1. Field of the Invention
The present invention relates in general to an anchoring system for securing a medical article to a patient and, in particular, to an anchoring system for securing a medical article to a patient to inhibit movement or migration of the medical article relative to the patient.
2. Description of the Related Art
It is common in health care settings to attach medical articles to the skin of patients to facilitate their treatment. For example, catheters are often used to introduce fluids and medications directly into the patient or to withdraw fluids from the patient. Other catheters may be used to perform certain types of medical procedures and diagnostic analysis. One example of a typical catheter is an intra-aortic balloon (IAB) catheter, which is used to assist the heart in delivering oxygen.
Catheters often remain in place for many days. In order to secure the catheter in position at the insertion site, the healthcare worker often secures the catheter to the patient using tape. That is, the healthcare worker commonly places long pieces of tape across the portion of the catheter near the insertion site in a crisscross pattern to secure the catheter to the patient's skin. This securement inhibits disconnection between the catheter and the insertion site, and also prevents the catheter from snagging on the bed rail or other objects.
Tape, however, often collects dirt and other contaminants. Normal protocol therefore requires periodic (e.g., daily) tape changes to inhibit bacteria and germ growth at the securement site. These frequent tape changes often excoriate the patient's skin. Additionally, valuable time is spent by healthcare workers applying and reapplying the tape. Because many healthcare workers find the taping procedure cumbersome and difficult to accomplish when wearing gloves, they often remove their gloves when taping. Not only does this increase the amount of time spent on the taping procedure, but it also subjects the healthcare worker to an increased risk of infection. Moreover, even if healthcare workers remain gloved, contact between the adhesive surface of the tape and the latex gloves can cause micro-holes in the gloves, subjecting the healthcare worker to possible infection.
A variety of catheter securement devices have been developed to obviate the need for frequent application of tape to secure a catheter to a patient. One such securement device provides a flexible clamp with winged extensions that are sutured to the patient's skin. In some applications, the winged extensions are integrally formed with the catheter. In other applications, the flexible clamp is covered by a rigid fitting (e.g., a box clamp), which receives the catheter/clamp combination in a friction-fit manner. The rigid fitting and flexible clamp are formed with lateral, aligned holes, which allow the combination to be sutured to the patient's skin. Although these suturing devices function to attach the catheter to the patient, it is obviously painful and uncomfortable for the patient. These devices are also time consuming and inconvenient to secure, pose the risk of needle-stick to the health care provider, and risk suture-site infection to the patient.
In addition, suture material tends to exhibit poor gripping on medical tubes and can cut through the winged extension of the flexible clamp if a rigid clamp is not used. However, the use of a rigid fitting complicates the securement procedure by adding yet another component that can be dropped on the floor and become unsterile. In addition, the sutured securement of the flexible clamp and/or the rigid fitting assembly does not permit easy release of the catheter from the patient for dressing changes and insertion site cleaning. A removal instrument (e.g., sterile scissors) also is generally required for suture removal.
Rather than suturing lateral, aligned holes to a patient's skin, other catheter securement devices provide an adhesive layer or resilient band interposed between the flexible clamp and the patient's skin. See, for example, U.S. Pat. Nos. 5,342,317; 5,084,026; 4,449,975; and 4,250,880. Many of these securement devices, however, suffer from one or more of the following disadvantages: are time consuming and inconvenient to secure; have multiple parts, which can be dropped and become unsterile; and require removal instruments (e.g., hemostat or scissors) to disengage the catheter from the securement device.
Additionally, no standard exists regarding spacing of the lateral holes of the catheters and catheter fittings, or the shapes of the catheters and fittings. Manufacturers invariably produce catheters and catheter fittings with holes having varying geometries and distances therebetween. Prior securement devices thus become dedicated to fit and secure only certain catheter fittings.
An aspect of the present invention involves a simply-structured anchoring system that secures a medical article in a fixed position, but easily releases the medical article for dressing changes or other servicing. The anchoring system also can cooperate and engage multiple catheter fittings disposed on the same or different catheters, and thereby facilitates different configurations for the system on the patient's body. In particular, the anchoring system may be used with a variety of catheters and/or catheter fittings which have varying geometries. The anchoring system also provides a technique for anchoring medical articles to a patient in a fixed position and allowing for the release of those articles.
In one preferred form of this aspect of the invention, the anchoring system comprises a fitting attached to the medical article, the fitting extending laterally beyond the medical article and a securement device. The securement device includes a mounting surface for attaching the securement device to the patient's body, a receiving area oriented so as to face away from the patient's body, and at least two clips engaging the fitting around a perimeter of the fitting. The securement device preferably includes at least three clips, and more preferably includes four clips.
Another aspect of the present invention involves a securement device for anchoring a fitting of a medical article to a body of a patient. The securement device includes a mounting surface for attaching the securement device to the patient's body, a receiving area oriented so as to face away from the patient's body, and one or more clips engaging the fitting around a perimeter of the fitting. In one embodiment, the clip can extend upward relative to the mounting surface and adjacent to a peripheral edge of the fitting, over a section of the fitting, and latch over an opposing peripheral edge of the fitting. In another preferred embodiment, the securement device includes at least two clips disposed apart from each other. The securement device preferably includes at least three clips, and more preferably includes at least four clips. In a more preferred form, the securement device can also include one or more covers that extend over at least a portion of the fitting when retained by the securement device.
In accordance a preferred method of securing a medical article to a body of a patient, a securement device is located over the skin a the patient at a desired located on the patient's body. The securement device includes an adhesive-coated mounting surface for attaching the securement device to the patient's body and a receiving area. The securement device is oriented on the patient's body so as to face away from the patient's body to expose the receiving area and one or more clips. In a preferred embodiment, the securement device includes a plurality of clips (i.e., two or more). The clips are disposed generally around the receiving area and are spaced apart from one another. At least some of the clips are arranged so as to generally correspond to the shape of a portion of the medical device to be retained. A portion of the medical article is then engages with at least two of the plurality of the clips to attached the portion to the securement device. The securement device is adhered to the body of the patient using the mounting surface.
Another aspect of the present invention involves an anchoring system for securing a medical article to a body of a patient that comprises a first fitting attached to the medical article, having a first configuration, a second fitting attached to the medical article, having a second configuration that differs from the first configuration, and a securement device. The securement device includes a mounting surface for attaching the securement device to the patient's body and a receiving area oriented so as to face away from the patient's body. The receiving area includes a plurality of retainer mechanisms. At least one of the retainer mechanisms is configured to engage the first fitting and at least another of the retainer mechanisms is configured to engage the second fitting.
An additional aspect of the present invention involves an anchoring system for securing a medical article to a body of a patient. The anchoring system comprises a first fitting attached to the medical article, the first fitting extending laterally beyond the medical article, having a narrower longitudinal cross-section in a connecting region proximate to the medical article and having a plurality of holes disposed on a wing region proximate to a lateral edge, a second fitting attached to the medical article, the second fitting extending laterally beyond the medical article, having a narrower lateral cross-section than the first fitting, and having a wider longitudinal cross-section in a second connecting region proximate to the medical article, and a securement device. The securement device comprises a mounting surface for attaching the securement device to the patient's body and a receiving area oriented so as to face away from the patient's body. The receiving area includes a plurality of posts configured to extend through the plurality of holes of the first fitting, a plurality of clips configured to engage the second fitting but not engage the first fitting, and at least one cover. The cover is moveable relative to the receiving area so as to move between an open position and a closed position. The cover lies at least partially above at least one of the plurality of posts in the closed position.
A further aspect of the present invention involves an anchoring system for securing a medical article to a body of a patient. The anchoring system comprises a plurality of fittings attached to the medical article and a securement device. The securement device includes a mounting surface for attaching the securement device to the patient's body and a receiving area oriented so as to face away from the patient's body. The receiving area including a first securement means for engaging at least one of the plurality of fittings and a second securement means for engaging at least one other of the plurality of fittings.
In accordance with another preferred method of securing a medical article to a body of a patient, a securement device is provided having a mounting surface and a receiving area. The securement device is oriented on the body of the patient such that the receiving area faces away from the patient's body. Either a first securement mechanism and a second securement mechanism, both of which are disposed on the receiving area, is selected to engage the medical article based upon a medical article insertion site. The method further comprises engaging the selected one of the first securement mechanism and second securement mechanism with a fitting attached to the medical article and securing the securement device to the body of the patient using the mounting surface.
A further aspect of the present invention involves a securement device for anchoring a fitting on a medical article to a body of a patient. The securement device includes a mounting surface for attaching the securement device to the patient's body and a retainer that is at least partially disposed on the mounting surface. The retainer comprises a base and a plurality of clips that extend from the base. The clips are spaced apart by a distance that substantially equals a distance across a portion of the fitting, and each clip includes an abutment portion to abut against a corresponding edge of the fitting. Each clip also includes a tang. The tang is disposed above the base by a distance greater than a transverse thickness of the fitting at the corresponding edge. At least one of the clips is disposed adjacent to a generally longitudinally facing surface of the fitting to inhibit at least longitudinal movement of the fitting relative to the retainer.
The systems and methods of the invention have several aspects and features, no single one of which is solely responsible for all of its desirable attributes. Without limiting the scope of the invention as expressed by the claims, its more prominent aspects have been discussed briefly above. Further aspects and features will also be understood from the description below. Additionally, various aspects and features of the system can be practiced apart from each other. For example, while several of the above-noted aspects of the invention involve an anchoring system that includes at least one securement device and at least one fitting of a medical article, the securement device itself can form a separate aspect of the present invention.
These and other features, aspects and advantages of the present invention will now be described in connection with preferred embodiments of the invention, in reference to the accompanying drawings. The illustrated embodiments, however, are merely examples and are not intended to limit the invention. The following are brief descriptions of the drawings.
One embodiment of a medical article anchoring system, which is generally designated by reference numeral 10 in
The anchoring system according to one aspect of the invention enables releasable engagement of the catheter to the patient, as illustrated by the embodiments described herein. The releasable engagement is achieved by cooperation among a base, at least one cover and at least one post element, or by cooperation among a base and at least one clip or a plurality of clips. This cooperation allows the catheter to be disconnected from the securement device and from the patient, for any of a variety of known purposes. For instance, the healthcare worker may want to remove the catheter from the securement device to ease disconnection of the catheter from the insertion point or to clean the patient. The disengagement of the catheter from the securement device, however, can be accomplished without removing the securement device from the patient.
The securement device, in accordance with one aspect of the invention, arrests movement of the catheter and/or catheter fitting in the transverse direction to hold the catheter and/or catheter fitting on the patient. Preferably, the securement device also arrests longitudinal movement of the catheter and, most preferably it additionally arrests longitudinal movement of the catheter and/or catheter fitting. Additionally, the anchoring system can include multiple securement devices with each one configured to arrest movement of the catheter and/or catheter fitting in at least one or more of the directions. One embodiment of the present anchoring system accordingly inhibits axial or longitudinal movement of the catheter with respect to the securement device, and hence, with respect to the insertion site on the patient. In an embodiment illustrated in
In accordance with another form of the securement device, a plurality of clips (e.g., two, three or four) are located on the base and are positioned relative to the lateral and/or longitudinal directions so as to interpose the catheter and/or catheter fitting and to thus inhibit lateral and/or longitudinal movement, respectively. The clips can also fit into or engage the structure of the catheter fitting (e.g., fit within a notch on the catheter fitting). In the illustrated embodiment shown in
In one preferred form, the present anchoring system also is adapted to cooperate with at least two different style fittings. In particular, the medical article anchoring system 10 includes clips as well as posts in different configurations in order to engage differently configured fittings of the medical article. This feature can also be used to accommodate catheters with catheter fittings having different sizes and/or shapes. So configured, a healthcare professional can choose between varying insertion sites and attachment sites for the securement device based on the different fittings available. Various other aspects of the present invention, however, can be used apart from this “dual-securement” feature, as will be apparent from the discussion of the embodiments below.
To assist in the description of these components of the embodiments of the anchoring system (see
Dual-Securement Anchoring System
With reference to
As illustrated in
Each component of the present anchoring system 10 is affixed to another, and in turn to a patient's body in one method of application. The anchor pad 16 is securely attached to the skin of the patient by its lower surface, while the retainer 18 is securely attached to the upper surface of the anchor pad 16. Either of these attachment functions may be provided by a number of different mechanisms well known to those of skill in the art. As will be discussed in more detail below, mechanical and chemical (e.g. stitches or adhesives) means may be employed in this regard.
As shown in
In
Catheter
As described above, the catheter 12 that forms a component of the anchoring system 10 may be one of a number of different medical devices. In a illustrated embodiment, shown in
In the illustrated embodiment, the two fittings 30, 32 are provided such that the securement device 14 may be located at varying distances in the longitudinal direction from the insertion site. Either of these two fittings 30, 32 can be releasably engaged with the securement device 14.
In other embodiments, more than two fittings may be used in conjunction with the catheter 12, providing further options for varying the distances, orientations, and configurations of the catheter 12 with respect to the attachment and insertion sites.
In still other embodiments, only one fitting may be provided on the catheter 12. As in the case of multiple fittings, this fitting may be configured to engageably interact with the securement device 14, thereby providing fixation between the catheter 12 and the patient's body.
In a preferred embodiment, illustrated in
The first fitting 30 is attached to the catheter 12 by a cylindrical attachment 42 that grips and secures the catheter 12 with respect to the first fitting 30. Alternative configurations of the first fitting 30 are, of course, possible. Depending upon the securement mechanisms provided by the securement device 14, the first fitting 30 can take on a variety of configurations that can provide sufficient attachment. In some embodiments, the first fitting 30 may not be necessary to secure the catheter 12 to the securement device 14 at different locations, as the catheter 12 itself may provide the corresponding fitting (e.g., one similar to the first fitting 30).
In a preferred embodiment, illustrated in
The second fitting 32 is attached to the catheter 12 by a housing 48 that grips and secures the catheter 12 with respect to the second fitting 32. The retainer 18 includes a plurality of clips 24 and/or walls 25 which together inhibit the retained portion of the catheter 12 from moving in the longitudinal, transverse, and/or lateral directions. Alternative configurations of the second fitting 32 are, of course, possible. Depending upon the securement mechanisms provided by the securement device 14, the second fitting 32 can take on a variety of configurations that can provide sufficient attachment. In some embodiments, the second fitting 32 may not be necessary to secure the catheter 12 to the securement device 14 at different locations, as the catheter 12 itself may provide the corresponding fitting (e.g., one similar to the second fitting 32). In other embodiments, the first fitting 30 may slide longitudinally along the catheter 12, possibly obviating the need for a second fitting.
The fittings 30, 32 suitably are made of a strong, but flexible material. Suitable materials which are both sufficiently strong but flexible include without limitation: plastics, polymers, or composites such as polypropylene, polyethylene, polycarbonate, polyvinylchloride, acrylonitrile butadiene styrene, styrene butadiene, nylon, olefin, acrylic, polyester, moldable silicon, thermoplastic urethane, thermoplastic elastomers, thermoset plastics and the like. The fittings 30, 32 are suitably formed by injection molding using a styrene butadiene polymer, such as KRO3 resin, available commercially from Phillips Petroleum of Houston, Tex. However, other materials can be used.
The fittings 30, 32 may also be of a unitary piece with the body of the catheter 12, or formed separately from the line and permanently or releasably attached to the catheter 12. In the illustrated embodiments, the fittings 30, 32 are formed separately from the catheter 12, but are also permanently attached to the catheter 12. In other embodiments, the fittings 30, 32 and catheter 12 may be formed as one piece to reduce manufacturing costs, while in other embodiments, the fittings 30, 32 and catheter 12 may be releasably attached to add further flexibility to the attachment and insertion options.
Anchor Pad
The anchor pad 16 can also include a concave section 58 that narrows the center of the anchor pad 16 proximate to the retainer 18. In the illustrated embodiment of
In the illustrated embodiment, the retainer 18 is centered upon the anchor pad 16 about the centerline 54, which bifurcates the crescent shape. As illustrated, the lateral sides of the anchor pad 16 have more contact area, both forward and rearward of the retainer 18 in the longitudinal direction, which provides greater stability and adhesion to a patient's skin while still permitting the retainer 18 to be located relatively near the insertion site. Although not illustrated, the anchor pad 16 also can include suture and/or breather holes to the sides of the retainer 18. Although only a single shape of the anchor pad is illustrated in
The anchor pad 16 can comprise a laminate structure with an upper plastic (e.g., woven polyester), paper, or foam layer (e.g., closed-cell polyethylene foam) and a lower adhesive layer. The lower adhesive layer constitutes a lower surface 34 of the anchor pad. The lower surface 34 desirably is a medical-grade adhesive and can be either diaphoretic or nondiaphoretic, depending upon the particular application. Such foam with an adhesive layer is available commercially from Avery Dennison of Painsville, Ohio. While not illustrated, the anchor pad 16 can include suture holes in addition to the adhesive layer to further secure the anchor pad to the patient's skin.
In other variations, a hydrocolloid adhesive or zinc oxide-based adhesive can advantageously be used upon the anchor pad 16 for attaching the anchor pad to the skin of the patient. The hydrocolloid or zinc oxide-based adhesive can be used either alone or in combination with another medical grade adhesive (e.g., in combination with the adhesive available from Avery Dennison). Hydrocolloid and zinc oxide-based adhesives have less of a tendency to excoriate the skin of a patient when removed. This can be particularly important for patients whose skin is more sensitive or fragile, such as neonates and those with a collagen deficiency or other skin related condition.
A surface of the upper foam layer constitutes an upper surface 50 of the anchor pad 16. The upper surface 50 can be roughened by corona-treating the foam with a low electric charge. The roughened or porous upper surface can improve the quality of the adhesive joint (which is described below) with the bottom surface of the retainer 18.
A removable paper or plastic release liner 52 desirably covers the adhesive lower surface 34 before use. The liner 52 suitably resists tearing and desirably is divided into a plurality of pieces to ease attachment of the pad to a patient's skin.
The liner 52 comprises a folded over portion to define a pull tab 56. The pull tab 56 can be utilized to remove the paper or plastic release liner 52 from the adhesive lower surface 34 before use. A healthcare worker uses the pull tab 56 by grasping and pulling on it so that the liner 52 is separated from the lower surface 34. The pull tab 56 overcomes any requirement that the healthcare worker pick at a corner edge or other segment of the liner 52 in order to separate the liner 52 from the adhesive layer.
The pull tab 56 of course can be designed in a variety of configurations. For example, the pull tab 56 can be located along a center line of the anchor pad 16; or alternatively, the pull tab can be located along any line of the anchor pad 16 in order to ease the application of the anchor pad 16 onto the patient's skin at a specific site. For example, an area of a patient's skin with an abrupt bend, such as at a joint, can require that the pull tab 56 be aligned toward one of the lateral ends of the anchor pad 16 rather than along the center line. In the embodiment illustrated in
In another variation, the anchor pad 16 comprises a laminate structure with an upper woven layer and a lower adhesive layer. The upper layer can be polyester or other suitable polymer or textile materials. One particular suitable material is woven polyester available commercially under the name “Tricot” from Tyco. The lower adhesive layer constitutes the lower surface 34 of the anchor pad.
Retainer
With reference now to
As will become apparent, several features of the cover assembly and base 20 are desirably flexible. Suitable materials which are both sufficiently strong, but flexible include without limitation: plastics, polymers, or composites such as polypropylene, polyethylene, polycarbonate, polyvinylchloride, acrylonitrile butadiene styrene, styrene butadiene, nylon, olefin, acrylic, polyester, moldable silicon, thermoplastic urethane, thermoplastic elastomers, thermoset plastics and the like. The retainer 18 is suitably formed by injection molding using a styrene butadiene polymer, such as KRO3 resin, available commercially from Phillips Petroleum of Houston, Tex. However, other materials can be used, and the retainer can comprise a multi-piece base 20 or cover 26, 28 as well.
In the embodiment illustrated in
The longitudinal, lateral and transverse dimensions of the retainer 18 desirably are sized to stabilize the catheter 12, including its fittings 30, 32. In particular, the longitudinal dimension of the base 20 is preferably long enough to stabilize the retained length of the catheter 12. That is, the length of the catheter 12, which is secured within the retainer 18, is sufficient to inhibit rocking of the catheter 12 relative to the retainer 18. The longitudinal dimension of the base 20 should also be sufficient to receive the largest length of catheter fittings 30, 32 for which the retainer 18 is designed.
The lateral dimension of the base 20 is suitably sized to accommodate the largest width of catheter fittings 30, 32 for which the retainer 18 is designed. As with the longitudinal dimension, the lateral dimension may be sized to receive a single fitting 30, 32 or other portion of the catheter 12 without regard to the dimensions of the other fitting 30, 32. It is preferred that the lateral dimension be sufficient to provide the health care provider with a convenient and natural grip of the base 20 of the retainer 18 while allowing the healthcare worker to manipulate the covers 26, 28, posts 22 and/or clips 24 of the retainer 18. The lateral dimension also preferably provides sufficient width to mount hinges and latch mechanisms in the present embodiment, as described below.
The transverse height of the base 20 preferably corresponds generally to the thickest catheter fitting for which the retainer 18 is designed. While the catheter body or central portion of the fitting may have a greater thickness than the fitting's wing thickness, the base 20 accommodates this through its open central region between the covers 26, 28. The base 20 thus need not have a greater transverse height than that of the catheter 12, and consequently, the overall profile of the retainer 18 can be minimized.
As understood from
Additionally, in other embodiments, the bottom surface 66 of the base 20 need not be perfectly flat, and may include contouring in order to assist in stabilizing the retainer 18 when placed on the skin of a patient. The bottom surface 66 may, for example, have a concave curved shape when viewed from the front along a longitudinal axis. The amount and radius of curvature may be varied depending on the expected location of usage or application of the securement device 16. Such a curved profile of the bottom surface 66 allows for a closer match between the contour of the bottom of the base 20 and the shape of the body of the patient. It will be appreciated that many common sites for insertion of medical lines which require securement will be located on anatomical regions exhibiting convex curvature, such as the arms, legs, shoulders, etc. By providing a concave bottom profile to the base 20 of the retainer 18, the retainer will rock less once placed upon the patient via the anchor pad 14. This will help prevent the retainer from pulling free from the anchor pad along the lateral edges of the base 20, and also inhibits undesirable rotation of the retainer 18 due to the bottom surface 66 rolling along the body of the patient. For example, the curvature of the base 20 can be sized to generally match the curvature on a dorsal side of an average patient's hand for certain applications.
While not shown in the illustrated embodiment, the bottom surface 66 may also be angled in the longitudinal direction. This angle is used in order to align the axis of the retainer 18 with the desired incident angle with which the catheter 12 is to contact the skin of the patient. A variety of different angles may be used, ranging from 0° to 45°, and more suitably from 5° to 25°. For instance, for the securement of arterial catheters, it is desirable for the angle of incidence of the catheter to the skin of the patient to be about 12.5°. For the securement of intravenous catheters, it is desirable for the angle of incidence of the catheter to the skin of the patient to be about 7° to 15°. By angling the bottom surface 66 of the base 20 at the desired angle, which will depend upon the particular securement application (e.g., securing an arterial catheter, an intravenous catheter, etc.), the proper angle of incidence for a catheter can be maintained.
The interior of the base 20 need not be completely solid. Indentations and other empty regions or voids may be included on the base 20 for a variety of reasons. For instance, certain indentations required by the manufacturing process may be located on the bottom wall 64 of the base 20 in order to avoid exposing these indentations during use of the retainer 18. Those of skill in the art will recognize that these indentations or other incongruities need not be used, but may be included in certain applications for reasons including but not limited to, lightening of the overall retainer structure, adding flexibility to the retainer and or clips 24, or providing a more advantageous surface for attachment between the base 20 and the anchor pad 14.
In one embodiment, the retainer 18 includes at least one post 22 disposed on the base 20. In the embodiment illustrated in
In order to aid the manufacture and assembly of the retainer 18, the posts 22 may be formed as part of the base 20. They may also be constructed in a number of different ways well known to those of skill in the art, and may have a variety of different configurations such as, for example, include tapering cross-sections.
The posts 22 suitably are formed to have a circular cross-section with a slightly smaller diameter than the diameter of the openings 40, although other shapes and cross-sections are possible. In another embodiment, the posts 22 may have flanges or other radial projections disposed on their upper ends (i.e., the ends farthest from the base bottom wall 64). These projections further help to secure the catheter 12 to the retainer 18. In the preferred embodiment, the posts 22 have a large enough diameter to provide stiffness, as well as to minimize longitudinal or lateral movement between the openings 40 and the posts 22.
In one embodiment, the retainer 18 also includes at least two clip 24 disposed on the base 20. In the illustrated embodiment, the base 20 includes four clips 24 configured to surround the perimeter of the second fitting 32 when the catheter 12 is in the second inserted position. The four clips 24 are arranged on the base so as not to interfere with the first fitting 30 when the catheter is in the first inserted position. Other numbers and arrangements of clips 24 are, of course, possible. In one embodiment, only one clip 24 is employed. In order to provide securement using one clip 24, some further retainer mechanism should be employed in combination with the clip. For example, the fitting may be secured between one clip and a sidewall of the base 20 or an adhesive may be employed between the fitting 30, 32 and the retainer 18. In other embodiments, two, three or more clips may be employed, often in combination with a friction fitting with a sidewall of the base 20 or with corresponding structure (e.g., a notch) on the fitting 30, 32.
The clips 24 in accordance with one embodiment comprise a transverse extending rectangular section, with a tang disposed at its upper end (i.e., an end farthest from the base bottom wall 64). The clips 24 are preferably formed such that the rectangular section has a height greater than the transverse height of the second fitting 32. In this manner, the second fitting 32 can fit between the tangs of the clips 24 and the upper surface of the bottom wall 64 of the base 20.
In the illustrated embodiment, as the second fitting 32 is moved into the second inserted position, the clips 24 will flex as the tangs move past the wing portions 44 of the second fitting 32, and then will relax or spring back at least generally to their original state once the tangs have moved past the second fitting 32 to a position above but preferably close to the top of the second fitting 32. This will prevent the second fitting 32 from unintentionally moving out of the second inserted position. The rectangular housing 48 of the second fitting 32 also preferably serves to limit lateral movement between the clips 24 and the second fitting 32. The second fitting 32 suitably has a complementary shape to that of the bottom of the tangs to promote engagement between them when the second fitting 32 is disposed within the retainer 18. In the illustrated embodiment, the top of the second fitting 32 is generally normal to the transverse axis in the same manner as the bottom of the tangs of the clips 24.
Although the embodiments shown employ clips or posts, it should be understood that other retainer mechanisms for providing attachment between the medical line 12 and the securement device 16 may also be used. In one embodiment, clips in a variety of locations and configurations may be used, such that some clips are configured to engage some fittings and other clips are configured to engage other fittings. In another embodiment, only posts are used in a variety of locations and configurations. In yet another embodiment, other retainer mechanisms, including for example chemical engagement means (e.g. adhesive), may be used in combination with other retainer mechanisms to provide a single or dual-securement anchoring system.
As best seen in
In the illustrated embodiment, there are no sidewalls formed on the lateral portions of the base 20. In other embodiments, such walls may be employed. The receiving space 78 is formed on the base 20 between the lateral edges of the base 20. The receiving space 78 is desirably formed so as to accept and retain a portion of the catheter 12 or one of the catheter fittings 30, 32, and in particular the wings thereof, without occluding the lumen of the catheter 12.
As seen in
Each cover 26, 28 suitably is connected to the base 20 by at least one hinge 62 to provide each cover 26, 28 with at least two positions: an open position, in which the receiving space 78 of the base 20 is exposed and into which a catheter 12 and/or one of the fittings 30, 32 may be inserted; and a closed position, in which the cover is located over the base 20 and covers at least a portion of the receiving space 78. In the closed position, each of the covers 26, 28 is held in place by a corresponding latch mechanism, described below, to inhibit the unintentional transverse release of the catheter 12 or one of the catheter fittings 30, 32 from the receiving space 78 of the base 20. In a preferred embodiment, the covers 26, 28 are sufficiently sized to accommodate the necessary latch mechanism components and to extend over or around at least a portion of the posts 22 (and possibly receive upper ends of the posts) when in the closed position. Though not shown, in one embodiment, the interaction between upper portions of the posts 22 and the covers 26, 28 when the covers 26, 28 are in the closed position inhibits movement or play of the post upper ends relative to the covers 26, 28. Consequently, this interaction may inhibit the posts 22 from deflecting or bending, at least in the longitudinal direction, when the catheter 12 is tugged, thereby maintaining a secure connection between the posts 22 and the catheter 12.
The hinges 62 need not provide 180° of movement for the covers 26, 28 relative to the base 20 to establish a closed position and a fully open position. For instance, the hinges 62 can permit a smaller degree of movement (e.g., 90°) between the base 20 and the covers 26, 28 while still providing enough space to transversely insert the fitting 30, 32 or catheter 12 into the retainer 18 when both covers 26, 28 are open.
In the embodiment shown in
As can be seen in
As best understood from
As discussed above and illustrated in
Each cover clip 86 extends from the cover 26 toward the base 20 of the retainer 18 from the lower side of the cover 26 (“lower” as seen when the cover 26 is in the closed position as in
As shown most clearly in
As the cover 26 is moved into the closed portion, the cover clip 86 will flex as the tang moves past the latch 88, and then will relax or spring back into its original state once the tang has moved past the latch 88 to a position adjacent the opening 80. This will prevent the cover 26 from unintentionally moving out of the closed position. The bottom of the latch 88 suitably has a complimentary shape to that of the top of the tang to promote engagement between them when the cover 26 is closed. In the illustrated embodiment, the bottom of the latch 88 is generally normal to the transverse axis in the same manner as the tang of the cover clip 86.
In order to allow disengagement of the latching mechanism 84, a healthcare worker flexes the cover clip 86 in a direction moving the tang away from the opening 80. With the tang disengaged from the opening 80, the cover 26 may be freely moved to the open position. In one mode of operation, this can be accomplished by pulling upon the flange 82 or other extension of the cover 26. By pulling up on the flange 82 in a transverse direction, the cover 26 bends, moving the tang of the cover clip 86 away from the latch 88, and allowing the cover 26 to be moved out of the closed position without exerting excessive force upon the cover 26. The opening 90 in the cover 26 aids in allowing the cover 26 to bend in this manner.
In the illustrated embodiment, each cover 26, 28 has one cover clip 86 with a corresponding latch 88 on the base 20. The latch mechanisms 80 on each cover 26, 28 can be formed as mirror images of each other. In other embodiments, other latching mechanisms may be employed, as is well known to those of skill in the art.
After the retainer 18 is manufactured, it is attached to the upper surface 50 of the anchor pad 14. The base 20 desirably is secured to the upper surface 50 by a solvent bond adhesive, cyanoacrylate or other bonding material. One such adhesive is available commercially as Part No. 4693 from the Minnesota Mining and Manufacturing Company (3M). With certain types of polymer (e.g., a styrene butadiene polymer), a UV cured adhesive also can be used, as known in the art. Of course, other methods of securing the retainer 18 to the anchor pad 14 may also be used, including mechanical methods such as sewing or stapling the two together.
When the anchoring system 10 is assembled as described above, the receiving space 78 formed between the base 20 and covers 26, 28 when they are in the closed position defines a channel. The channel is capable of receiving a portion or length of the catheter 12 and is generally configured to house, grip and secure the affected catheter portion. In the illustrated embodiment, the channel has a generally symmetrical shape. However, other cross-sectional shapes may be used for particular applications, such as for supporting a Y-site catheter.
Although the shape of the channel may vary depending upon its application (i.e., depending upon a shape of the retained portion of the medical article for which the retainer is designed to be used), the length of the channel, as mentioned above, is desirably sufficient in the longitudinal direction to stabilize the catheter 12, rather than acting as a fulcrum for the catheter, as was discussed above. That is, the retainer 18 receives a sufficient length of the catheter to inhibit movement of the catheter 12 in the longitudinal and transverse directions, and preferably also in the lateral direction (i.e., to inhibit yaw, pitch and axial movement of the catheter), without kinking the catheter.
Other Embodiments
With reference to
In the embodiment illustrated in
The plurality of clips 24a extend upwardly from the base 20a. In the illustrated embodiment, the base 20a includes four clips 24a configured to surround the perimeter of the second fitting 32a of the catheter 12a. Other arrangements of clips 24a are possible.
While not included in the illustrated embodiments, the clips can be configured and positioned to interact and engage with corresponding structure on the fitting 32a to arrest at least some degree of movement of the fitting 32a relative to the retainer 18a using few clips. For example, the wings 44a of the fitting 32a can include notches at their lateral extremes, which have substantially the same longitudinal width of the clips 24a. When engaged, the clips 24a can fit into the notches with the clips preferably directly opposing each other. The clips 24a can hold wings 44a to the base 20a to inhibit transverse movement of the fitting 32a, and the interaction (or interengagement) between the clips 24a and the notches can inhibit longitudinal and/or lateral movement of the fitting 32a. The clips 24a in this embodiment can have a sufficient longitudinal width to stabilize further the fitting 32a on the retainer base 20a.
Additional retention features may be employed with the retainer 18a to further inhibit movement or provide redundant securement of the retained medical article. For example, the retainer 18a may employ one or more posts (similar to posts 22 described above) in addition to the one or more clips 24a. The one or more posts can be disposed on the base 20a of the retainer 18a so as to facilitate securement of more than one medical article or multiple portions of the same medical article having different shapes or sizes. Alternatively, the one or more of the posts and one or more of the clips 24a may together inhibit movement of a single medical article or a single portion of the medical article. For example, but without limitation, a retainer can include two clips 24a and one post to inhibit longitudinal, lateral and/or transverse movement of the retained section of the medical article relative to the retainer.
In the embodiment illustrated in
As understood from
These recesses 68a extend transversely from the lower side of the bottom wall 64a to the upper side of the bottom wall 64a, and have lateral and longitudinal widths sufficient to provide a degree of flex to the clips 24a that also comprise a portion of the base 20a. As a result of these recesses 68a, less of the relatively stiff material that makes up the base 20a needs to flex in order to engage and disengage the second fitting 32a. The other variants of the base described above can also be practiced with this embodiment.
Each clip 24a in accordance with one embodiment comprises a transversely extending rectangular section with a tang disposed at its upper end. The clips 24a are suitably formed such that the rectangular section has a height greater (and preferably only slightly greater) than the transverse height of the second fitting 32a and such that the second fitting 3a2 can fit between the lower surfaces of the tangs of the clips 24a and the upper surface of the bottom wall 64a of the base 20a.
In the illustrated embodiment, as the second fitting 32a is moved into position, the clips 24a will flex as the tangs move past the wing portions 44a of the second fitting 32a, and then will relax or spring back to their original state once the tangs have moved past the second fitting 32a to a position above but preferably close to the top of the second fitting 32a. This will inhibit the second fitting 32a from unintentionally moving out of the inserted position and inhibits transverse movement between the clips 24a and the second fitting 32a.
In the illustrated embodiment, the four clips are arranged on the receiving area of the base 20a so as to generally face the fitting 32a. Two of the four clips 24a are arranged on each side of a longitudinal axis that bisects the receiving area on the base 20a. Each such pair of clips 24a preferably is arranged on a line that lies at least substantially parallel with the longitudinal axis. Additionally, the two proximate-most clips 24a preferably are arranged on a first line that lies at least substantially perpendicular to the longitudinal axis, and the two distal-most clips 24a preferably are arranged on a second line that lies at least substantially parallel to the first line and at least substantially perpendicular to the longitudinal axis. This symmetric orientation of clips 24a about the fitting 32a reduces the number of clips 24a without meaningfully reducing the retaining effect provided by the clips 24a.
By angling the clips 24a relative to the lateral and longitudinal directions, the clips 24a serve to inhibit lateral and longitudinal movement between the clips 24a and the second fitting 32a. While all four clips 24a are angled in the illustrated embodiment, lateral and longitudinal movement may be arrested with two angled clips 24 on opposite lateral sides of the second fitting 32a or catheter 12a. The second fitting 32a suitably has a complementary shape to that of the bottom of the tangs to promote engagement between them when the catheter 12a is inserted. In the illustrated embodiment, the top of the second fitting 32a is suitably generally normal to the transverse axis in the same manner as the bottom of the tangs of the clips 24a.
In general, the plurality of clips 24a of the retainer 18a preferably is arranged on the receiving area of the base 20a so as to inhibit movement of the fitting in the longitudinal and transverse directions (and preferably also in the lateral direction) relative to the securement device. At least some of the clips 24a clips are arranged on the receiving area so as to abut the laterally extending surfaces, and preferably both the laterally and longitudinally extending surfaces of the fitting to thereby inhibit movement of the fitting in the longitudinal and lateral directions relative to the securement device. In the illustrated embodiment, which includes four clips 24a, the clips 24a are arranged on the receiving area in two sets, each set facing generally towards the other set.
If the catheter 12a is pulled in an upward, transverse direction, the holding effect of one or more tangs of the clips 24a prevents the catheter 12a from disengaging from the retainer 18a. The retainer 18a thus inhibits transverse movement of the catheter 12a relative to the retainer 18a. By angling two or more of the clips 24a relative to the longitudinal and transverse directions, the clips 24a restricts movement of the catheter 12a in the transverse and lateral directions.
Longitudinal and lateral movement may be inhibited by only two angled clips 24a. For example, two of the four clips 24a may be arranged on the base 20a so as to abut both lateral and longitudinal surfaces of the catheter 12a to thereby inhibit movement of the catheter 12a in the longitudinal and lateral directions. One or more of the two angled clips 24a or one or more of the remaining two clips 24a may include a tang portion for inhibiting transverse movement. For example, the tang portion may be spaced from the base by a sufficient distance to accommodate at least a portion of the catheter 12a between the base 20a and the tang portion so as to thereby inhibit movement of the catheter 12a in the transverse direction.
Operation
In operation, as best seen in
For the embodiment of the securement device 14 illustrated in
As illustrated in
In one application, shown nearly completed in
In another application, shown in
In another application, shown in
As illustrated in
To open the latch mechanism 84, the healthcare worker pull upwards on the protruding flanges 82 of the covers 26, 28, as described above. The resulting outwardly directed force deflects the cover clips 86 to clear the latches 88. The healthcare worker can then remove either of the fittings 30, 32 from the retainer 18.
The releasable engagements between the covers 26, 28, fittings 30, 32 and the base 20 allow the same retainer 18 to be used for an extended period of time, while permitting repeated attachment and reattachment of the catheter 12 or fittings 30, 32 to and from the securement device 14. In addition, the hinges 62 which connect the covers 26, 28 to the base 20 ensure that the covers will not be lost or misplaced when the catheter 12 is detached from the securement device 14. The healthcare worker wastes no time in searching for a misplaced cover, or in orienting a cover prior to latching, and he or she is not required to carry a separate instrument to detach the catheter 12 from the securement device 14.
If the catheter 12 is pulled in the longitudinal direction, the holding effect of the posts 22 and openings 40, or clips 24 prevent the catheter 12 from pulling through the retainer 18. The retainer 18 thus inhibits longitudinal movement of the catheter 12 relative to the retainer. Interaction between the base 20, covers 26, 28, posts 22 and holes 40 and/or clips 24 and rectangular housing 48 restrict movement of the catheter 12 in the transverse and lateral directions.
Importantly, the base 20 and covers 26, 28 do not crimp or kink the catheter body and occlude the lumen(s) therein when it is inserted within the retainer 18.
The retainer 18, 18a being attached to the anchor pad 16, 16a as described above, may be positioned and secured on the patient near the insertion site for the medical article either before or after the placement of the catheter 12, 12a into the retainer. In many cases it will be desirable for the medical practitioner to attach the anchor pad 16, 16a and retainer 18, 18a to the patient prior to securing the medical article.
By way of illustration, the medical practitioner may first remove one portion of the release liner 52 from the anchor pad 16 by gripping the pull tab 56 (see
The various embodiments of anchoring systems and techniques described above in accordance with present invention thus provide a sterile, tight-gripping, needle- and tape-free way to anchor a medical article to a patient. The retainer thus eliminates use of tape, and if prior protocol required suturing, it also reduces the risk of accidental needle sticks, suture-wound-site infections and scarring. In addition, the techniques for the described retainers can be used with any of a wide variety of catheters, fittings, tubes, wires, and other medical articles. Patient comfort is also enhanced and application time is decreased with the use of the present anchoring system.
Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of different embodiments. For example, various bases, covers, posts, hinges, clips, anchor pads, and latching mechanisms disclosed herein, as well as other known equivalents for each such feature, can be mixed and matched by one of ordinary skill in this art to construct anchoring systems in accordance with principles of the present invention.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it therefore will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.
This application is a continuation of co-pending U.S. application Ser. No. 12/777,207, filed on May 10, 2010, entitled “MEDICAL ARTICLE ANCHORING SYSTEM,” which is a divisional of U.S. application Ser. No. 11/439,385, filed on May 23, 2006, entitled “MEDICAL ARTICLE ANCHORING SYSTEM,” issued as U.S. Pat. No. 7,722,571, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/683,925, filed May 23, 2005, and U.S. Provisional Application No. 60/764,917, filed Feb. 3, 2006, all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2525398 | Collins | Oct 1950 | A |
2533961 | Rouseau et al. | Dec 1950 | A |
2707953 | Ryan | May 1955 | A |
3059645 | Hasbrouck et al. | Oct 1962 | A |
3064648 | Bujan | Nov 1962 | A |
3167072 | Stone et al. | Jan 1965 | A |
3482569 | Raffaelli, Sr. | Dec 1969 | A |
3529597 | Fuzak | Sep 1970 | A |
3602227 | Andrew | Aug 1971 | A |
3630195 | Santomieri | Dec 1971 | A |
3677250 | Thomas | Jul 1972 | A |
3766915 | Rychlik | Oct 1973 | A |
3812851 | Rodriguez | May 1974 | A |
3834380 | Boyd | Sep 1974 | A |
3847370 | Engelsher | Nov 1974 | A |
3856020 | Kovac | Dec 1974 | A |
3896527 | Miller et al. | Jul 1975 | A |
3900026 | Wagner | Aug 1975 | A |
3906946 | Nordström | Sep 1975 | A |
3942228 | Buckman et al. | Mar 1976 | A |
3973565 | Steer | Aug 1976 | A |
4020835 | Nordstrom et al. | May 1977 | A |
4057066 | Taylor | Nov 1977 | A |
4059105 | Cutruzzula et al. | Nov 1977 | A |
4082094 | Dailey | Apr 1978 | A |
4114618 | Vargas | Sep 1978 | A |
4129128 | McFarlane | Dec 1978 | A |
4133307 | Ness | Jan 1979 | A |
4142527 | Garcia | Mar 1979 | A |
4161177 | Fuchs | Jul 1979 | A |
4193174 | Stephens | Mar 1980 | A |
4224937 | Gordon | Sep 1980 | A |
4248229 | Miller | Feb 1981 | A |
4250880 | Gordon | Feb 1981 | A |
4316461 | Marais et al. | Feb 1982 | A |
4324236 | Gordon et al. | Apr 1982 | A |
4326519 | D'Alo et al. | Apr 1982 | A |
4362156 | Feller, Jr. et al. | Dec 1982 | A |
4392853 | Muto | Jul 1983 | A |
4397647 | Gordon | Aug 1983 | A |
4405163 | Voges et al. | Sep 1983 | A |
4449975 | Perry | May 1984 | A |
4453933 | Speaker | Jun 1984 | A |
4474559 | Steiger | Oct 1984 | A |
4480639 | Peterson et al. | Nov 1984 | A |
4484913 | Swauger | Nov 1984 | A |
4516968 | Marshall et al. | May 1985 | A |
4517971 | Sorbonne | May 1985 | A |
4563177 | Kamen | Jan 1986 | A |
4633863 | Filips et al. | Jan 1987 | A |
4645492 | Weeks | Feb 1987 | A |
4650473 | Bartholomew et al. | Mar 1987 | A |
4659329 | Annis | Apr 1987 | A |
4660555 | Payton | Apr 1987 | A |
4711636 | Bierman | Dec 1987 | A |
4742824 | Payton et al. | May 1988 | A |
4808162 | Oliver | Feb 1989 | A |
4823789 | Beisang, III | Apr 1989 | A |
4826486 | Palsrok et al. | May 1989 | A |
4852844 | Villaveces | Aug 1989 | A |
4857058 | Payton | Aug 1989 | A |
4863432 | Kvalo | Sep 1989 | A |
4880412 | Weiss | Nov 1989 | A |
4896465 | Rhodes et al. | Jan 1990 | A |
4897082 | Erskine | Jan 1990 | A |
4898587 | Mera | Feb 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4932943 | Nowak | Jun 1990 | A |
4955864 | Hajduch | Sep 1990 | A |
4976700 | Tollini | Dec 1990 | A |
4997421 | Palsrok et al. | Mar 1991 | A |
5000741 | Kalt | Mar 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5073170 | Schneider | Dec 1991 | A |
5084026 | Shapiro | Jan 1992 | A |
5098399 | Tollini | Mar 1992 | A |
5147322 | Bowen et al. | Sep 1992 | A |
5156641 | White | Oct 1992 | A |
5192273 | Bierman et al. | Mar 1993 | A |
5192274 | Bierman | Mar 1993 | A |
5195981 | Johnson | Mar 1993 | A |
5248306 | Clark et al. | Sep 1993 | A |
5266401 | Tollini | Nov 1993 | A |
5267967 | Schneider | Dec 1993 | A |
5282463 | Hammersley | Feb 1994 | A |
5292312 | Delk et al. | Mar 1994 | A |
5304146 | Johnson et al. | Apr 1994 | A |
5306243 | Bonaldo | Apr 1994 | A |
5314411 | Bierman et al. | May 1994 | A |
5322514 | Steube et al. | Jun 1994 | A |
5330438 | Gollobin et al. | Jul 1994 | A |
5338308 | Wilk | Aug 1994 | A |
5342317 | Claywell | Aug 1994 | A |
5344406 | Spooner | Sep 1994 | A |
5344414 | Lopez et al. | Sep 1994 | A |
5346479 | Schneider | Sep 1994 | A |
5352211 | Merskelly | Oct 1994 | A |
5354282 | Bierman | Oct 1994 | A |
5354283 | Bark et al. | Oct 1994 | A |
5368575 | Chang | Nov 1994 | A |
5380293 | Grant | Jan 1995 | A |
5380294 | Persson | Jan 1995 | A |
5380301 | Prichard et al. | Jan 1995 | A |
5382239 | Orr et al. | Jan 1995 | A |
5382240 | Lam | Jan 1995 | A |
5389082 | Baugues et al. | Feb 1995 | A |
5395344 | Beisang, III et al. | Mar 1995 | A |
5398679 | Freed | Mar 1995 | A |
5403285 | Roberts | Apr 1995 | A |
5413562 | Swauger | May 1995 | A |
5443460 | Miklusek | Aug 1995 | A |
5449349 | Sallee et al. | Sep 1995 | A |
5456671 | Bierman | Oct 1995 | A |
5468228 | Gebert | Nov 1995 | A |
5468230 | Corn | Nov 1995 | A |
5468231 | Newman et al. | Nov 1995 | A |
5470321 | Forster et al. | Nov 1995 | A |
D364922 | Bierman | Dec 1995 | S |
5484420 | Russo | Jan 1996 | A |
5496282 | Militzer et al. | Mar 1996 | A |
5496283 | Alexander | Mar 1996 | A |
5499976 | Dalton | Mar 1996 | A |
5520656 | Byrd | May 1996 | A |
5522803 | Teissen-Simony | Jun 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549567 | Wolman | Aug 1996 | A |
D375355 | Bierman | Nov 1996 | S |
5578013 | Bierman | Nov 1996 | A |
5637098 | Bierman | Jun 1997 | A |
5643217 | Dobkin | Jul 1997 | A |
5681290 | Alexander | Oct 1997 | A |
5685859 | Kornerup | Nov 1997 | A |
5693032 | Bierman | Dec 1997 | A |
5702371 | Bierman | Dec 1997 | A |
D389911 | Bierman | Jan 1998 | S |
5722959 | Bierman | Mar 1998 | A |
5735822 | Steins | Apr 1998 | A |
5792115 | Horn | Aug 1998 | A |
5795335 | Zinreich | Aug 1998 | A |
5800402 | Bierman | Sep 1998 | A |
5810781 | Bierman | Sep 1998 | A |
D399954 | Bierman | Oct 1998 | S |
5827239 | Dillon et al. | Oct 1998 | A |
5833667 | Bierman | Nov 1998 | A |
5855591 | Bierman | Jan 1999 | A |
5989213 | Maginot | Nov 1999 | A |
6001081 | Collen | Dec 1999 | A |
6117163 | Bierman | Sep 2000 | A |
6132398 | Bierman | Oct 2000 | A |
6213979 | Bierman | Apr 2001 | B1 |
6224571 | Bierman | May 2001 | B1 |
6231548 | Bassett | May 2001 | B1 |
6283945 | Bierman | Sep 2001 | B1 |
6290265 | Warburton-Pitt et al. | Sep 2001 | B1 |
6290676 | Bierman | Sep 2001 | B1 |
6361523 | Bierman | Mar 2002 | B1 |
6428513 | Abrahamson | Aug 2002 | B1 |
6447485 | Bierman | Sep 2002 | B2 |
6491664 | Bierman | Dec 2002 | B2 |
6572588 | Bierman et al. | Jun 2003 | B1 |
6582403 | Bierman et al. | Jun 2003 | B1 |
6929625 | Bierman | Aug 2005 | B2 |
6979320 | Bierman | Dec 2005 | B2 |
7018362 | Bierman et al. | Mar 2006 | B2 |
7223256 | Bierman | May 2007 | B2 |
7284730 | Walsh et al. | Oct 2007 | B2 |
20020026152 | Bierman | Feb 2002 | A1 |
20020165493 | Bierman | Nov 2002 | A1 |
20060129103 | Bierman et al. | Jun 2006 | A1 |
20060276752 | Bierman et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
2341297 | Apr 1975 | DE |
0 064 284 | Nov 1982 | EP |
0 247 590 | Dec 1987 | EP |
0 356 683 | Mar 1990 | EP |
0 931 560 | Jul 1999 | EP |
1184139 | Jul 1959 | FR |
2381529 | Sep 1978 | FR |
2063679 | Jun 1981 | GB |
2086466 | May 1982 | GB |
2288542 | Oct 1995 | GB |
WO 8001458 | Jul 1980 | WO |
WO 8502774 | Jul 1985 | WO |
WO 9412231 | Jun 1994 | WO |
WO 9626756 | Sep 1996 | WO |
Entry |
---|
Multiple-Lumen Central Venous Catheterization Product With ARROW+gard™ Antiseptic Surface (Arrow International brochure) (Apr. 1994). |
Photographs (4) of Catheter Clamp and Rigid Fastener sold by Arrow International. Inc. |
Number | Date | Country | |
---|---|---|---|
20120143140 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
60683925 | May 2005 | US | |
60764917 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11439385 | May 2006 | US |
Child | 12777207 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12777207 | May 2010 | US |
Child | 13396351 | US |