Medical appliances for the treatment of blood vessels by means of ionizing radiation

Information

  • Patent Grant
  • 6514191
  • Patent Number
    6,514,191
  • Date Filed
    Tuesday, January 25, 2000
    25 years ago
  • Date Issued
    Tuesday, February 4, 2003
    22 years ago
Abstract
Medical appliances for the treatment of blood vessels by means of ionized radiation.
Description




BACKGROUND OF THE INVENTION




This invention relates to a medical appliance for the treatment of a portion of blood vessel by means of ionizing radiation, comprising a catheter for percutaneous transluminal treatment of the blood vessel, an inflatable dilatation balloon surrounding the catheter, a radioactive radiation emitter, and means for advancing, and removing, the radioactive radiation emitter into, and from, the portion of the blood vessel, respectively it relates to a medical appliance for the treatment of a portion of blood vessel by means of ionizing radiation, comprising a catheter defining a perfusion channel, a radioactive radiation emitter, and means for advancing, and removing the radioactive radiation emitter into, and from, the portion of the blood vessel.




Atherosclerosis causes thickening and hardening of arteries and formation of deposits of plaque or plaque-ridden tissue within the arterial lumen. Such a disease is commonly treated by means of percutaneous transluminal angioplasty techniques involving, inter alia, the non-surgical widening of a passage through an artery by means of a balloon inflated to dilate the area of obstruction or the abrasion of the deposit by means of atherectomy. Unfortunately, the major limitation of these angioplasty or atherectomy techniques is the relatively important rate of restenosis. As it has been shown, the balloon angioplasty produces intimal and medial injury leading to excessive platelet aggregation and cell mediators activation followed by an elevated production of myocital growth factors. The cascade of these events, regulated by arterial wall cells nuclei, results in hyperproliferation of smooth muscle cells and migration of myocites and macrophages from the media layer towards the intima and further accelerates excessive neo-intimal formation leading to lumen narrowing. Many approaches to prevent this phenomenon have been tested, among which regimes of anticoagulation, antiplatelet therapy, vasodilators, and serum cholesterol level reducers, however, without appreciable therapeutic effect. As a further approach to this problem, it has been found that ionizing radiation could prove helpful in the treatment of unwanted cell proliferation which causes recurrent stenoses or occlusion after angioplasty.




The document International Journal of Radiation Oncology Biology Physics, Vol. 24 Suppl. 1, page 171, which reports Proceedings of the 34th Annual ASTRO Meeting of November 1992, refers to a study on the prophylaxis of intimal hyperplasia after stent implantation in peripheral arteries using endovascular irradiation. This study was directed to the frequency of recurrent stenoses or occlusions following stent implantation in peripheral arteries due to rapid intimal hyperplasia. To stop the proliferation of connective tissue an endovascular brachytherapy treatment was performed after percutaneous transluminal angioplasty. The method describes stent implantation after recanalization done by percutaneous transluminal angioplasty, and placing of a 10 Ci Iridium gamma irradiation source into the implanted stent. No specific measures are described which would ensure circumferentially uniform radiation impact on the vessel wall. In this study the radial position of the irradiation source inside the stent was determined by gravity.




The document JACC Vol. 21 No. 2, February 1993: 185A, reports a study of the effects of locally delivered ionizing radiation on the proliferation response to balloon overstretching injury. The injury model was balloon angioplasty of the central artery of the ear of rabbit and the ionizing radiation was delivered as high energy beta from a sealed SR90 source in a single dose (skin dose of 900 rad) after a scheduled time delay from the injury. The document further refers to a second protocol using porcine coronary injury model with transluminal intravascular irradiation. This publication does not disclose any specific measure to ensure an evenly distributed radiation in the vessel. U.S. Pat. No. 5,147,282 discloses a manual irradiation loading apparatus particularly suitable for intrabronchial and gynecological irradiation treatment. The apparatus comprises a lead or equivalent radiation shielding body with a longitudinally extending cable receiving passage therein. A cable having radioactive seeds provided on one end thereof is received in the cable-receiving passage. During storage, the portion of the cable bearing the radioactive source is located in the cable-receiving passage within the shielding body. During use, a catheter placed in a patient is joined to the shielding body and the portion of the cable bearing the radioactive source material is advanced through the cable-receiving passage in the shielding body and into the catheter. The radioactive seeds are slidingly positioned inside the catheter, however the radial position of the catheter within the vessel is not controlled.




U.S. Pat. No. 4,588,395 describes, i.a., a catheter device for generating radioactive radiation into an artery for medicinal or repair purposes. This device comprises a catheter the tubular wall of which is collapsed at its distal end to form a sealing interface closing off the interior volume. Within this volume is located a sort of radioactive pill which can be urged forwardly by a piston connected to a flexible shaft controlled at the proximal end of the catheter, forward motion of the piston forcing the pill through the sealing interface in order to protrude from the distal end of the catheter and affect the artery. No means are provided with this catheter to secure a certain predetermined orientation of this catheter inside the geometry of the vessel section.




In addition to irradiation external to the site, the document WO 93/04735 also describes an apparatus for the treatment of an artery, comprising a radioactive dose and a means operatively connected to such a radioactive dose to bring it into a selected region of an artery. In a first embodiment, the apparatus comprises a sheath removably positioned over a windowed housing containing a radioactive dose and connected to a catheter shaft, whereby the relative motion between catheter shaft and sheath permits moving the windowed housing in and out of the sheath, thereby exposing the radioactive dose which may affect the selected place in the artery. In a second embodiment, the device comprises a catheter shaft surrounded by an angioplasty balloon on the outer surface of which are affixed radioactive elements intended to be forced into contact with the artery wall upon inflation of the balloon. The balloon has a perfusion channel to allow perfusion of blood e.g., from proximal of the balloon to distal of the balloon. Perfusion of blood is therefore possible even during the phase when the balloon is inflated and normal blood flow is interrupted. A third embodiment, substantially similar to the first one, includes a sheath intended to provide a shielding to a radioactive dose and a motion wire to provide slidable motion of the radioactive dose within the sheath. A fourth embodiment comprises an inflatable stent delivery balloon for expansion of a stent to which a radioactive dose is associated as a cladding, a coating or an additive within the stent material itself. A fifth embodiment shows a shrinkable tubing attached to a catheter shaft and a plurality of radioactive seeds located in the tubing where they are separated from each other by heat shrinking of the tubing which therefore encapsulates the seeds.




The sheath configuration of the first embodiment suffers from the same drawbacks as the configuration known from the previously mentioned publications. The radial orientation of the radioactive dose inside the vessel is determined by gravity. In the second embodiment, the radioactive elements affixed to the balloon and forced into contact with the artery wall, the radioactive elements provide uniform radiation impact on the artery wall only as far as specifically the area of the individual radioactive element is concerned. A circumferentially uniform radiation on the artery wall is not possible with this configuration. Besides that, the radioactive elements on the outer surface of the balloon are difficult to secure on the flexible balloon surface. Their fixture would have to meet severe safety requirements against loss under all conditions. This would lead to some specific complications. Finally radioactive elements and the fixture of these elements add unfavorably to the deflated profile of the balloon to pass through tight stenoses. The third embodiment with the slidable radioactive dose within the sheath shows the same problem as the first embodiment. It shows no means to control the transversal orientation of the sheath in the vessel. The fourth embodiment, the cladded expanding stent, represents regarding uniformity of radiation the same unfavorable situation as the configuration of the balloon with affixed radioactive elements. Finally, the fifth embodiment adds nothing to the solution of the positioning problem, it mainly refers to the problem of how to safely secure the radioactive seeds to a catheter shaft.




In all these devices, the radiation cannot be uniform, either because there is absolutely no possibility of having the radioactive element correctly positioned within the artery, or because the radioactive element irregularly bears against the vessel wall.




The document DE 3620123-A1 discloses an apparatus for measuring and irradiating body cavities which permits the placing and positioning of a light conductor at the center of a cavity in order to achieve homogeneous lighting thereof via a dispersing agent. To this effect, a light conductor is located in a tubular catheter surrounded by two optically transparent centering flexible balloons at a distance from each other and which are inflated by a dispersing agent in order to have them rest against the wall of the body cavity. The portion of the catheter which is located between the balloons is stiffer than the rest of the catheter to avoid modification of the distance between the two balloons, for instance due to curving of the catheter. The system is said to be usable for a blood vessel, but the system needs a dispersing agent and two balloons proximal and distal of the radiation source to accommodate the dispersing agent between the balloons. The two balloons are occlusion balloons. Occlusion balloons have to be resilient to safely fulfill their task in a vessel of unknown exact shape and size. Because of this resiliency, occlusion balloons can not be used simultaneously as dilatation balloons. Resilient balloons would overstretch the vessel wall when used with the higher pressures that are required for a successful angioplasty. Of course the doctor has control over the inflation pressure with resilient balloons same as with dilatation balloons, but this is not sufficient for safe angioplasty. With a resilient balloon the doctor has no control over the inflated diameter or over the shape to which the balloon is inflated.




SUMMARY OF THE INVENTION




The purpose of this invention is to improve the conditions of radioactive radiation treatment of blood vessels stenoses due to excessive intimal formation by proposing a medical appliance with dilatation balloon or with perfusion channel for a vessel wall radiation which is uniform around the circumference of the vessel, an appliance that is simple to manufacture and easy to use, that allows traversal of narrow stenoses and that allows safe securing of the radioactive emitter to its advancing and removing means.




To this effect, the invention complies with the definitions given in the claims.




In that way, it becomes possible to improve dosage control of the radioactive radiation with regard to distance between the radioactive source and the vessel wall, respectively with regard to distance between radioactive source and vessel wall and timing during which the radioactive treatment has to be applied.




Specifically the essentially centered emitter ensures essentially equal radial distance to all segments of the vessel wall so that a pattern of areas with overdosage because of too narrow distance and areas with underdosage because of too wide distance to the vessel wall is avoided. The impact of radiation on the vessel wall is circumferentially essentially uniform.




If the medical appliance comprises a dilatation balloon, dilatation and radioactive treatment can be performed in one procedure. The cure of the vessel wall proliferation can be taken immediately with the cause for the vessel wall proliferation. This also has the advantage of an optimum automatic match between the location in the vessel where the cure is taken and the location in the vessel where the cause is laid. If during the procedure the dilatation balloon is not shifted inside the vessel, the radiation treatment will automatically be in the exact place where it is needed, unintentional exposure of undilated vessel portions to radiation is reduced.




If the medical appliance comprises a perfusion channel, the blood flow in the radiated vessel is not totally cut off during the time of exposure to radiation. That means, that ischemia in the areas lying in the blood flow direction behind the treatment site and the dangerous consequences of ischemia for example in coronary arteries are reduced. The radiation can with a perfusion channel be extended longer without these negative consequences and that again allows the use of an emitter with relatively low radiation density which will have less unintended side effects during the rest of the treatment procedure.




If the centered emitter is movable within the catheter, this allows specifically a quick and safe method of use for the appliance. The emitter then can be traversed to the place of treatment simply by sliding it forward inside the catheter. This ensures an easy and quick handling of the device and specifically makes sure that the vessel path from the percutaneous vessel entrance to the exact position of the treatment place is not unintentionally overexposed to radiation due to slow advance speed of the emitter and that the exact exposure time for the radiation at the treatment site can reliably be observed. Also the vessel wall is saved from unnecessary mechanical stress from the advancement of the device. The potentially time consuming exact location of the treatment site with the medical appliance within the branched vessel system is in this case not done under radiation.




Preferably the radioactive radiating emitter is selected from the group of beta emitters. Beta emitters have a relatively short half-life. This is desirable to allow procedure times that are manageable in interventional medicine. Also the high radiation activity per specific gravity of beta emitters leads to small dimensions for the emitter which is very important in interventional techniques. Furthermore the travel distance of beta radiation inside the tissue is very short. This is very favorable for the treatment here in question. To interrupt the mechanism that lead to tissue proliferation, radiation of the surface of the vessel wall is sufficient. Radiation that travels deep into the tissue is undesirable and induces side effects. Furthermore, beta radiation needs no heavy shielding like lead or concrete. A beta radiation emitter can be shielded with plastic shieldings of practicable thicknesses so that beta emitters can be transported and handled with relatively low additional safety precautions compared to usual non-radiating products and shielded beta emitters are not bulky or heavy. Specifically the treatment room where the procedure is carried out needs no specific reinforcement in concrete, lead or other material. It is practically most important, that with the use of beta emitters the doctor can stay in the room where the treatment is made, he can directly carry out the treatment. The use of beta emitters therefore allows this treatment to be implemented in any arbitrary hospital without specific prior local precautions at the hospital itself.




The use of an emitter in form of a filament has the advantage, that the emitter can be safely fixed to the positioning means within the risk of any part of the emitter getting lost or without the risk of a container becoming untight, being thus safer than seeds or powder or other forms. In addition, a further advantage of the filament is dense concentration of dose in small diameter.




Preferably the beta emitter is of 90 Yttrium which has a halflife of 2.7 days, a middle energy 0.942 Mev and maximal energy of 2.28 Mev, which would allow appreciable irradiation within a short distance from the filament, whereby only the internal layers of the vessel wall will be heavily irradiated while the more external structures will receive a dose which decreases with the square of the distance. Yttrium can be made available in form of filaments, so that with the selection of Yttrium the advantages of beta emitters and of filament emitters are available.




Because of its mechanical characteristics, the filament of 90 Yttrium can have a diameter equal to or less than 0.9 mm. An emitter of this dimension is specifically suitable for percutaneous transluminal procedures.




Subject to a heat elaboration under vacuum to avoid rapid oxidation and the resulting risk of breaking, the filament of 90 Yttrium can even have a diameter equal or less than 0.2 mm. An emitter of this dimension can be introduced into the guidewire lumen of such percutaneous transluminal devices that have a very small deflated or folded profile. Such devices can use introducer sets with small outer diameter and low trauma at the percutaneous introduction site and inside the vessel such devices can cross very narrow stenoses.




If the emitter is coiled around the guide wire, this has the advantage, that an easy to accomplish and safe fixture is achieved. It can be made in a simple procedure, which is possible even under shielding conditions and thus can be made after the emitter has been activated. This is advantageous because a fixture to the guide wire before the activation of the emitter brings the problem of partially activating the guide wire together with the activation of the already affixed emitter.




Even only partly activation of the guide wire material might induce already unfavorable effects in this material, e.g., gamma radiation.




A preferred approach is to make use of a guide wire of titanium which, after activation in a powerful field of neutrons, will have a decay time of 5.8′, and will advantageously solve the problem of undesirable long living of isotopes induction in other guide wires while providing mechanical qualities equivalent to those of stainless steel. Therefore with a titanium wire as carrier for the emitter, the emitter can be affixed to the carrier before the emitter is activated without any practical risk of radiation pollution. This brings the great advantage that the affixing procedure can be made under normal conditions without any radioactive shielding for the involved persons. Also in this configuration the emitter needs not to be separated again from the guide wire for reactivation of the emitter when the activity of the emitter is consumed.











These and other objects will become readily apparent from the following detailed description with reference to the accompanying drawings which show, diagrammatically and by way of example only, six embodiments of the invention.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an axial cut of the first embodiment.





FIG. 2

is an axial cut of the second embodiment.





FIG. 3

is an axial cut of the third embodiment.





FIG. 4

is an axial cut of the fourth embodiment.





FIG. 5

is an axial cut of the fifth embodiment.





FIG. 6

is an axial cut of the sixth embodiment.











DETAILED DESCRIPTION OF THE INVENTION




In all the embodiments, only the portions which have to be located in a blood vessel stenosis have been depicted; the other portions of the embodiments shown may be devised as currently practiced in the art. Similarly, no particular shielding equipment for storage and transit of radioactive materials is being discussed here, reference being solely made in this respect to known techniques such as for instance those described in U.S. Pat. No. 5,147,282.




The first embodiment of

FIG. 1

comprises a flexible catheter tube


1


in which is centered a guide wire


2


with a tip


3


, said guide wire being in sliding fit within the catheter tube


1


. A substantially cylindrical dilatation balloon


5


is mounted coaxially on the catheter tube


1


to which it is affixed annularly by its ends. The catheter


1


is a two lumen catheter in which the second lumen


6


acts as an inflation tube for the balloon


5


. This balloon


5


is shown in inflated condition at the location of a stenosis (not shown) of a blood vessel


7


, for instance a coronary artery. A radioactive radiation. emitter in the form of a filament


4


is integrated into the guide wire


2


inside the balloon


5


, this radioactive filament


4


being thus essentially centered in the balloon at the location of its dilatation in the blood vessel. The radioactive radiation of the filament


4


is thus applied uniformly to the dilated stenosis due to the centering achieved by the sole dilatation balloon


5


, which would result in optimal dosimetric homogeneity of the irradiation procedure. The term essentially centered for the position of the emitter inside the balloon or inside the blood vessel is used in this document to describe configurations which in normal use do not lead to alternating segments along the vessel wall circumference with unsufficiently treated cell proliferation on one side and unnecessary radioactive overdoses on the other side. This use of the term essentially centered therefore includes configurations in which the emitter in use is secured in a predetermined position in the vessel section and in which this position is spaced from the vessel wall but in which the emitter is not held in the precise center of the medical device or the vessel section but is held somehow decentered and in which despite of such decentralization of the emitter, the treatment results that are achieved with the device are still satisfactory from a medical point of view.




The embodiment of

FIG. 2

comprises the basic configuration of the first embodiment of

FIG. 1

with an added perfusion capacity via holes


8


and


9


respectively arranged in the wall of the catheter


10


before and after the balloon


5


. The radioactive filament


40


is affixed to the distal end of the guide wire


2


. In addition to the balloon centering and resulting uniform irradiation achieved by the embodiment of

FIG. 1

, this embodiment permits maintaining the irradiation for a substantially longer time as blood flow is no more hindered by the balloon. It also permits to place the radioactive emitter at the level of angioplasty without getting the distal part of the guide wire out of the catheter.




The embodiment of

FIG. 3

combines the basic configurations of the embodiments of

FIGS. 1 and 2

except that in this embodiment the filament


45


is coiled around the guide wire


2


to facilitate assembly thereof.




The fourth embodiment of

FIG. 4

comprises a flexible catheter tube


11


in which is centered a guide wire


21


with a distal tip


3


, said guide wire


21


being in sliding fit within the catheter tube. This catheter tube


11


comprises at its distal end a truncated cone head


16


having a rear rest shoulder


17


adapted to house the fore end of a tube


18


mounted in sliding fit over the catheter


11


. This tube


18


is adapted to enclose and free by its relative motion with respect to the catheter the flexible bristles


14


of a brush coaxially mounted on and affixed to the catheter


11


. Inside the catheter


11


, at the location of the bristles


14


, the guide wire


21


is interrupted and its two portions are interconnected by a tube


15


coaxial to the guide wire and in which are located radioactive seeds


41


. By this configuration, upon introduction of the catheter


11


into a blood vessel


7


such as, for instance, a coronary artery, and backward motion of the tube


18


with respect to the catheter


11


, the bristles


14


are freed and come to rest against the inner wall of the blood vessel, thereby centering the catheter


11


into the blood vessel. The radioactive radiation of the seeds


41


is thus uniformly applied to the vessel wall and timing of irradiation can be selected at will in view of the blood flow through the bristles. Upon forward motion of the tube


18


over the catheter


11


, the bristles


14


are applied against the catheter


11


which can be then easily removed from the blood vessel.




The embodiment shown in

FIG. 5

comprises a flexible catheter tube


13


with a guidewire


2


centered in sliding fit therein as in the previous embodiments. The catheter


13


comprises a series of apertures


23


regularly spaced all around its distal portion and the inner channel of the catheter tube


13


is fed at its proximal end by a source of physiological solution under pressure (not shown). Inside the catheter tube, in the region of the apertures


23


, a radioactive radiation emitter


46


in the form of a coiled filament is affixed to the distal portion of the guide wire


2


. By this configuration, once the catheter has been introduced into a blood vessel


7


such as for instance a coronary artery, the source of physiological solution is activated, thereby feeding the inner channel and apertures


23


of the catheter


13


. The physiological solution exits by the apertures


23


and creates a uniform jet pressure all around the catheter bumping against the vessel wall, thereby assuring centering of the catheter into the blood vessel. The radioactive radiation of the filament is thus uniformly applied against the vessel wall while blood flow is assured around the catheter, thereby permitting selection at will of irradiation time. As for the embodiment of

FIG. 2

, the assembly of the radioactive emitter at the distal end of the guide wire permits treatment without getting the distal part of the guide wire out of the catheter.




In the embodiment of

FIG. 6

the catheter is formed of an end piece


24


, a tubular conduit


25


at a distance from the end piece


24


, a braided self expandable temporary stent


30


having one end affixed to the end piece


24


and the other end affixed to the tubular conduit


25


, a tube


26


coaxial to and sliding over the tubular conduit


25


to enclose and free the self expandable stent


30


. Inside the end piece


24


and the tubular conduit


25


is centered a guide wire


2


in sliding fit therein and a radioactive radiation emitter in the form of a filament


47


is coiled around the guide wire within the area occupied by the stent


30


. For introduction into a blood vessel or coronary artery, the tube


26


is pushed over the stent


30


up to the end piece


24


thereby achieving collapse of the stent


30


over the guide wire


2


. Once the stent is in the selected location in the vessel, the tube


26


is pulled back towards the proximal end of the system, thereby freeing the stent


30


which comes at rest against the wall of the vessel


7


. The catheter is thus centered in the blood vessel and the radiation of the radioactive filament is uniformly applied to the vessel wall while the timing of irradiation may be selected at will because of the continuing blood flow through the braiding of the stent.




In all the embodiments of

FIGS. 4

to


6


, the radioactive treatment can be performed at any stage of the development or treatment of a stenosis, that is to say before or after balloon angioplasty or atherectomy because of the low profile of the system allowing penetration and centering even in narrowed vessels.




In all the embodiments shown, the guide wire and radioactive emitter may be fixed to the catheter instead of being movable within the catheter. As a further development, the catheter may comprise a guide wire for conventional entry into the blood vessel and the radioactive radiation emitter may be a filament affixed to or coiled around a wire intended to replace the said guide wire.




The radioactive radiation emitter can be under any appropriate form as described. Filaments will be however preferred because they can be safely fixed to the positioning means without the risk of any part of the emitter getting lost or without the risk of a container becoming untight, being thus safer than seed or powder or other forms. In addition, a further advantage of the filament is dense concentration of dose in a small diameter.




The radioactive radiation emitter can be selected at will, preferably however among beta emitters with a relatively short half-life, optimal penetration characteristics in tissue, and with a high radiation activity per specific gravity of the emitter (Bq/mg/mm3).




More specifically, a preferred choice will be a filament of 90 Yttrium which has a half-life of 2.7 days, a middle energy 0.942 Mev and maximal energy of 2.28 Mev, which would allow appreciable irradiation within a short distance from the filament, whereby only the internal layers of the vessel wall will be heavily irradiated while the more external structures will receive a dose which decreases with the square of the distance. Because of its mechanical characteristics, the filament of 90 Yttrium can have a diameter equal to or less than 0.9 mm. Subject to a heat elaboration under vacuum to avoid rapid oxidation and the resulting risk of breaking, the filament of 90 Yttrium can even have a diameter equal or less than 0.2 mm.




As described, the filament may be coiled around guide wire or otherwise affixed to the guide wire in order to be integrated therewith. Accordingly, the filament may be for example welded to the guide wire.




A preferred approach is to make use of a guide wire of titanium which, after activation in a powerful field of neutrons will have a decay time of 5.8′, and will advantageously solve the problem of undesirable long living of isotopes induction in other guide wires while providing mechanical qualities equivalent to those of stainless steel. In this environment, the filament will be either straight and affixed to the guide wire or coiled around the wire.




Although the balloon of the embodiments of

FIGS. 1

to


3


has been shown and described as being substantially cylindrical, coaxial to the catheter, and annularly affixed by its ends to the catheter, other known shapes and catheter fixing for the balloon are possible. Also, the balloon may not be coaxial to the catheter, in which case the catheter will provide for the necessary shifting of the radioactive radiation emitter to assure its essential centering inside the balloon.



Claims
  • 1. An intravascular delivery catheter for use in combination with a radioactive source member for delivering ionizing radiation to a vessel wall, the catheter comprising:an elongate shaft having a proximal portion, a distal portion, and a source lumen sized to accommodate the source member extending therethrough; and a centering device comprising a plurality of bristles disposed on the distal portion of the shaft, wherein the centering device defines at least three separate sets of contact points that engage the vessel wall to center the catheter in the vessel despite curvature thereof.
  • 2. A method of delivering ionizing radiation to a vessel wall, comprising the steps of:providing an elongate source member having a proximal portion, a distal portion and a radioactive isotope disposed on the distal portion; providing an elongate delivery catheter comprising a shaft having a proximal portion, a distal portion, and a source lumen extending therethrough, a centering device comprising a plurality of bristles disposed on the distal portion of the shaft, wherein the centering device defines at least three separate sets of contact points that engage the vessel wall to center the catheter in the vessel despite curvature thereof; inserting the delivery catheter into a vessel; activating the centering device to engage the vessel wall and to center the catheter in the vessel; and inserting the source member into the source lumen of the delivery catheter.
Priority Claims (1)
Number Date Country Kind
93110531 Jul 1993 EP
Parent Case Info

This application is a continuation of co-pending U.S. patent application Ser. No. 08/276,219, filed Jun. 28, 1994, now U.S. Pat. No. 6,074,338 which claims priority to European Patent Application No. 93110531.6, filed Jul. 1, 1993.

US Referenced Citations (208)
Number Name Date Kind
2546761 Loftus Mar 1951 A
2862108 Meilink Nov 1958 A
2955208 Stevens Oct 1960 A
3060924 Rush Oct 1962 A
3147383 Prest Sep 1964 A
3324847 Zoumboulis Jun 1967 A
3505991 Hellerstein et al. Apr 1970 A
3643096 Jeffries, Jr. et al. Feb 1972 A
3669093 Sauerwein et al. Jun 1972 A
3674006 Holmer Jul 1972 A
3750653 Simon Aug 1973 A
3811426 Culver et al. May 1974 A
3861380 Chassagne et al. Jan 1975 A
3866050 Whitfield Feb 1975 A
3927325 Hungate et al. Dec 1975 A
4096862 DeLuca Jun 1978 A
4220864 Sauerwein et al. Sep 1980 A
4225790 Parsons, Jr. et al. Sep 1980 A
4227537 Suciu et al. Oct 1980 A
4244357 Morrison Jan 1981 A
4281252 Parsons, Jr. et al. Jul 1981 A
4314157 Gaines Feb 1982 A
4364376 Bigham Dec 1982 A
4584991 Tokita et al. Apr 1986 A
4588395 Lemelson May 1986 A
4631415 Sauerwein et al. Dec 1986 A
4702228 Russell, Jr. et al. Oct 1987 A
4706652 Horowitz Nov 1987 A
4762130 Fogarty et al. Aug 1988 A
4763642 Horowitz Aug 1988 A
4763671 Goffinet Aug 1988 A
4782834 Maguire et al. Nov 1988 A
4784116 Russell, Jr. et al. Nov 1988 A
4815449 Horowitz Mar 1989 A
4819618 Liprie Apr 1989 A
4851694 Rague et al. Jul 1989 A
4861520 van't Hooft et al. Aug 1989 A
4881937 van't Hooft et al. Nov 1989 A
4897076 Puthawala et al. Jan 1990 A
4921484 Hillstead May 1990 A
4936823 Colvin et al. Jun 1990 A
4963128 Daniel et al. Oct 1990 A
4966162 Wang Oct 1990 A
4969863 van't Hooft et al. Nov 1990 A
4976266 Huffman et al. Dec 1990 A
4976680 Hayman et al. Dec 1990 A
4976690 Solar et al. Dec 1990 A
4983167 Sahota Jan 1991 A
5002560 Machold et al. Mar 1991 A
5009659 Hamlin et al. Apr 1991 A
5015230 Martin et al. May 1991 A
5021045 Buckberg et al. Jun 1991 A
5030194 Van't Hooft Jul 1991 A
5032113 Burns Jul 1991 A
5059166 Fischell et al. Oct 1991 A
5084001 Van't Hooft et al. Jan 1992 A
5084002 Liprie Jan 1992 A
5085635 Cragg Feb 1992 A
5092834 Bradshaw et al. Mar 1992 A
5103395 Spako et al. Apr 1992 A
5106360 Ishiwara et al. Apr 1992 A
5120973 Rohe et al. Jun 1992 A
5139473 Bradshaw et al. Aug 1992 A
5141487 Liprie Aug 1992 A
5147282 Kan Sep 1992 A
5163896 Suthanthiran et al. Nov 1992 A
5176617 Fischell et al. Jan 1993 A
5183455 Hayman et al. Feb 1993 A
5199939 Dake et al. Apr 1993 A
5213561 Weinstein et al. May 1993 A
5267960 Hayman et al. Dec 1993 A
5282781 Liprie Feb 1994 A
5302168 Hess Apr 1994 A
5344383 Liping Sep 1994 A
5354257 Roubin et al. Oct 1994 A
5370685 Stevens Dec 1994 A
5391139 Edmundson Feb 1995 A
5395300 Liprie Mar 1995 A
5395311 Andrews Mar 1995 A
5405309 Carden, Jr. Apr 1995 A
5409015 Palermo Apr 1995 A
5411466 Hess May 1995 A
5425720 Rogalsky et al. Jun 1995 A
5429582 Williams Jul 1995 A
5484384 Fearnot Jan 1996 A
5498227 Mawad Mar 1996 A
5503613 Weinberger Apr 1996 A
5503614 Liprie Apr 1996 A
5532122 Drukier Jul 1996 A
5538494 Matsuda Jul 1996 A
5540659 Teirstein Jul 1996 A
5556389 Liprie Sep 1996 A
5575749 Liprie Nov 1996 A
5605530 Fischell et al. Feb 1997 A
5611767 Williams Mar 1997 A
5616114 Thornton et al. Apr 1997 A
5618266 Liprie Apr 1997 A
5624372 Liprie Apr 1997 A
5643171 Bradshaw et al. Jul 1997 A
5649924 Everett et al. Jul 1997 A
5653683 D'Andrea Aug 1997 A
5662580 Bradshaw et al. Sep 1997 A
5674177 Hehrlein et al. Oct 1997 A
5683345 Waksman et al. Nov 1997 A
5688220 Verin et al. Nov 1997 A
5707332 Weinberger Jan 1998 A
5713828 Coniglione Feb 1998 A
5720717 D'Andrea Feb 1998 A
5722984 Fischell et al. Mar 1998 A
5728042 Schwager Mar 1998 A
5730698 Fischell et al. Mar 1998 A
5782740 Schneiderman Jul 1998 A
5782742 Crocker et al. Jul 1998 A
5795286 Fischell et al. Aug 1998 A
5800333 Liprie Sep 1998 A
5803895 Kronholz et al. Sep 1998 A
5807231 Liprie Sep 1998 A
5816259 Rose Oct 1998 A
5816999 Bischoff et al. Oct 1998 A
5820553 Hughes Oct 1998 A
5833593 Liprie Nov 1998 A
5840008 Klein et al. Nov 1998 A
5840009 Fischell et al. Nov 1998 A
5840064 Liprie Nov 1998 A
5843163 Wall Dec 1998 A
5851171 Gasson Dec 1998 A
5851172 Bueche et al. Dec 1998 A
5855546 Hastings et al. Jan 1999 A
5857956 Liprie Jan 1999 A
5863284 Klein Jan 1999 A
5863285 Coletti Jan 1999 A
5865720 Hastings et al. Feb 1999 A
5871436 Eury Feb 1999 A
5871437 Alt Feb 1999 A
5873811 Wang et al. Feb 1999 A
5879282 Fischell et al. Mar 1999 A
5882290 Kume Mar 1999 A
5882291 Bradshaw et al. Mar 1999 A
5891091 Teirstein Apr 1999 A
5897573 Rosenthal et al. Apr 1999 A
5899882 Waksman et al. May 1999 A
5906573 Aretz May 1999 A
5910101 Andrews et al. Jun 1999 A
5910102 Hastings Jun 1999 A
5913813 Williams et al. Jun 1999 A
5916143 Apple et al. Jun 1999 A
5919126 Armini Jul 1999 A
5924973 Weinberger Jul 1999 A
5924974 Loffler Jul 1999 A
5925353 Mosseri Jul 1999 A
5938582 Ciamacco, Jr. et al. Aug 1999 A
5947889 Hehrlein Sep 1999 A
5947924 Liprie Sep 1999 A
5947958 Woodard et al. Sep 1999 A
5957829 Thornton Sep 1999 A
5961439 Chernomorsky et al. Oct 1999 A
5967966 Kronholz et al. Oct 1999 A
5971909 Bradshaw et al. Oct 1999 A
5976106 Verin et al. Nov 1999 A
5997462 Loffler Dec 1999 A
5997463 Cutrer Dec 1999 A
6010445 Armini et al. Jan 2000 A
6013019 Fischell et al. Jan 2000 A
6013020 Meloul et al. Jan 2000 A
6019718 Hektner Feb 2000 A
6024690 Lee et al. Feb 2000 A
6030333 Sioshansi et al. Feb 2000 A
6033357 Ciezki et al. Mar 2000 A
6090035 Campbell et al. Jul 2000 A
6099455 Columbo et al. Aug 2000 A
6106454 Berg et al. Aug 2000 A
6110097 Hastings et al. Aug 2000 A
6117065 Hastings et al. Sep 2000 A
6142926 Schneiderman Nov 2000 A
6146322 Papirov et al. Nov 2000 A
6149574 Trauthen et al. Nov 2000 A
6149575 Leonhardt Nov 2000 A
6152869 Park et al. Nov 2000 A
6162165 Apple et al. Dec 2000 A
6179768 Loffler et al. Jan 2001 B1
6200256 Weinberger Mar 2001 B1
6200257 Winkler Mar 2001 B1
6200307 Kasinkas et al. Mar 2001 B1
6203485 Urick Mar 2001 B1
6213976 Trerotola Apr 2001 B1
6217503 Weinberger et al. Apr 2001 B1
6224535 Chiu et al. May 2001 B1
6224536 Pike May 2001 B1
6231494 Verin et al. May 2001 B1
6231495 Denk May 2001 B1
6231719 Garvey et al. May 2001 B1
6234951 Hastings May 2001 B1
6234952 Lipric May 2001 B1
6238332 Kanesaka May 2001 B1
6241719 Wallace et al. Jun 2001 B1
6248057 Mavity et al. Jun 2001 B1
6251059 Apple et al. Jun 2001 B1
6254552 Lewis et al. Jul 2001 B1
6258019 Verin et al. Jul 2001 B1
6261219 Meloul et al. Jul 2001 B1
6264579 Odai et al. Jul 2001 B1
6264595 Delfino et al . Jul 2001 B1
6264596 Weadock Jul 2001 B1
6264598 Armini Jul 2001 B1
6267717 Stoll et al. Jul 2001 B1
6267775 Clerc et al. Jul 2001 B1
6283910 Bradshaw et al. Sep 2001 B1
6283911 Keren Sep 2001 B1
Foreign Referenced Citations (130)
Number Date Country
2166915 Aug 1996 CA
G 91 02 312.2 Aug 1992 DE
195 26 680 Jan 1997 DE
197 54 780 Aug 1998 DE
197 24 223 Dec 1998 DE
197 24 233 Dec 1998 DE
197 58 234 Jul 1999 DE
198 07 727 Jul 1999 DE
198 25 563 Dec 1999 DE
198 25 999 Dec 1999 DE
198 26 000 Dec 1999 DE
198 29 444 Jan 2000 DE
198 29 447 Jan 2000 DE
0 514 913 Nov 1992 EP
0 633 041 Jan 1995 EP
0 686 342 Dec 1995 EP
0 688 580 Dec 1995 EP
0 696 906 Feb 1996 EP
0 749 764 Dec 1996 EP
0 754 472 Jan 1997 EP
0 754 473 Jan 1997 EP
0 593 136 Mar 1997 EP
0 778 051 Jun 1997 EP
0 801 961 Oct 1997 EP
0 813 894 Dec 1997 EP
0 629 380 Jul 1998 EP
0 865 803 Sep 1998 EP
0 904 798 Mar 1999 EP
0 904 799 Mar 1999 EP
2000014810 Jan 2000 JP
2000024001 Jan 2000 JP
2000024001 Jan 2000 JP
WO 8603124 Jun 1986 WO
WO 9304735 Mar 1993 WO
WO 9425106 Nov 1994 WO
WO 9426205 Nov 1994 WO
WO 9507732 Mar 1995 WO
WO 9606654 Mar 1996 WO
WO 9610436 Apr 1996 WO
WO 9613303 May 1996 WO
WO 9614898 May 1996 WO
WO 9617654 Jun 1996 WO
WO 9622121 Jul 1996 WO
WO 9629943 Oct 1996 WO
WO 9640352 Dec 1996 WO
WO 9707740 Mar 1997 WO
WO 9709937 Mar 1997 WO
WO 9717029 May 1997 WO
WO 9718012 May 1997 WO
WO 9719706 Jun 1997 WO
WO 9725102 Jul 1997 WO
WO 9725103 Jul 1997 WO
WO 9740889 Nov 1997 WO
WO 9801183 Jan 1998 WO
WO 9801184 Jan 1998 WO
WO 9801185 Jan 1998 WO
WO 9801186 Jan 1998 WO
WO 9811936 Mar 1998 WO
WO 9816151 Apr 1998 WO
WO 9820935 May 1998 WO
WO 9825674 Jun 1998 WO
WO 9829049 Jul 1998 WO
WO 9830273 Jul 1998 WO
WO 9834681 Aug 1998 WO
WO 9836788 Aug 1998 WO
WO 9836790 Aug 1998 WO
WO 9836796 Aug 1998 WO
WO 9839052 Sep 1998 WO
WO 9839062 Sep 1998 WO
WO 9839063 Sep 1998 WO
WO 9840032 Sep 1998 WO
WO 9846309 Oct 1998 WO
WO 9855179 Dec 1998 WO
WO 9857706 Dec 1998 WO
WO 9901179 Jan 1999 WO
WO 9902219 Jan 1999 WO
WO 9904706 Feb 1999 WO
WO 9904856 Feb 1999 WO
WO 9910045 Mar 1999 WO
WO 9921615 May 1999 WO
WO 9921616 May 1999 WO
WO 9922774 May 1999 WO
WO 9922775 May 1999 WO
WO 9922812 May 1999 WO
WO 9922815 May 1999 WO
WO 9924116 May 1999 WO
WO 9924117 May 1999 WO
WO 9929354 Jun 1999 WO
WO 9929370 Jun 1999 WO
WO 9929371 Jun 1999 WO
WO 9930779 Jun 1999 WO
WO 9934969 Jul 1999 WO
WO 9936121 Jul 1999 WO
WO 9939628 Aug 1999 WO
WO 9940962 Aug 1999 WO
WO 9940970 Aug 1999 WO
WO 9940971 Aug 1999 WO
WO 9940972 Aug 1999 WO
WO 9940973 Aug 1999 WO
WO 9940974 Aug 1999 WO
WO 9942162 Aug 1999 WO
WO 9942163 Aug 1999 WO
WO 9942177 Aug 1999 WO
WO 9944686 Sep 1999 WO
WO 9944687 Sep 1999 WO
WO 9949935 Oct 1999 WO
WO 9956825 Nov 1999 WO
WO 9956828 Nov 1999 WO
WO 9961107 Dec 1999 WO
WO 9962598 Dec 1999 WO
WO 9966979 Dec 1999 WO
WO 0003292 Jan 2000 WO
WO 0004838 Feb 2000 WO
WO 0004953 Feb 2000 WO
WO 0009212 Feb 2000 WO
WO 0032271 Jun 2000 WO
WO 0045627 Aug 2000 WO
WO 0056249 Sep 2000 WO
WO 0069503 Nov 2000 WO
WO 0074778 Dec 2000 WO
WO 0076557 Dec 2000 WO
WO 0114011 Mar 2001 WO
WO 0114617 Mar 2001 WO
WO 0121106 Mar 2001 WO
WO 0121245 Mar 2001 WO
WO 0121248 Mar 2001 WO
WO 0126734 Apr 2001 WO
WO 0147602 Jul 2001 WO
WO 0154764 Aug 2001 WO
WO 0160443 Aug 2001 WO
Non-Patent Literature Citations (6)
Entry
Tjho-Heslinga et al., “Results of ruthenium irradiation of uveal melanona”, Radiothereapy Oncology, vol. 29, pp 33-38, 1993.
Lommatzsch et al., “Radiation effects on the optic nerve observed after brachytherapy of choroidal melanomas with 106Ru/106Rh plaques”, Graef's Arch. Clin. Exp. Ophthalmology vol. 232, pp. 482-487, 1994.
Radiotherapy of Intraoculare and Orbital Tumors, Springer-Verlak publishers, Berlin Heidelberg and New York, copyright 1993, pp. 23-30 and 363-367.
Fackelmann, “Harbinger of a Heart Attack”, Science News, vol. 151, Jun. 14, 1997, pp. 374-375.
Raloff, “Nuclear Medicine Gets Friendlier—Experimental Therapies Seek to Poison Just the Disease”, Science News, vol. 152, Jul. 19, 1997, pp. 40-41.
Sutherland, “Managing Cancer Through Synergy”, Administrative Radiology Journal, Nov. 1996, pp. 21-27.
Continuations (1)
Number Date Country
Parent 08/276219 Jun 1994 US
Child 09/490296 US