The invention pertains to reconstitution and administration of liquid drugs.
Commonly owned U.S. Pat. No. 6,238,372's
However, certain administration regimes require a greater quantity of medicament than contained in a single medicament containing vial thereby requiring a time consuming and cumbersome serial reconstitution of two or more medicament containing vials. Such serial reconstitutions typically also require at least one replacement of a needle for sterilization purposes further complicating reconstitution prior to dosage administration. Some administration regimes require a greater volume of diluent than can be stored in a pre-filled syringe which is particularly applicable in the case of serial reconstitute on two or vials.
The present invention is directed toward medical apparatus for use with single use kits containing a flow control device, a syringe, and one or more vials, for reconstituting a liquid drug dosage and administrating same. Kits include one or more vials depending on an intended quantity of medicament to be administered to a subject. Some kits may include a syringe pre-filled with diluent for reconstitution purposes. Other kits may include a vial containing diluent for reconstitution purposes particularly in the case that a greater volume of diluents is required than can be stored in a single pre-filled syringe. The medicament containing vials can contain the same or different medicaments. The present invention is suitable for home users for self administration, professional users at outpatient clinics, hospital departments, and the like.
The flow control devices include a core member having an inlet port and a flow control member rotatably mounted on the core member and having at least one vial port for attachment of a vial and an outlet port. Flow control devices are designed to ensure an inlet port is in flow communication with a single port of the at least one vial port and the outlet port at each flow control position of a series of at least two predetermined flow control positions of a flow control member relative to a core member. Flow control devices intended for use with an odd number of vials from a single vial and upwards employ one type of core member and flow control devices intended for use with an even number of vials from two vials and upwards, employ another type of core member. Both types preferably include an upward radial directed aspiration lumen and a downward radial directed injection lumen opposite the upward aspiration lumen relative to a horizontal longitudinal axis. The difference being that in the former, the downward radial directed injection lumen is directly opposite the upward radial directed aspiration lumen and in the latter, the downward radial directed injection lumen angled is angled with respect to the upward radial directed injection lumen so as not to be opposite thereto.
The medical apparatus includes a housing having a syringe support for horizontally supporting a syringe and a flow control device support for horizontally supporting a flow control device. The medical apparatus can be designed for either manual operation or automatic operation. In the latter case, the medical apparatus further includes a motorized syringe drive unit, a motorized flow control device drive unit and either a pre-programmed or programmable controller for controlling the motorized drive units. Pre-programmed controllers are intended to reconstitute a liquid drug according to a pre-set liquid drug reconstitution program in terms of an empty or pre-filled syringe, the number and volumetric contents of vials, injection rates and aspiration rates respectively into and from vials, and the like and/or administer a liquid drug dosage according to a pre-set liquid drug administration regime determining administration rate and administration time. Pre-programmed controllers can contain instructions for one more liquid drug reconstitution programs and one or more liquid drug administration regimes. Programmable controllers enable manual input of a liquid drug reconstitution program and/or a liquid drug administration regime.
In order to understand the invention and to see how it can be carried out in practice, preferred embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings in which similar parts are likewise numbered, and in which:
The medical apparatus 10 has an ON/OFF switch 21 and is under the control of a controller 22A or 22B. The controller 22 has a control panel 23 with three pushbuttons; “RECON” for initiating a reconstitution program, “PURGE” for purging air from an administration line, and “ADMIIN” for initiating an administration regime.
The housing 11 includes a syringe drive unit 31 under the control of the controller 22 for reciprocating a plunger head drive member 32 forward for injection of liquid contents into a vial and administration purposes and backward for aspiration of liquid contents from a vial. The medical apparatus 10 includes a syringe linear encoder for determining the position of the plunger head drive member 32 for enabling the medical apparatus 10 to be used with syringes containing different volumes of diluent and therefore having plungers at different initial positions relative to their barrels. The controller 22 executes a syringe linear encoder reset procedure to reset the syringe linear encoder for determining the location of a syringe's plunger relative to its barrel for compensating for assembly tolerances, component tolerances, and the like. The syringe linear encoder is set to zero when a syringe's plunger tip abuts against the inside surface of its end wall.
The housing 11 includes a FCD drive unit 33 under the control of the controller 22 for rotating the driving cogwheel 18 for setting a flow control device into a predetermined series of flow control positions for reconstitution and administration purposes.
The medical apparatus 10 preferably includes a cover safety mechanism for preventing operation in the case the cover is not fully closed.
The three vial kit 100 includes a syringe 40 pre-filled with diluent and three medicament containing vials 60A-60C. Alternatively, the three vial kit 100 could include an empty syringe, one diluent containing vial and two medicament containing vials. In the former case, each vial undergoes injection and subsequent aspiration of liquid contents and therefore the order of attachment of vials to vial ports is of no consequence. Against this, in the latter case, the diluent containing vial necessarily undergoes aspiration at the start of the serial reconstitution of the remaining vials.
The flow control device 101 includes a stationary core member 116 co-directional with the longitudinal axis 102 and a generally tubular flow control member 117 rotatably mounted on the core member 116 and fitted with an end plug 118 including the connector 111. The core member 116 includes the inlet port 107 having a head 119 for sliding insertion into the slot 17A for mounting the core member 116 at a stationary predetermined orientation relative to the housing 11. The core member 116 has a distal end 121 extending slightly beyond the three vial ports 112, 113 and 114. The distal end 121 is formed with an annular groove 122 for snap fit mounting the flow control member 117 on the core member 116. The core member 116 bounds a cavity 123 sealed by the end plug 118. The core member 116 includes a longitudinal blind lumen 124 in flow communication with the inlet port 107. The blind lumen 124 includes a downward radial directed injection lumen 126 for facilitating injection of liquid contents into a vial in flow communication therewith. The blind lumen 124 includes an opposite upward radial directed aspiration lumen 127 for facilitating complete aspiration of the liquid contents of a vial in flow communication therewith.
The flow control member 117 has the cylindrical peripheral surface 106 and a cylindrical internal surface 128 formed with an annular flange 129 midway therealong for snap fit insertion into the annular groove 122. The peripheral surface 106 is formed with a driven cogwheel 131 towards the proximate end 103 for engaging the driving cogwheel 18 thereby enabling rotation of the flow control member 117 relative to the core member 116. The vial ports 112, 113 and 114 are disposed along the peripheral surface 106 for alignment with the injection lumen 126 and the aspiration lumen 127 at particular flow control positions of the flow control member 117 relative to the core member 116. The internal surface 128 is formed with a longitudinal directed administration flow channel 132 between the vial ports 112 and 114 for alignment with the aspiration lumen 127 at a particular flow control position of the flow control member 117 relative to the core member 116. The administration flow channel 132 extends midway along the internal surface 128 to the distal end 104.
The flow control device 101 has seven Flow Control Positions (FCPs) as now described with reference to
FCP 10 denoting alignment of the vial port 112 with the injection lumen 126 for injection of liquid contents to a vial 60 connected to the vial port 112 as shown in
FCP 11 denoting alignment of the vial port 112 with the aspiration lumen 127 for aspiration of liquid contents from a vial 60 connected to the vial port 112 as shown in
FCP 12 denoting alignment of the vial port 113 with the injection lumen 126 for injection of liquid contents to a vial 60 connected to the vial port 113 as shown in
FCP 13 denoting alignment of vial port 113 with the aspiration lumen 127 for aspiration of liquid contents from a vial 60 connected to the vial port 113 as shown in
FCP 14 denoting alignment of vial port 114 with the injection lumen 126 for injection of liquid contents to a vial 60 connected to the vial port 114 as shown in
FCP 15 denoting alignment of the vial port 114 with the aspiration lumen 127 for aspiration of liquid contents from a vial 60 connected to the vial port 114 as shown in
FCP 16 denoting alignment of the administration flow channel 132 with the aspiration lumen 127 for injection of liquid contents to the outlet port 109 for dosage administration as shown in
The operation of the medical apparatus 10 with the pre-programmed controller 22A and a three vial kit 100 including a pre-filled syringe 40 and three medicament containing vials 60A, 60B and 60C includes the following steps:
Step 1: The kit 100 is supplied with its flow control device 101 in its first flow control position FCP 10 for setting flow connection with the vial port 112
Step 2: User attaches the vials 60A-60C to the vial adapters 50
Step 3: User attaches the vials 60A-60C to the vial ports 112, 113 and 114, respectively
Step 4: User attaches the syringe 40 onto the flow control device 101
Step 5: User sets the medical apparatus 10 such that its plunger head drive member 32 is in its most backward position and mounts the assembled three vial kit 100 on the medical apparatus 10
Step 6: User presses the “RECON” pushbutton
Step 7: Medical apparatus 10 fully depresses the plunger 42 to inject diluent into the vial 60A
Step 8: Medical apparatus 10 reciprocates the flow control member 117 back and forth for agitating the vial 60A for reconstituting its powder contents
Step 9: Medical apparatus 10 rotates the flow control member 117 to set the flow control device 101 to its second flow control position FCP 11 ready for aspiration from the vial 60A
Step 10: Medical apparatus 10 withdraws the plunger 42 to aspirate the vial 60A's liquid drug contents to the syringe 40
Step 11: Medical apparatus 10 rotates the flow control member 117 to set the flow control device 101 to its third flow control position FCP 12 ready for injection of the liquid drug contents into the vial 60B
Step 12: Medical apparatus 10 fully depresses the plunger 42 to inject liquid drug contents into the vial 60B
Step 13: Medical apparatus 10 reciprocates the flow control member 117 back and forth for agitating the vial 60B for reconstituting its powder contents
Step 14: Medical apparatus 10 rotates the flow control member 117 to set the flow control device 101 to its fourth flow control position FCP 13 ready for aspiration from the vial 60B
Step 15: Medical apparatus 10 withdraws the plunger 42 to aspirate the vial 60B's liquid drug contents to the syringe 40
Step 16: Medical apparatus 10 rotates the flow control member 117 to set the flow control device 101 to its fifth now control position FCP 14 ready for injection of the liquid drug contents into the vial 60C
Step 17: Medical apparatus 10 fully depresses the plunger 42 to inject the liquid drug contents into the vial 60C
Step 18: Medical apparatus 10 reciprocates the flow control member 117 back and forth for agitating vial 60C for reconstituting its powder contents
Step 19: Medical apparatus 10 rotates the flow control member 117 to set the flow control device 101 to its sixth flow control position FCP 15 ready for aspiration from the vial 60C
Step 20: Medical apparatus 10 withdraws the plunger 42 to aspirate the vial 60C's liquid drug contents to the syringe 40
Step 21: Medical apparatus 10 rotates the flow control member 117 to set the flow control device 101 to its seventh flow control position FCP 16 ready for dosage administration
Step 22: User attaches the administration line 70 to the outlet port 109
Step 23: User presses “PURGE” pushbutton
Step 24: Medical apparatus 10 depresses the plunger 42 to purge air from the administration line 70
Step 25: User attaches the administration line 70 to patient's vein via an administration device, for example, a needle, and the like
Step 26: User presses the “ADMIN” pushbutton to start dosage administration to patient
Step 27: Medical apparatus 10 fully depresses the plunger 42 for dosage administration
The core member 212 includes a longitudinal blind lumen 216 having a downward radial directed injection lumen 216 for facilitating injection of liquid contents into a vial in flow communication therewith and an upward radial directed aspiration lumen 217 for facilitating complete aspiration of the liquid contents of a vial in flow communication therewith. The flow control member 213 includes four equispaced vial ports 218, 219, 221 and 222 for flow communication with the injection lumen 216 and the aspiration lumen 217 at particular flow control positions of the flow control member 213 relative to the core member 212. The injection lumen 216 and the aspiration lumen 217 are not diametrically opposite to preclude the inlet port 207 being in simultaneous flow communication with two vial ports. The flow control member 213 includes an administration flow channel 223 similar to the administration flow channel 132. The administration flow channel 223 is disposed between the vial ports 218 and 222.
The flow control device 201 has nine Flow Control Positions (FCPs) as follows:
FCP 20 denoting alignment of the vial port 218 with the injection lumen 216 for injection of liquid contents to a vial 60 connected to the vial port 218 as shown in
FCP 21 denoting alignment of the vial port 218 with the aspiration lumen 217 for aspiration of liquid contents from a vial 60 connected to the vial port 218 as shown in
FCP 22 denoting alignment of the vial port 219 with the injection lumen 216 for injection of liquid contents to a vial 60 connected to the vial port 219 as shown in
FCP 23 denoting alignment of the vial port 219 with the aspiration lumen 217 for aspiration of liquid contents from a vial 60 connected to the vial port 219 as shown in
FCP 24 denoting alignment of the vial port 221 with the injection lumen 216 for injection of liquid contents to a vial 60 connected to the vial port 221 as shown in
FCP 25 denoting alignment of the vial port 221 with the aspiration lumen 217 for aspiration of liquid contents from a vial 60 connected to the vial port 221 as shown in
FCP 26 denoting alignment of the vial port 222 with the injection lumen 216 for injection of liquid contents to a vial 60 connected to the vial port 222 as shown in
FCP 27 denoting alignment of the vial port 222 with the aspiration lumen 217 for aspiration of liquid contents from a vial 60 connected to the vial port 222 as shown in
FCP 28 denoting alignment of the administration flow channel 223 with the aspiration lumen 217 for injection of liquid contents to the outlet port 209 for dosage administration as shown in
The operation of the medical apparatus 10 with a programmable controller 22B and a four vial kit 200 including a flow control device 201, an empty syringe 40, four vial adapters 50, a diluent containing vial 60D and three medicament containing vials 60E, 60F and 60G is similar to the aforesaid operation of the medical apparatus 10 with a pre-programmed controller 22A and the three vial kit 100. The major differences are as follows:
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications, and other applications of the invention can be made within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202914 | Dec 2009 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2010/001077 | 12/22/2010 | WO | 00 | 6/21/2012 |