic media product is produced. With ‘linear’ operable image heads, successive scan images of the printed element may be buffered sequentially into the scan memory area in a correspondence with the succession. The print command may be stored in a command related memory area.


An example embodiment of the present invention relates to a media product comprising an indicia printed on a graphic medium. The graphic media products may be printed by the method 50, described above with reference to FIG. 5.


Example Computer and Network Platform.


An example embodiment may be implemented in which one or more components of the printing system 40 (e.g., processor 45, sensor 44, and/or detector 42) are configured in electronic or computer based hardware, software stored physically (e.g., electronically, optically, electromagnetically) in non-transitory computer readable storage media such as dynamic memory, flash memory, drives, caches, buffers, registers, latches, memory cells, or the like.



FIG. 7 depicts an example computer and network platform 700, with which an embodiment of the present invention may be practiced. The computer and network platform 700 comprises a first computer system (“computer”) 701 and a data communication network 788.


The computer 701 comprises one or more components of the printer system 40 (e.g., product examiner 133). The computer 701 also comprises a touchscreen display 725. An example embodiment may be implemented in which the GUI 80 is rendered and actuated by the touchscreen display 725.


The network 788 may comprise a packet-switched data network operable based on transfer control and internetworking protocols (e.g., TCP/IP). The computer 701 may be coupled communicatively, and exchange data signals, over the data communication network 788 with at least a second computer 798, which is coupled communicatively with the data network 788.


The data network 788 may comprise a portion of one or more other networks and/or two or more sub-network (“subnet”) components. For example, the data network 788 may comprise a portion of the internet and/or a particular wide area network (WAN). The network 788 may also comprise one or more WAN and/or local area network (LAN) subnet components. Portions of the data network 788 may be operable wirelessly and/or with wireline related means. The data network 788 may also comprise, at least in part, a communication network such as a digital telephone network.


An example embodiment may be implemented in which the computer 701 is operable for sending data to the computer 798 in relation to the operations of the print system 40 over the data network 788. The computer 798 may then store printer system operation related data in the database 777, from which it may be retrieved at a later time. The computer 701 may be operable for presenting a query to the computer 798 for input to the database 777, and for receiving corresponding replies, over the data communications network 788. An example embodiment may be implemented in which the product configuration database 94 is related to (e.g., comprises a component of, mirrors, or is mirrored by) the database 777.


The computer 701 comprises a plurality of electronic components, each of which is coupled to a data bus 702. The data bus 702 is operable for allowing each of the multiple, various electronic components of computer 701 to exchange data signals with each of the other electronic components.


The electronic components of the computer 701 may comprise integrated circuit (IC) devices, including one or more microprocessors. The electronic components of the computer 701 may also comprise other IC devices, such as a microcontroller, field-programmable gate array (FPGA) or other programmable logic device (PLD) or application-specific IC (ASIC).


The microprocessors may comprise a central processing unit (CPU) 704. The CPU 704 is operable for performing general data processing functions related to operations of the GRUI and other components of the computer 701. The electronic components of the computer 701 may also comprise one or more other processors 744.


For example, the other microprocessors may comprise a graphics processing unit (GPU) and/or digital signal processor (DSP) 704, which are each operable for performing data processing functions that may be somewhat more specialized than the general processing functions, as well as sometimes sharing some processing functions with the CPU 704.


One of the processors 744 may also be operable as a “math” (mathematics) coprocessor. The math co-processor, DSP and/or GPU (“DSP/GPU”) 744 are operable for performing computationally intense data processing. The computationally intense processing may relate to imaging, image evaluation, graphics, dimension measurements, wireframe manipulations, coordinate system management, control, and other (e.g., mathematical, financial) information. One of the microprocessors may comprise the processor 45, of the print system 40.


The data processing operations comprise computations performed electronically by the image processor 333, CPU 704, and the DSP/GPU 744. The microprocessors may comprise components operable as an ALU, a FPU, and associated memory cells. The memory cells comprise non-transitory data storage media, which may be configured as caches (e.g., “L1,” “L2”), registers, latches and/or buffers.


The memory cells are operable for storing data electronically in relation to various functions of the processor. A translational look-aside buffer (TLB) may be operable for optimizing efficiency of use of content-addressable memory (CAM) by the CPU 704, and/or the DSP/GPU 744, etc.


The computer 701 also comprises non-transitory computer readable storage media operable for storing data, e.g., electronically. For example, the computer readable storage media comprises a main memory 706, such as a random access memory (RAM) or other dynamic storage medium. The main memory 706 is coupled to data bus 702 for storing information and instructions, which are to be executed by the CPU 704.


The main memory 706 may also be used for storing temporary variables or other intermediate information during execution of instructions by the CPU 704. Other memories (represented in the present description with reference to the RAM 706) may be installed for similar uses by the DSP/GPU 744.


The printing evaluation system 300 further comprises a read-only memory (ROM) 708 or other static storage medium coupled to the data bus 702. The ROM 708 is operable for storing static information and instructions for use by the CPU 704. In addition to the RAM 706 and the ROM 708, the non-transitory storage media may comprise at least one data storage device 710. The data storage device 710 is operable for storing information and instructions and allowing access thereto.


The data storage device 710 may comprise a magnetic disk drive, flash drive, or optical disk drive (or other non-transitory computer readable storage medium). The data storage device 710 comprises non-transitory media coupled to data bus 702, and may be operable for providing a “virtual memory” function. The virtual memory operations of the storage device 710 may supplement, at least temporarily, storage capacity of other non-transitory media, such as the RAM 706.


The non-transitory storage media comprises instructions 783, which are stored (e.g., electronically, magnetically, optically, physically, etc.) in relation to software for programming, controlling, and/or configuring operations of the computer 701 and its components, including the printing system 100, the camera 766, the GUI 80, etc. The instructions 783 may also relate to the performance of one or more steps of the printing method 20 (FIG. 2A).


Instructions, programming, software, settings, values, and configurations, etc. related to the method 20, the printing system 100 and its components, and other operations of the computer 701 are stored (e.g., magnetically, electronically, optically, physically, etc.) by the storage medium 710, memory, etc.


The computer 701 comprises a user-interactive display configured as the touchscreen 725, which is operable as a combined display and GUI (e.g., GUI 80; FIG. 8). The touchscreen 725 may comprise a liquid crystal display (LCD), which is operable for rendering images by modulating variable polarization states of an array of liquid crystal transistor components. The touchscreen 725 also comprises an interface operable for receiving haptic inputs from a user.


The haptic interface of the GUI 80 and touchscreen 725 may comprise, e.g., at least two arrays of microscopic (or transparent) conductors, each of which is insulated electrically from the other and disposed beneath a surface of the display 725 in a perpendicular orientation relative to the other. The haptic inputs comprise pressure applied to the surface of the touchscreen 725 and GUI 80, which cause corresponding local changes in electrical capacitance values proximate to the pressure application that are sensed by the conductor grids to effectuate a signal corresponding to the input.


The touchscreen display component 725 and GUI 80 are operable for rendering an interactive surface for receiving user inputs relating to the actuators 81 and 82 and for rendering the adjustment tracker 88 (FIG. 8). Images and video received from the camera 766 may also be presented on the display 725.


The touchscreen 725 may be implemented operably for rendering images over a heightened (e.g., high) dynamic range (HDR). The rendering of the images may also be based on modulating a back-light unit (BLU). For example, the BLU may comprise an array of light emitting diodes (LEDs). The LCDs may be modulated according to a first signal and the LEDs of the BLU may be modulated according to a second signal. The touchscreen 725 may render an HDR image by coordinating the second modulation signal in real time, relative to the first modulation signal.


Other display technologies may also (or alternatively) be used. For example, the display 725 may comprise an organic LED (OLED) array. The display 725 may also (or alternatively) comprise a display operable over a standard dynamic range (SDR), sometimes also referred to as a “low dynamic range” (LDR).


An input receiver 714 may comprise one or more electromechanical switches, which may be implemented as buttons, escutcheons, microelectromechanical sensors (MEMS) or other sensors, dual in-line package (DIP) switch, etc. The input receiver 714 may also comprise cursor and trigger controls such as a mouse, joystick, etc. and/or a keyboard. The keyboard may comprise an array of alphanumeric and/or ideographic, syllabary based keys operable for typing corresponding letters, number, and/or other symbols. The keyboard may also comprise an array of directional (e.g., “up/down,” “left/right”) keys, operable for communicating commands and data selections to the CPU 704 and for controlling movement of a cursor rendering over the touchscreen display 725. The input receiver 714 may allow inputs for configuring the width 411 of the media substrate.


The directional keys may be operable for presenting two degrees of freedom of a cursor, over at least two perpendicularly disposed axes presented on the display component of the touchscreen 725. A first ‘x’ axis is disposed horizontally. A second ‘y’ axis, complimentary to the first axis, is disposed vertically. Thus, the printing evaluation system 300 is thus operable for specifying positions over a representation of a geometric plane and/or other coordinate systems.


Execution of instruction sequences contained in the storage media 710 and main memory 706 cause the CPU 704 to perform processing related to general operations of the computer 701, the DSP/GPU 744 to perform various other processing operations, and the components of the printing system 100 to perform processing steps related to the example method 20 (FIG. 2A). Additionally or alternatively, hard-wired circuitry may be used in place of, or in combination with the software instructions. Thus, the computer 701 is not limited to any specific combination of circuitry, hardware, firmware, or software.


The term “computer readable storage medium,” as used herein, may refer to any non-transitory storage medium that participates in providing instructions to the various processor components of the computer 701 for execution. Such a medium may take various forms including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media comprises, for example, configured/programmed active elements of the GRUI 41 (and other components of the control system 40) the CPU 704, the DSP/GPU 744, the non-transitory image related media 710, stored instructions 783, and other optical, electronic, or magnetic media. Volatile media comprises dynamic memory associated, e.g., with the RAM 706.


Transmission media comprises coaxial cables, copper wire and other electrical conductors and fiber optics, including the wires (and/or other conductors or optics) that comprise the data bus 702.


Transmission media can also take the form of electromagnetic radiation (e.g., light waves), such as may be generated at a radio frequency (RF), and infrared (IR) and other optical frequencies. Data communications may also be effectuated using other means, including acoustic (e.g., sound related) or other mechanical, vibrational, or phonon related media.


Non-transitory computer-readable storage media may comprise, for example, flash drives such as may be accessible via universal serial bus (USB) or any medium from which the computer 701 can access, read, receive, and retrieve data.


Various forms of non-transitory computer readable storage media may be involved in carrying one or more sequences of one or more instructions to CPU 704 for execution. For example, the instructions may initially be carried on a magnetic or other disk of a remote computer (e.g., computer 798). The remote computer can load the instructions into its dynamic memory and send the instructions over networks 788.


The printing system 100 can receive the data over the network 788 and use an infrared (IR), radio frequency (RF), or other transmitter means to convert the data to corresponding signals. An IR, RF or other signal detector or receiver (“receiver”) coupled to the data bus 702 can receive the data carried in the corresponding signals and place the data on data bus 702. The operations associated with the transmitter and the receiver may be combined in a transmitter/receiver (transceiver) means. The transmitter, receiver and/or transceiver means may be associated with the interfaces 718.


The data bus 702 carries the data to main memory 706, from which CPU 704 and the DSP/GPU 744 retrieve and execute the instructions. The instructions received by main memory 706 may optionally be stored on storage device 710 either before or after execution by CPU 704.


The interfaces 718 may comprise a communication interface coupled to the data bus 702. The communication interface is operable for providing a two-way (or more) data communication coupling to a network link 720, which may connect wirelessly over RF to the network 788. Wireless communication may also be implemented optically, e.g., at IR frequencies.


Signals may be exchanged via the interfaces 718 with an external device 799 (e.g., another computer or external storage device) through a compatible communication port 719. The input receiver 417 may provide signals to the GRUI 41 and other components of the control system 40 and the computer 701 via the port 719.


In any implementation, the communication interface 718 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information. The network link 720 provides data communication through the network 788 to other data devices. The input receiver 417 may provide signals to the printer system 100 and other components of the computer 701 via the network links 720 and/or the data communications network 788.


The network 788 may use one or more of electrical, electromagnetic, and/or optical signals carrying digital data streams. The signals sent over the network 788 and through the network link 720 and communication interface 718 carry the digital data to and from the printing evaluation system 300. The printing evaluation system 300 can send messages and receive data, including program code, through the network 788, network link 720 and communication interface 718.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

  • U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,128,266;
  • U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127;
  • U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,294,969;
  • U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,322,622;
  • U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,371,507;
  • U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,381,979;
  • U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,408,464;
  • U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,408,469;
  • U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,448,863;
  • U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,459,557;
  • U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712;
  • U.S. Pat. No. 8,479,992; U.S. Pat. No. 8,490,877;
  • U.S. Pat. No. 8,517,271; U.S. Pat. No. 8,523,076;
  • U.S. Pat. No. 8,528,818; U.S. Pat. No. 8,544,737;
  • U.S. Pat. No. 8,548,242; U.S. Pat. No. 8,548,420;
  • U.S. Pat. No. 8,550,335; U.S. Pat. No. 8,550,354;
  • U.S. Pat. No. 8,550,357; U.S. Pat. No. 8,556,174;
  • U.S. Pat. No. 8,556,176; U.S. Pat. No. 8,556,177;
  • U.S. Pat. No. 8,559,767; U.S. Pat. No. 8,599,957;
  • U.S. Pat. No. 8,561,895; U.S. Pat. No. 8,561,903;
  • U.S. Pat. No. 8,561,905; U.S. Pat. No. 8,565,107;
  • U.S. Pat. No. 8,571,307; U.S. Pat. No. 8,579,200;
  • U.S. Pat. No. 8,583,924; U.S. Pat. No. 8,584,945;
  • U.S. Pat. No. 8,587,595; U.S. Pat. No. 8,587,697;
  • U.S. Pat. No. 8,588,869; U.S. Pat. No. 8,590,789;
  • U.S. Pat. No. 8,596,539; U.S. Pat. No. 8,596,542;
  • U.S. Pat. No. 8,596,543; U.S. Pat. No. 8,599,271;
  • U.S. Pat. No. 8,599,957; U.S. Pat. No. 8,600,158;
  • U.S. Pat. No. 8,600,167; U.S. Pat. No. 8,602,309;
  • U.S. Pat. No. 8,608,053; U.S. Pat. No. 8,608,071;
  • U.S. Pat. No. 8,611,309; U.S. Pat. No. 8,615,487;
  • U.S. Pat. No. 8,616,454; U.S. Pat. No. 8,621,123;
  • U.S. Pat. No. 8,622,303; U.S. Pat. No. 8,628,013;
  • U.S. Pat. No. 8,628,015; U.S. Pat. No. 8,628,016;
  • U.S. Pat. No. 8,629,926; U.S. Pat. No. 8,630,491;
  • U.S. Pat. No. 8,635,309; U.S. Pat. No. 8,636,200;
  • U.S. Pat. No. 8,636,212; U.S. Pat. No. 8,636,215;
  • U.S. Pat. No. 8,636,224; U.S. Pat. No. 8,638,806;
  • U.S. Pat. No. 8,640,958; U.S. Pat. No. 8,640,960;
  • U.S. Pat. No. 8,643,717; U.S. Pat. No. 8,646,692;
  • U.S. Pat. No. 8,646,694; U.S. Pat. No. 8,657,200;
  • U.S. Pat. No. 8,659,397; U.S. Pat. No. 8,668,149;
  • U.S. Pat. No. 8,678,285; U.S. Pat. No. 8,678,286;
  • U.S. Pat. No. 8,682,077; U.S. Pat. No. 8,687,282;
  • U.S. Pat. No. 8,692,927; U.S. Pat. No. 8,695,880;
  • U.S. Pat. No. 8,698,949; U.S. Pat. No. 8,717,494;
  • U.S. Pat. No. 8,717,494; U.S. Pat. No. 8,720,783;
  • U.S. Pat. No. 8,723,804; U.S. Pat. No. 8,723,904;
  • U.S. Pat. No. 8,727,223; U.S. Pat. No. D702,237;
  • U.S. Pat. No. 8,740,082; U.S. Pat. No. 8,740,085;
  • U.S. Pat. No. 8,746,563; U.S. Pat. No. 8,750,445;
  • U.S. Pat. No. 8,752,766; U.S. Pat. No. 8,756,059;
  • U.S. Pat. No. 8,757,495; U.S. Pat. No. 8,760,563;
  • U.S. Pat. No. 8,763,909; U.S. Pat. No. 8,777,108;
  • U.S. Pat. No. 8,777,109; U.S. Pat. No. 8,779,898;
  • U.S. Pat. No. 8,781,520; U.S. Pat. No. 8,783,573;
  • U.S. Pat. No. 8,789,757; U.S. Pat. No. 8,789,758;
  • U.S. Pat. No. 8,789,759; U.S. Pat. No. 8,794,520;
  • U.S. Pat. No. 8,794,522; U.S. Pat. No. 8,794,525;
  • U.S. Pat. No. 8,794,526; U.S. Pat. No. 8,798,367;
  • U.S. Pat. No. 8,807,431; U.S. Pat. No. 8,807,432;
  • U.S. Pat. No. 8,820,630; U.S. Pat. No. 8,822,848;
  • U.S. Pat. No. 8,824,692; U.S. Pat. No. 8,824,696;
  • U.S. Pat. No. 8,842,849; U.S. Pat. No. 8,844,822;
  • U.S. Pat. No. 8,844,823; U.S. Pat. No. 8,849,019;
  • U.S. Pat. No. 8,851,383; U.S. Pat. No. 8,854,633;
  • U.S. Pat. No. 8,866,963; U.S. Pat. No. 8,868,421;
  • U.S. Pat. No. 8,868,519; U.S. Pat. No. 8,868,802;
  • U.S. Pat. No. 8,868,803; U.S. Pat. No. 8,870,074;
  • U.S. Pat. No. 8,879,639; U.S. Pat. No. 8,880,426;
  • U.S. Pat. No. 8,881,983; U.S. Pat. No. 8,881,987;
  • U.S. Pat. No. 8,903,172; U.S. Pat. No. 8,908,995;
  • U.S. Pat. No. 8,910,870; U.S. Pat. No. 8,910,875;
  • U.S. Pat. No. 8,914,290; U.S. Pat. No. 8,914,788;
  • U.S. Pat. No. 8,915,439; U.S. Pat. No. 8,915,444;
  • U.S. Pat. No. 8,916,789; U.S. Pat. No. 8,918,250;
  • U.S. Pat. No. 8,918,564; U.S. Pat. No. 8,925,818;
  • U.S. Pat. No. 8,939,374; U.S. Pat. No. 8,942,480;
  • U.S. Pat. No. 8,944,313; U.S. Pat. No. 8,944,327;
  • U.S. Pat. No. 8,944,332; U.S. Pat. No. 8,950,678;
  • U.S. Pat. No. 8,967,468; U.S. Pat. No. 8,971,346;
  • U.S. Pat. No. 8,976,030; U.S. Pat. No. 8,976,368;
  • U.S. Pat. No. 8,978,981; U.S. Pat. No. 8,978,983;
  • U.S. Pat. No. 8,978,984; U.S. Pat. No. 8,985,456;
  • U.S. Pat. No. 8,985,457; U.S. Pat. No. 8,985,459;
  • U.S. Pat. No. 8,985,461; U.S. Pat. No. 8,988,578;
  • U.S. Pat. No. 8,988,590; U.S. Pat. No. 8,991,704;
  • U.S. Pat. No. 8,996,194; U.S. Pat. No. 8,996,384;
  • U.S. Pat. No. 9,002,641; U.S. Pat. No. 9,007,368;
  • U.S. Pat. No. 9,010,641; U.S. Pat. No. 9,015,513;
  • U.S. Pat. No. 9,016,576; U.S. Pat. No. 9,022,288;
  • U.S. Pat. No. 9,030,964; U.S. Pat. No. 9,033,240;
  • U.S. Pat. No. 9,033,242; U.S. Pat. No. 9,036,054;
  • U.S. Pat. No. 9,037,344; U.S. Pat. No. 9,038,911;
  • U.S. Pat. No. 9,038,915; U.S. Pat. No. 9,047,098;
  • U.S. Pat. No. 9,047,359; U.S. Pat. No. 9,047,420;
  • U.S. Pat. No. 9,047,525; U.S. Pat. No. 9,047,531;
  • U.S. Pat. No. 9,053,055; U.S. Pat. No. 9,053,378;
  • U.S. Pat. No. 9,053,380; U.S. Pat. No. 9,058,526;
  • U.S. Pat. No. 9,064,165; U.S. Pat. No. 9,064,167;
  • U.S. Pat. No. 9,064,168; U.S. Pat. No. 9,064,254;
  • U.S. Pat. No. 9,066,032; U.S. Pat. No. 9,070,032;
  • U.S. Design Pat. No. D716,285;
  • U.S. Design Pat. No. D723,560;
  • U.S. Design Pat. No. D730,357;
  • U.S. Design Pat. No. D730,901;
  • U.S. Design Pat. No. D730,902;
  • U.S. Design Pat. No. D733,112;
  • U.S. Design Pat. No. D734,339;
  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • International Publication No. 2014/019130;
  • International Publication No. 2014/110495;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2010/0265880;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0042814;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0078341;
  • U.S. Patent Application Publication No. 2014/0078345;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0104451;
  • U.S. Patent Application Publication No. 2014/0106594;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0114530;
  • U.S. Patent Application Publication No. 2014/0124577;
  • U.S. Patent Application Publication No. 2014/0124579;
  • U.S. Patent Application Publication No. 2014/0125842;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. Patent Application Publication No. 2014/0131438;
  • U.S. Patent Application Publication No. 2014/0131441;
  • U.S. Patent Application Publication No. 2014/0131443;
  • U.S. Patent Application Publication No. 2014/0131444;
  • U.S. Patent Application Publication No. 2014/0131445;
  • U.S. Patent Application Publication No. 2014/0131448;
  • U.S. Patent Application Publication No. 2014/0133379;
  • U.S. Patent Application Publication No. 2014/0136208;
  • U.S. Patent Application Publication No. 2014/0140585;
  • U.S. Patent Application Publication No. 2014/0151453;
  • U.S. Patent Application Publication No. 2014/0152882;
  • U.S. Patent Application Publication No. 2014/0158770;
  • U.S. Patent Application Publication No. 2014/0159869;
  • U.S. Patent Application Publication No. 2014/0166755;
  • U.S. Patent Application Publication No. 2014/0166759;
  • U.S. Patent Application Publication No. 2014/0168787;
  • U.S. Patent Application Publication No. 2014/0175165;
  • U.S. Patent Application Publication No. 2014/0175172;
  • U.S. Patent Application Publication No. 2014/0191644;
  • U.S. Patent Application Publication No. 2014/0191913;
  • U.S. Patent Application Publication No. 2014/0197238;
  • U.S. Patent Application Publication No. 2014/0197239;
  • U.S. Patent Application Publication No. 2014/0197304;
  • U.S. Patent Application Publication No. 2014/0214631;
  • U.S. Patent Application Publication No. 2014/0217166;
  • U.S. Patent Application Publication No. 2014/0217180;
  • U.S. Patent Application Publication No. 2014/0231500;
  • U.S. Patent Application Publication No. 2014/0232930;
  • U.S. Patent Application Publication No. 2014/0247315;
  • U.S. Patent Application Publication No. 2014/0263493;
  • U.S. Patent Application Publication No. 2014/0263645;
  • U.S. Patent Application Publication No. 2014/0267609;
  • U.S. Patent Application Publication No. 2014/0270196;
  • U.S. Patent Application Publication No. 2014/0270229;
  • U.S. Patent Application Publication No. 2014/0278387;
  • U.S. Patent Application Publication No. 2014/0278391;
  • U.S. Patent Application Publication No. 2014/0282210;
  • U.S. Patent Application Publication No. 2014/0284384;
  • U.S. Patent Application Publication No. 2014/0288933;
  • U.S. Patent Application Publication No. 2014/0297058;
  • U.S. Patent Application Publication No. 2014/0299665;
  • U.S. Patent Application Publication No. 2014/0312121;
  • U.S. Patent Application Publication No. 2014/0319220;
  • U.S. Patent Application Publication No. 2014/0319221;
  • U.S. Patent Application Publication No. 2014/0326787;
  • U.S. Patent Application Publication No. 2014/0332590;
  • U.S. Patent Application Publication No. 2014/0344943;
  • U.S. Patent Application Publication No. 2014/0346233;
  • U.S. Patent Application Publication No. 2014/0351317;
  • U.S. Patent Application Publication No. 2014/0353373;
  • U.S. Patent Application Publication No. 2014/0361073;
  • U.S. Patent Application Publication No. 2014/0361082;
  • U.S. Patent Application Publication No. 2014/0362184;
  • U.S. Patent Application Publication No. 2014/0363015;
  • U.S. Patent Application Publication No. 2014/0369511;
  • U.S. Patent Application Publication No. 2014/0374483;
  • U.S. Patent Application Publication No. 2014/0374485;
  • U.S. Patent Application Publication No. 2015/0001301;
  • U.S. Patent Application Publication No. 2015/0001304;
  • U.S. Patent Application Publication No. 2015/0003673;
  • U.S. Patent Application Publication No. 2015/0009338;
  • U.S. Patent Application Publication No. 2015/0009610;
  • U.S. Patent Application Publication No. 2015/0014416;
  • U.S. Patent Application Publication No. 2015/0021397;
  • U.S. Patent Application Publication No. 2015/0028102;
  • U.S. Patent Application Publication No. 2015/0028103;
  • U.S. Patent Application Publication No. 2015/0028104;
  • U.S. Patent Application Publication No. 2015/0029002;
  • U.S. Patent Application Publication No. 2015/0032709;
  • U.S. Patent Application Publication No. 2015/0039309;
  • U.S. Patent Application Publication No. 2015/0039878;
  • U.S. Patent Application Publication No. 2015/0040378;
  • U.S. Patent Application Publication No. 2015/0048168;
  • U.S. Patent Application Publication No. 2015/0049347;
  • U.S. Patent Application Publication No. 2015/0051992;
  • U.S. Patent Application Publication No. 2015/0053766;
  • U.S. Patent Application Publication No. 2015/0053768;
  • U.S. Patent Application Publication No. 2015/0053769;
  • U.S. Patent Application Publication No. 2015/0060544;
  • U.S. Patent Application Publication No. 2015/0062366;
  • U.S. Patent Application Publication No. 2015/0063215;
  • U.S. Patent Application Publication No. 2015/0063676;
  • U.S. Patent Application Publication No. 2015/0069130;
  • U.S. Patent Application Publication No. 2015/0071819;
  • U.S. Patent Application Publication No. 2015/0083800;
  • U.S. Patent Application Publication No. 2015/0086114;
  • U.S. Patent Application Publication No. 2015/0088522;
  • U.S. Patent Application Publication No. 2015/0096872;
  • U.S. Patent Application Publication No. 2015/0099557;
  • U.S. Patent Application Publication No. 2015/0100196;
  • U.S. Patent Application Publication No. 2015/0102109;
  • U.S. Patent Application Publication No. 2015/0115035;
  • U.S. Patent Application Publication No. 2015/0127791;
  • U.S. Patent Application Publication No. 2015/0128116;
  • U.S. Patent Application Publication No. 2015/0129659;
  • U.S. Patent Application Publication No. 2015/0133047;
  • U.S. Patent Application Publication No. 2015/0134470;
  • U.S. Patent Application Publication No. 2015/0136851;
  • U.S. Patent Application Publication No. 2015/0136854;
  • U.S. Patent Application Publication No. 2015/0142492;
  • U.S. Patent Application Publication No. 2015/0144692;
  • U.S. Patent Application Publication No. 2015/0144698;
  • U.S. Patent Application Publication No. 2015/0144701;
  • U.S. Patent Application Publication No. 2015/0149946;
  • U.S. Patent Application Publication No. 2015/0161429;
  • U.S. Patent Application Publication No. 2015/0169925;
  • U.S. Patent Application Publication No. 2015/0169929;
  • U.S. Patent Application Publication No. 2015/0178523;
  • U.S. Patent Application Publication No. 2015/0178534;
  • U.S. Patent Application Publication No. 2015/0178535;
  • U.S. Patent Application Publication No. 2015/0178536;
  • U.S. Patent Application Publication No. 2015/0178537;
  • U.S. Patent Application Publication No. 2015/0181093;
  • U.S. Patent Application Publication No. 2015/0181109;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
  • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
  • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/483,056 for VARIABLE DEPTH OF FIELD BARCODE SCANNER filed Sep. 10, 2014 (McCloskey et al.);
  • U.S. patent application Ser. No. 14/513,808 for IDENTIFYING INVENTORY ITEMS IN A STORAGE FACILITY filed Oct. 14, 2014 (Singel et al.);
  • U.S. patent application Ser. No. 14/519,195 for HANDHELD DIMENSIONING SYSTEM WITH FEEDBACK filed Oct. 21, 2014 (Laffargue et al.);
  • U.S. patent application Ser. No. 14/519,179 for DIMENSIONING SYSTEM WITH MULTIPATH INTERFERENCE MITIGATION filed Oct. 21, 2014 (Thuries et al.);
  • U.S. patent application Ser. No. 14/519,211 for SYSTEM AND METHOD FOR DIMENSIONING filed Oct. 21, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/519,233 for HANDHELD DIMENSIONER WITH DATA-QUALITY INDICATION filed Oct. 21, 2014 (Laffargue et al.);
  • U.S. patent application Ser. No. 14/519,249 for HANDHELD DIMENSIONING SYSTEM WITH MEASUREMENT-CONFORMANCE FEEDBACK filed Oct. 21, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/527,191 for METHOD AND SYSTEM FOR RECOGNIZING SPEECH USING WILDCARDS IN AN EXPECTED RESPONSE filed Oct. 29, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/529,563 for ADAPTABLE INTERFACE FOR A MOBILE COMPUTING DEVICE filed Oct. 31, 2014 (Schoon et al.);
  • U.S. patent application Ser. No. 14/529,857 for BARCODE READER WITH SECURITY FEATURES filed Oct. 31, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/398,542 for PORTABLE ELECTRONIC DEVICES HAVING A SEPARATE LOCATION TRIGGER UNIT FOR USE IN CONTROLLING AN APPLICATION UNIT filed Nov. 3, 2014 (Bian et al.);
  • U.S. patent application Ser. No. 14/531,154 for DIRECTING AN INSPECTOR THROUGH AN INSPECTION filed Nov. 3, 2014 (Miller et al.);
  • U.S. patent application Ser. No. 14/533,319 for BARCODE SCANNING SYSTEM USING WEARABLE DEVICE WITH EMBEDDED CAMERA filed Nov. 5, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/535,764 for CONCATENATED EXPECTED RESPONSES FOR SPEECH RECOGNITION filed Nov. 7, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/568,305 for AUTO-CONTRAST VIEWFINDER FOR AN INDICIA READER filed Dec. 12, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/573,022 for DYNAMIC DIAGNOSTIC INDICATOR GENERATION filed Dec. 17, 2014 (Goldsmith);
  • U.S. patent application Ser. No. 14/578,627 for SAFETY SYSTEM AND METHOD filed Dec. 22, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/580,262 for MEDIA GATE FOR THERMAL TRANSFER PRINTERS filed Dec. 23, 2014 (Bowles);
  • U.S. patent application Ser. No. 14/590,024 for SHELVING AND PACKAGE LOCATING SYSTEMS FOR DELIVERY VEHICLES filed Jan. 6, 2015 (Payne);
  • U.S. patent application Ser. No. 14/596,757 for SYSTEM AND METHOD FOR DETECTING BARCODE PRINTING ERRORS filed Jan. 14, 2015 (Ackley);
  • U.S. patent application Ser. No. 14/416,147 for OPTICAL READING APPARATUS HAVING VARIABLE SETTINGS filed Jan. 21, 2015 (Chen et al.);
  • U.S. patent application Ser. No. 14/614,706 for DEVICE FOR SUPPORTING AN ELECTRONIC TOOL ON A USER'S HAND filed Feb. 5, 2015 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/614,796 for CARGO APPORTIONMENT TECHNIQUES filed Feb. 5, 2015 (Morton et al.);
  • U.S. patent application Ser. No. 29/516,892 for TABLE COMPUTER filed Feb. 6, 2015 (Bidwell et al.);
  • U.S. patent application Ser. No. 14/619,093 for METHODS FOR TRAINING A SPEECH RECOGNITION SYSTEM filed Feb. 11, 2015 (Pecorari);
  • U.S. patent application Ser. No. 14/628,708 for DEVICE, SYSTEM, AND METHOD FOR DETERMINING THE STATUS OF CHECKOUT LANES filed Feb. 23, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/630,841 for TERMINAL INCLUDING IMAGING ASSEMBLY filed Feb. 25, 2015 (Gomez et al.);
  • U.S. patent application Ser. No. 14/635,346 for SYSTEM AND METHOD FOR RELIABLE STORE-AND-FORWARD DATA HANDLING BY ENCODED INFORMATION READING TERMINALS filed Mar. 2, 2015 (Sevier);
  • U.S. patent application Ser. No. 29/519,017 for SCANNER filed Mar. 2, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/405,278 for DESIGN PATTERN FOR SECURE STORE filed Mar. 9, 2015 (Zhu et al.);
  • U.S. patent application Ser. No. 14/660,970 for DECODABLE INDICIA READING TERMINAL WITH COMBINED ILLUMINATION filed Mar. 18, 2015 (Kearney et al.);
  • U.S. patent application Ser. No. 14/661,013 for REPROGRAMMING SYSTEM AND METHOD FOR DEVICES INCLUDING PROGRAMMING SYMBOL filed Mar. 18, 2015 (Soule et al.);
  • U.S. patent application Ser. No. 14/662,922 for MULTIFUNCTION POINT OF SALE SYSTEM filed Mar. 19, 2015 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/663,638 for VEHICLE MOUNT COMPUTER WITH CONFIGURABLE IGNITION SWITCH BEHAVIOR filed Mar. 20, 2015 (Davis et al.);
  • U.S. patent application Ser. No. 14/664,063 for METHOD AND APPLICATION FOR SCANNING A BARCODE WITH A SMART DEVICE WHILE CONTINUOUSLY RUNNING AND DISPLAYING AN APPLICATION ON THE SMART DEVICE DISPLAY filed Mar. 20, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/669,280 for TRANSFORMING COMPONENTS OF A WEB PAGE TO VOICE PROMPTS filed Mar. 26, 2015 (Funyak et al.);
  • U.S. patent application Ser. No. 14/674,329 for AIMER FOR BARCODE SCANNING filed Mar. 31, 2015 (Bidwell);
  • U.S. patent application Ser. No. 14/676,109 for INDICIA READER filed Apr. 1, 2015 (Huck);
  • U.S. patent application Ser. No. 14/676,327 for DEVICE MANAGEMENT PROXY FOR SECURE DEVICES filed Apr. 1, 2015 (Yeakley et al.);
  • U.S. patent application Ser. No. 14/676,898 for NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS filed Apr. 2, 2015 (Showering);
  • U.S. patent application Ser. No. 14/679,275 for DIMENSIONING SYSTEM CALIBRATION SYSTEMS AND METHODS filed Apr. 6, 2015 (Laffargue et al.);
  • U.S. patent application Ser. No. 29/523,098 for HANDLE FOR A TABLET COMPUTER filed Apr. 7, 2015 (Bidwell et al.);
  • U.S. patent application Ser. No. 14/682,615 for SYSTEM AND METHOD FOR POWER MANAGEMENT OF MOBILE DEVICES filed Apr. 9, 2015 (Murawski et al.);
  • U.S. patent application Ser. No. 14/686,822 for MULTIPLE PLATFORM SUPPORT SYSTEM AND METHOD filed Apr. 15, 2015 (Qu et al.);
  • U.S. patent application Ser. No. 14/687,289 for SYSTEM FOR COMMUNICATION VIA A PERIPHERAL HUB filed Apr. 15, 2015 (Kohtz et al.);
  • U.S. patent application Ser. No. 29/524,186 for SCANNER filed Apr. 17, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/695,364 for MEDICATION MANAGEMENT SYSTEM filed Apr. 24, 2015 (Sewell et al.);
  • U.S. patent application Ser. No. 14/695,923 for SECURE UNATTENDED NETWORK AUTHENTICATION filed Apr. 24, 2015 (Kubler et al.);
  • U.S. patent application Ser. No. 29/525,068 for TABLET COMPUTER WITH REMOVABLE SCANNING DEVICE filed Apr. 27, 2015 (Schulte et al.);
  • U.S. patent application Ser. No. 14/699,436 for SYMBOL READING SYSTEM HAVING PREDICTIVE DIAGNOSTICS filed Apr. 29, 2015 (Nahill et al.);
  • U.S. patent application Ser. No. 14/702,110 for SYSTEM AND METHOD FOR REGULATING BARCODE DATA INJECTION INTO A RUNNING
  • APPLICATION ON A SMART DEVICE filed May 1, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/702,979 for TRACKING BATTERY CONDITIONS filed May 4, 2015 (Young et al.);
  • U.S. patent application Ser. No. 14/704,050 for INTERMEDIATE LINEAR POSITIONING filed May 5, 2015 (Charpentier et al.);
  • U.S. patent application Ser. No. 14/705,012 for HANDS-FREE HUMAN MACHINE INTERFACE RESPONSIVE TO A DRIVER OF A VEHICLE filed May 6, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/705,407 for METHOD AND SYSTEM TO PROTECT SOFTWARE-BASED NETWORK-CONNECTED DEVICES FROM ADVANCED PERSISTENT THREAT filed May 6, 2015 (Hussey et al.);
  • U.S. patent application Ser. No. 14/707,037 for SYSTEM AND METHOD FOR DISPLAY OF INFORMATION USING A VEHICLE-MOUNT COMPUTER filed May 8, 2015 (Chamberlin);
  • U.S. patent application Ser. No. 14/707,123 for APPLICATION INDEPENDENT DEX/UCS INTERFACE filed May 8, 2015 (Pape);
  • U.S. patent application Ser. No. 14/707,492 for METHOD AND APPARATUS FOR READING OPTICAL INDICIA USING A PLURALITY OF DATA SOURCES filed May 8, 2015 (Smith et al.);
  • U.S. patent application Ser. No. 14/710,666 for PRE-PAID USAGE SYSTEM FOR ENCODED INFORMATION READING TERMINALS filed May 13, 2015 (Smith);
  • U.S. patent application Ser. No. 29/526,918 for CHARGING BASE filed May 14, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/715,672 for AUGUMENTED REALITY ENABLED HAZARD DISPLAY filed May 19, 2015 (Venkatesha et al.);
  • U.S. patent application Ser. No. 14/715,916 for EVALUATING IMAGE VALUES filed May 19, 2015 (Ackley);
  • U.S. patent application Ser. No. 14/722,608 for INTERACTIVE USER INTERFACE FOR CAPTURING A DOCUMENT IN AN IMAGE SIGNAL filed May 27, 2015 (Showering et al.);
  • U.S. patent application Ser. No. 29/528,165 for IN-COUNTER BARCODE SCANNER filed May 27, 2015 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/724,134 for ELECTRONIC DEVICE WITH WIRELESS PATH SELECTION CAPABILITY filed May 28, 2015 (Wang et al.);
  • U.S. patent application Ser. No. 14/724,849 for METHOD OF PROGRAMMING THE DEFAULT CABLE INTERFACE SOFTWARE IN AN INDICIA READING DEVICE filed May 29, 2015 (Barten);
  • U.S. patent application Ser. No. 14/724,908 for IMAGING APPARATUS HAVING IMAGING ASSEMBLY filed May 29, 2015 (Barber et al.);
  • U.S. patent application Ser. No. 14/725,352 for APPARATUS AND METHODS FOR MONITORING ONE OR MORE PORTABLE DATA TERMINALS (Caballero et al.);
  • U.S. patent application Ser. No. 29/528,590 for ELECTRONIC DEVICE filed May 29, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 29/528,890 for MOBILE COMPUTER HOUSING filed Jun. 2, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/728,397 for DEVICE MANAGEMENT USING VIRTUAL INTERFACES CROSS-REFERENCE TO RELATED APPLICATIONS filed Jun. 2, 2015 (Caballero);
  • U.S. patent application Ser. No. 14/732,870 for DATA COLLECTION MODULE AND SYSTEM filed Jun. 8, 2015 (Powilleit);
  • U.S. patent application Ser. No. 29/529,441 for INDICIA READING DEVICE filed Jun. 8, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/735,717 for INDICIA-READING SYSTEMS HAVING AN INTERFACE WITH A USER'S NERVOUS SYSTEM filed Jun. 10, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/738,038 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES filed Jun. 12, 2015 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/740,320 for TACTILE SWITCH FOR A MOBILE ELECTRONIC DEVICE filed Jun. 16, 2015 (Bandringa);
  • U.S. patent application Ser. No. 14/740,373 for CALIBRATING A VOLUME DIMENSIONER filed Jun. 16, 2015 (Ackley et al.);
  • U.S. patent application Ser. No. 14/742,818 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 18, 2015 (Xian et al.);
  • U.S. patent application Ser. No. 14/743,257 for WIRELESS MESH POINT PORTABLE DATA TERMINAL filed Jun. 18, 2015 (Wang et al.);
  • U.S. patent application Ser. No. 29/530,600 for CYCLONE filed Jun. 18, 2015 (Vargo et al);
  • U.S. patent application Ser. No. 14/744,633 for IMAGING APPARATUS COMPRISING IMAGE SENSOR ARRAY HAVING SHARED GLOBAL SHUTTER CIRCUITRY filed Jun. 19, 2015 (Wang);
  • U.S. patent application Ser. No. 14/744,836 for CLOUD-BASED SYSTEM FOR READING OF DECODABLE INDICIA filed Jun. 19, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/745,006 for SELECTIVE OUTPUT OF DECODED MESSAGE DATA filed Jun. 19, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/747,197 for OPTICAL PATTERN PROJECTOR filed Jun. 23, 2015 (Thuries et al.);
  • U.S. patent application Ser. No. 14/747,490 for DUAL-PROJECTOR THREE-DIMENSIONAL SCANNER filed Jun. 23, 2015 (Jovanovski et al.); and
  • U.S. patent application Ser. No. 14/748,446 for CORDLESS INDICIA READER WITH A MULTIFUNCTION COIL FOR WIRELESS CHARGING AND EAS DEACTIVATION, filed Jun. 24, 2015 (Xie et al.).


Example embodiments of the present invention are thus described in relation to a system and method for printing media products. An example embodiment of the present invention relates to a system for printing an indicia on a graphic medium. An example embodiment of the present invention relates to a system for printing a graphic media product. The graphic media product comprises an indicia marked upon a media substrate. The system comprises a print mechanism, a detector, a sensor, and a processor operable for computing a center position of the media substrate.


The print mechanism is operable for marking the indicia upon the media substrate. The detector is operable for detecting an installation of a supply of the media substrate for feeding to the print mechanism, and for activating the sensor based on the detection of the installation of the media substrate. The sensor is operable for measuring a width of the installed media substrate. The processor is operable for computing a center position of the media substrate based on the measured width. The marking of the indicia is aligned relative to the computed center position of the media substrate.


Example embodiments of the present invention are thus useful for printing graphic media products. Example embodiments reduce reliance on users' knowledge and memory in configuring correct width settings for various media substrates. Example embodiments configure the width settings with sufficient correctness for printing of media products in conformance to quality standards and specifications, and to promote the clear communication of information presented therewith. Further, example embodiments reduce errors relating to the correct width measurement and the corresponding setting configurations, and related occurrence of printing failures or faulty and/or out-of-specification print products.


For clarity and brevity, as well as to avoid unnecessary or unhelpful obfuscating, obscuring, obstructing, or occluding features of an example embodiment, certain intricacies and details, which are known generally to artisans of ordinary skill in related technologies, may have been omitted or discussed in less than exhaustive detail. Any such omissions or discussions are neither necessary for describing example embodiments of the invention, nor particularly relevant to understanding of significant elements, features, functions, and aspects of the example embodiments described herein.


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such example embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items, and the term “or” is used in an inclusive (and not exclusive) sense. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A method for printing a graphic media product with a media printer, the method comprising the steps of: detecting an installation of a supply of a media substrate;activating a sensor, based on the detection of the installation;measuring a width of the installed media substrate with the activated sensor by counting truncated calibration dots positioned on the left and right of the media substrate, the calibration dots being disposed on the media printer;computing a center position of the media substrate based on the measured width; andmarking the indicia upon the media substrate wherein the marking of the indicia is aligned relative to the computed center position of the media substrate.
  • 2. The method as described in claim 1, further comprising the step of feeding the media substrate to a print head along a direction of the feeding and the printing of the graphic media product.
  • 3. The method as described in claim 1 wherein the computed center position is located along a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof.
  • 4. The method as described in claim 3, further comprising the steps of: feeding the media substrate in a direction of the feeding and the printing of the graphic media product; andmeasuring the length of the plane over the surface of the fed media substrate.
  • 5. The method as described in claim 4 wherein the length is measured along the longitudinal line on which the computed center position is located.
  • 6. The method as described in claim 1 wherein the step of computing a center position of the media substrate based on the measured width comprises tracking a number of setting adjustments inputted in relation to configuring a setting corresponding to the measured width.
  • 7. The method as described in claim 1 wherein the media substrate comprises a plurality of marks disposed along at least one line perpendicular to one or more of a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof, and each of the a pair of opposing lateral edges.
  • 8. The method as described in claim 7 wherein the media substrate further comprises a plurality of gaps between each of the marks, wherein the gaps comprise one or more of a shade or a brightness at least approximating a shade or a brightness of the media substrate, wherein the marks comprise one or more of a shade or a brightness darker than that of the gaps.
  • 9. The method as described in claim 8 wherein one or more of the measuring the width of the installed media substrate with the activated sensor, or the computing the center position of the media substrate based on the measured width comprises counting at least one of the gaps or the marks.
  • 10. The method as described in claim 1 wherein the graphic media product comprises an indicia marked upon the media substrate.
  • 11. A system for printing a graphic media product with a media printer, the system comprising: a print mechanism operable for marking an indicia upon the media substrate;a detector operable for detecting an installation of a supply of the media substrate for feeding to the print mechanism;a sensor operable for measuring a width of the installed media substrate by counting truncated calibration dots positioned on the left and right of the media substrate, the calibration dots being disposed on the media printer, wherein the detector is further operable for activating the sensor based on the detection of the installation of the media substrate; anda processor operable for computing a center position of the media substrate based on the measured width, wherein the marking of the indicia is aligned relative to the computed center position of the media substrate.
  • 12. The system as described in claim 11, further comprising a feeder mechanism operable for feeding the media substrate to the print mechanism along a direction of the feeding and the printing of the graphic media product.
  • 13. The system as described in claim 11 wherein the computed center position is located along a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof.
  • 14. The system as described in claim 13 wherein the measuring the sensor is further operable for measuring the length of the plane over the surface of the fed media substrate.
  • 15. The system as described in claim 14 wherein the length is measured along the longitudinal line on which the computed center position is located.
  • 16. The system as described in claim 11, further comprising an input mechanism operable for inputting one or more setting adjustments over an adjustment range in relation to configuring a setting corresponding to the measured width inputted.
  • 17. The system as described in claim 11 wherein the media substrate comprises a plurality of marks disposed along at least one line perpendicular to one or more of a line running longitudinally along a length of a plane corresponding to a surface of the media substrate and equidistant between a pair of opposing lateral edges thereof, and each of the a pair of opposing lateral edges.
  • 18. The system as described in claim 17 wherein the media substrate further comprises a plurality of gaps between each of the marks, wherein the gaps comprise one or more of a shade or a brightness at least approximating a shade or a brightness of the media substrate, wherein the marks comprise one or more of a shade, or a brightness darker than that of the gaps.
  • 19. The system as described in claim 18 wherein one or more of the measuring the width of the installed media substrate with the activated sensor, or the computing the center position of the media substrate based on the measured width, comprises counting at least one of the gaps or the marks.
  • 20. A graphic media product printed with a media printer using a process for marking an indicia upon a media substrate, the printing process comprising the method steps of: detecting an installation of a supply of the media substrate for feeding to a printing head;activating a sensor, based on the detection of the installation of the supply of the media substrate;measuring a width of the installed media substrate with the activated sensor by counting truncated calibration dots positioned on the left and right of the media substrate, the calibration dots being disposed on the media printer and total number of the calibration dots corresponding to a maximum printing width of the media printer;computing a center position of the media substrate based on the measured width, the center position being computed relative to the printer and comprising adding half of the measured width of the installed media substrate to a total of one of the left or right truncated calibration dots; andaligning the marking of the indicia upon the media substrate relative to the computed center position of the media substrate.
US Referenced Citations (460)
Number Name Date Kind
4647189 Fujiwara et al. Mar 1987 A
4903067 Murayama Feb 1990 A
6008826 Foote Dec 1999 A
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Batten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Batten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881653 Koda Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Batten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9443123 Hejl Jan 2016 B2
9250712 Todeschini Feb 2016 B1
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9310609 Rueblinger et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342724 McCloskey May 2016 B2
9375945 Bowles Jun 2016 B1
D760719 Zhou et al. Jul 2016 S
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9412242 Van Horn et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443222 Singel et al. Sep 2016 B2
9478113 Xie et al. Oct 2016 B2
20040061733 Buibas Apr 2004 A1
20050248799 Takatsuna Nov 2005 A1
20060065744 Tai Mar 2006 A1
20070063048 Havens et al. Mar 2007 A1
20090134221 Zhu et al. May 2009 A1
20090147298 Takahashi et al. Jun 2009 A1
20100150580 Brumbaugh Jun 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130286449 Fujiwara Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140100813 Showering Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197238 Lui et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGegorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van Horn et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chang et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150207941 Koda et al. Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150327012 Bian et al. Nov 2015 A1
20150371116 Tanigawa Dec 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171720 Todeschini Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160125873 Braho et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Sewell et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20170118355 Wong et al. Apr 2017 A1
Foreign Referenced Citations (4)
Number Date Country
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
Non-Patent Literature Citations (25)
Entry
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages; [previously submitted in parent application].
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages [previously submitted in parent application].
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages [previously submitted in parent application].
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages [previously submitted in parent application].
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages [previously submitted in parent application].
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned [previously submitted in parent application].
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages [previously submitted in parent application].
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages [previously submitted in parent application].
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages [previously submitted in parent application].
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages [previously submitted in parent application].
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages [previously submitted in parent application].
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages [previously submitted in parent application].
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages [previously submitted in parent application].
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages [previously submitted in parent application].
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages [previously submitted in parent application].
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages [previously submitted in parent application].
U.S. Appl. No. 14/740,320 for Tactile Switch For a Mobile Electronic Device filed Jun. 16, 2015 (Bamdringa); 38 pages [previously submitted in parent application].
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages [previously submitted in parent application].
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. [previously submitted in parent pplication].
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned. [previously submitted in parent application].
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned [previously submitted in parent application].
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages [previously submitted in parent application].
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); [previously submitted in parent application] 17 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages; [previously submitted in parent application].
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages [previously submitted in parent application].
Related Publications (1)
Number Date Country
20170302805 A1 Oct 2017 US
Continuations (1)
Number Date Country
Parent 14923723 Oct 2015 US
Child 15642868 US