The Institute of Medicine estimates that medical error is responsible for roughly 98,000 deaths annually, making it the seventh leading cause of death in the U.S. Accordingly, reducing the likelihood of error is an important issue not only for hospitals and doctors, but for society as a whole.
To alleviate some of these concerns, some hospitals provide nurses with medical carts on which a networked laptop computer facilitates the use of Electronic Medical Administration Records (“EMAR”). EMAR is an electronic record of medications and services administered by a healthcare professional through patient and medication identification via bar coding. When admitted into a hospital, the patient receives a bar coded wrist band for identification purposes. Also, healthcare professionals within the pharmacy bar code all the medications to be administered to the patients. Documentation of medications given at the point-of-care has reduced the number of errors by ensuring that the right patient is receiving the proper medication at the correct time. The EMAR software alerts the nurse if there is a discrepancy anytime during the medication administration process.
Unfortunately, however, these medical carts have proven unsatisfactory for a number of reasons. For example, the carts are not ergonomically designed. The average age of a nurse is 47 and roughly 83% of nurses report suffering chronic back pain. In addition, the existing EMAR carts suffer from a relative lack of work surface, lack of an area to dispose of refuse, bad placement of medication drawers, lack of storage space, and relative inability to be usefully raised and lowered to enable the nurse to work when either standing or sitting.
In many hospital environments, a nurse must walk to a central location (e.g., a pyxis machine) at which medication is handled to obtain medication for a particular patient. Often, to avoid giving the wrong medication to a patient, the nurse only carries one patient's medication at a time. This control, however, does not preclude the potential for the medication to be given to the wrong patient such as, for example, if the nurse is sidetracked and asks another nurse to administer the medication.
In addition to the above-mentioned concerns, when one takes into account the number of patients which a nurse must handle, the result is that the nurse must spend a considerable amount of time walking between the central location and each patient's bedside. This problem is exacerbated in some situations in which the central location is located a significant distance from one or more of the patients for which the nurse is responsible. Moreover, the cost associated with paying nurses to continuously travel to and from various medication locations may be relatively insignificant at the level of a particular nurse but is quite significant to the medical industry as a whole.
What is needed, therefore, is an apparatus and a methodology by which medical error may be reduced and by which the amount of time a nurse spends obtaining and researching medication may be reduced, without compromising safety.
An aspect of the present invention relates to a cart including a work platform having a work surface and at least one compartment, a base, and a height adjustment mechanism for adjusting the height of the work platform relative to the base. The compartment can be a drawer. The work platform can accommodate drawers of different sizes. Preferably the compartment is configured to be unlocked via a keyless entry system.
The work platform can include a laptop platform that can be moved in at least one of a forward and a rearward direction. The work platform also can include a work surface that can be moved in at least one of a leftward and rightward direction. The work platform also can include a barcode scanner holder.
The cart can include a plurality of rolling members connected to the base. The work platform can include sidewalls and the rolling members can be disposed on the base outside of the sidewalls.
Another aspect of the present invention includes a cart system comprising a first cart and a second cart. The first cart can include at least one compartment and a base having rolling members to permit movement of the first cart. The second cart can include a plurality of compartments and a base having rolling members to permit movement of the second cart. The first and second cart can include linking structure that permits the first and second carts to be connected together for movement.
The first cart can include a work platform having a work surface and that houses the at least one compartment. The first cart can include a plurality of compartments.
Preferably the base of the first cart is configured to nest with the base of the second cart. The second cart can include a housing for supporting the plurality of compartments and the rolling members can be disposed on the base outside of the sidewalls.
Another aspect of the present invention relates to a method of medication transport. The method can include the steps of loading, at a first location, medication into first and second carts, connecting the first and second carts to form a cart train, moving the cart train to a second location when loaded with medication, separating the first and second carts after moving the cart train to the second location, moving the first cart from the second location to a third location, removing medication from the at least one cart at the third location, and returning the first and second carts to the first location.
Another aspect of the present invention relates to a method of medication transport comprising the steps of loading, at a first location, medication into a compartment(s) in a medication module(s), moving the medication module to a second location, transferring medication from the medication module to a medical cart, and administering medicine from the medical cart to a patient.
Another aspect of the present invention relates to a method of medication transport comprising the steps of loading, at a first location, medication into a compartment(s) in a medication module(s), moving the medication module to a second location, exchanging the compartments of the medication module(s) with the compartments of a medical cart(s) at the second location, returning the medication module(s) having the compartments of the medical cart(s) therein to the first location for refilling while the medical cart(s) having the compartments of the medication module(s) therein are being taken to patients.
These and other features, aspects, and advantages of the present invention will become more apparent from the following description, appended claims, and accompanying exemplary embodiments shown in the drawings.
Presently preferred embodiments of the invention are illustrated in the drawings. An effort has been made to use the same or like reference numbers throughout the drawings to refer to the same or like parts.
A first embodiment of a medical cart 500 is shown in
The work platform 340 can include a bi-directional laptop platform 370, a bi-directional work surface 350, an adjustable barcode scanner holder 380, an adjustable clipboard 390, one or more lockable compartments 530, a plurality of top bins 342, removable side bins 520, cup holders 344, and/or a keypad 238. Because each of these items is provided on the work platform 340, a user can ergonomically access each of these items as the work platform 340 is raised or lowered.
The laptop platform 370 can be configured to support, for example, a laptop computer 900 (shown in
The laptop platform 370 can be locked in a central position (
Notches 374, which include sloped surfaces 375 and cavities 377, are formed along the rail runners 373. The notches 374 are configured to engage posts 371 formed along the stationary rails 372. When the laptop platform 370 is moved by the transfer structure 800, the sloped surfaces 375 of the notches 374 are configured to engage the posts 371. By continuing to push (or pull) the laptop platform 370, the posts 371 will ride up the sloped surfaces 375 and be deposited in cavities 377 in the notches 374, thereby releasably immobilizing the laptop platform 370 with respect to the work platform 340.
In one embodiment, one notch 374 may be provided on each of the rail runners 373 and corresponding posts 371 may be provided on the stationary rails 372. As a result, the laptop platform 370 can be releaseably locked with respect to the work platform 340. For example, as shown in
In another embodiment, each of the stationary rails 372 may include at least three posts 371, one provided at each end of the stationary rails 372 and one provided in a central portion of the stationary rails 372. Correspondingly, each of the rail runners 373 may include three notches 374, one provided at each end of the rails runners 373 and one provided in a central portion of the rail runners 373. As a result, the surface 370 can be releasably immobilized with respect to the work platform 340 in a forward position (
In another embodiment, the contact between the stationary rails 372 and the rail runners 373 can be frictionally enhanced such that the laptop platform 370 does not readily slide with respect to the work platform 340. Rather, force (i.e., either pushing or pulling on the laptop platform 370) will be required to overcome the frictional engagement between the stationary rails 372 and the rail runners 373. As a result, the laptop platform 370 can be relatively fixed with respect to the work platform 340 at any location between a forwardmost position (
When the laptop platform 370 is pushed forward or rearward, it can expose a secondary work area 379 provided below the laptop platform 370. The secondary work area 379 can be particularly sturdy. For example, it can be sturdy enough to enable a user to crush pills on the secondary work area 379. In addition, the secondary work area 379 may be provided with a rim 378. The rim 378 may reduce the likelihood of medication rolling off the medical cart 500 such as, for example, when a nurse tries to crush pills on the secondary work area 379.
The bi-directional work surface 350 is shown in
The work surface 350 can have channels 355, 357 on its underside that engage ribs 358, 359 formed on a plate 361 provided on a body 329 of the work platform 340. The channels 355, 357 are sized to receive the ribs 358, 359 of the plate 361. To prevent the bi-directional work surface 350 from sliding off the plate 361, the channels 355, 357 are closed at one end. As a result, when the second bi-directional work surface 350 slides to the right (as shown in
Similarly, when the second bi-directional work surface 350 slides to the left (as shown in
When the bi-directional work surface 350 slides to the right or to the left, it slides in an arcuate path as a result of the channels 355, 357 and ribs 358, 369 (and the work surface 350) being arcuate in shape. As a result, the second bi-directional work surface 350 is positioned closer to a user standing or sitting in front of the medical cart 500 when it is in an extended position.
A releaseable locking mechanism 1000 (shown best in
Of course, the type of locking mechanism may be changed. Further, additional movable pins 356 may be provided in the plate 361 so as to enable the second bi-directional work surface 350 to be releasably locked in a corresponding number of positions.
As shown in
The barcode scanner 385 may be an integral part of the medical cart 500 or may be detachable therefrom. If the barcode scanner 385 is an integral component of the medical cart 500, its power cord 387 may be inserted into a power cord passage 327 and connected to an electrical receptacle 904, as later explained in detail with respect to
As shown in
The plurality of compartments 530 face the user and move up and down with the work platform 340 (i.e., they remain in the same position relative to the laptop platform 370), which are ergonomically desirable features. The compartments 530 may be provided with labeling portions 570, which allow labels to be displayed on the compartments 530. The plurality of compartments 530 enable a user (e.g., a nurse) to separately maintain medication for particular patients or for a particular room. For example, if a nurse is responsible for eight patients in a hospital ward, the medical cart 500 may be provided with a corresponding number of compartments 530 and the medication for each patient may be kept in a separate drawer assigned to that patient. As a result, the nurse could load the medication for all eight patients into eight separate drawers at one time (e.g., at the start of a medication pass) and at one location (e.g., at a pyxis machine), thereby reducing the need to travel to obtain the medication during the nurse's shift.
As shown in
For example, as shown in
The compartments 530 may be lockable by means of a keyless entry system (the details of which are later described with respect to
The top bins 243 are provided to house items such as paperclips, pencils, etc. Similarly, the cup holders 344 are provided to secure a number of medicine cups used to pass out medications.
The removable side bins 520 can be provided to hold items, such as trash or medical equipment. The side bins 520 can be removably connected to the sides of the body 329 of the work platform 340 by conventional means, such as a hole and pin arrangement.
The work platform 340 may be raised and lowered by means of the support mechanism 320. This provides a sitting or standing user with easy access to the work surface 350 and its associated components (e.g., laptop platform 370, work surface 350, compartments 530, etc.). The support mechanism 320 allows the user to adjust the position of the work platform 340 to a comfortable position, regardless of whether the user is sitting or standing. The support mechanism 320 comprises two telescoping portions 322, 324 (shown more clearly in the embodiment shown in
The height adjustment mechanism 400 includes an outer casing 410, a telescoping inner casing 420, and a driver 430. Preferably, two or more drawer slides 422 are provided between the inner casing 420 and the outer casing 410. Although two drawer slides 422 may be used (on opposite sides of the inner casing 420), it is preferable to use at least three drawer slides 422, to prevent (or at least greatly inhibit) a binding action from being applied to the height adjustment mechanism 400 by means of a cantilevered force being applied thereto.
The drawer slides 422 may be, for example, conventional drawer rails formed of stationary drawer rails 423 and corresponding rail runners 425. If the drawer slides 422 are conventional drawer rails, one side of the drawer slides 422 (e.g., the rail runners 425) may be fixed to outer sides of the inner casing 420 and the corresponding side of the drawer slides 422 (e.g., the stationary drawer rails 423) may be fixed to inner sides the outer casing 420. Further, the stationary drawer rails 423 may be provided with ball bearings to facilitate movement of the rail runner 425. An upper end of one side of the inner casing 420 is provided with an engagement mechanism 426. As shown, the engagement mechanism may be in the form of a window in the side of the casing 420.
The driver 430 includes a gas driven piston 432 which, in turn, includes a body portion 436 and a telescoping strut 434. The driver 430 is controlled by an actuator 440 to which is connected by a connector 442.
As shown in
As shown in
By way of contrast, to raise the work platform 340, a user merely needs to push button 444 and lift upward on the work platform 340. As the work platform 340 is light in weight, it will readily move upward. Moreover, in the process, the gas driven piston 432 will intake air, thereby enabling the work platform 340 to remain at the raised level, i.e., when the platform 340 is raised gas will be sucked into the piston 340 and will not be readily expellable until the button 444 is depressed. In other words, similar to the process of lowering the work platform 340, when the work platform 340 is raised it may be releaseably locked at any position between the lowest position and the height position by releasing the button 444. As a result, each component of the work platform 340 (including the bi-directional laptop platform 370 and the compartments 530) is ergonomically available to a user when sitting or standing.
In addition, as shown in
As shown in
The base 310, which is moveable by means of rolling members 120 (e.g., casters), is ergonomically shaped to provide stability. The base 310 is designed to provide stability by having the rolling members 120 at corners which are outside of the footprint of the work platform 340. Moreover, the rolling members 120 are spaced-apart to such a degree that two rolling members 123 of a medication module 100 can be located between two rolling members 121 of the base 310, thereby enabling the medical cart 500 and the medication module 100 to nest together. Further, when the medical cart 500 is nested with a medication module 100, it may be releaseably connected to the medication module 100 by means of a second locking mechanism 190 provided on an underside of the base 310 (shown in
Another embodiment of a medical cart 300 is shown in
One embodiment of a medication module 100, which may be referred to as a cart, is shown in
The component body 111 includes two side walls 112 and a back wall 114. The walls 112, 114 support a plurality of compartments 130 which, for example, may be in the form of drawers. Although the compartments 130 are shown as having a generally uniform height, this is not required. Moreover, in some embodiments the compartments 130 may have different heights. As a result, a plurality of short compartments 130 may be replaced by a tall compartment 130 in the manner previously described with respect to the first medical cart 500 embodiment.
It is preferable to provide the user with the ability to lock the compartments 130, of the medication module 100. To reduce the likelihood of losing a key, to reduce the likelihood of having a key getting stuck (or worse broken) in a lock, and to eliminate the need for a separate lock for each compartment 130, the compartments may be lockable by a keyless entry system 600, as hereafter described with respect to
The keyless entry system 600 includes a solenoid 240 (powered by a battery 241 which is electrically connected, by means of the power cord 233, to the retractable power cord 144), a printed circuit board (“PCB”) 245, a piston 222, a spring-biased hinge 210 (which has an active side 211 and a stationary side 213), a keypad 238, and an actuating lever 224 which is connected to the piston 222 at a connection point 231 and which pivots around an axis of rotation defined by a pin 230.
The hinge 210 can be, for example, a hinge conventionally known as a piano hinge. In a locked orientation, the active side 211 of the hinge 210 is provided in an engagement position 215 in which the active side 211 is positioned to engage a notch 132 formed on a compartment 130 (i.e., each compartment 130 has a similar notch 132), if a user attempts to withdraw the compartment 130. In other words, as a result of the engagement between the active side 211 of the spring 210 and the notches 132 of the compartments 130, the compartments 130 can not be readily withdrawn out of the medication module 100.
To unlock the compartments 130, a user first enters a security code using buttons of the keypad 238 (to verify access to the medication module 100) and may, if required, then enter an unlock code on the keypad 238. In response, the PCB 245 sends an unlock signal to the solenoid 240. When the unlock signal is received by the PCB 245, the solenoid 240 withdraws the piston 222, thereby causing the end of actuating lever 224 in contact with the active side 211 of the spring 210 to swing outward on the pin 230. As a result, the actuating lever 224 causes the active side 211 of the spring 210 to swing out of the engagement position 215 and into a disengagement position 217. In other words, the active side 211 swings toward the stationary side 213 of the spring 210 so that the two sides 211, 213 rest against each other. When the sides 211, 213 of the spring 210 rest against each other, the notches 132 of the compartments 130 will no longer be inhibited by the active side 211 of the spring 210. As a result, the compartments 130 may be readily removed from the medication module 100.
The compartments 130 can be relocked by pressing a “lock” button (not labeled) on the keypad 238 or by entering a lock code on the keypad 238; in either case, the PCB 245 will send a lock signal to the solenoid 240 instructing it to outwardly push the piston 222, thereby causing the end of the actuating lever 224 in contact with the active side 211 of the spring 210 to swing inward on the pin 230. As a result, the active side 211 of the spring 210 will swing back into the engagement position 215 by means of the spring-biased nature of the spring 210. In addition, and as a safety means, a timer may be provided in the keypad 238, PCB 245, or in the solenoid 240 which will, when a timer count is satisfied, automatically instruct the piston 222 to be outwardly pushed, thereby causing the active side 211 of the spring 210 to retract into the engagement position 215.
If a compartment 130 is removed when either a lock signal is sent to the solenoid 240 or when a timer count is satisfied (and the active side 211 of the spring 210 is provided in the engagement position 215), the compartment 130 may be inserted into the medication module without entering an unlock code. Specifically, the notches 132 of the compartments 130 have sloped faces 133 thereon which, when the compartment 130 is pushed into the medication module 100, will abut the active side 211 of the spring 210. By continuing to push the compartment 130, the sloped face 133 will cause the active side 211 of the spring 210 to collapse into the disengagement position 217, i.e., the spring-bias of the spring 210 will be overcome. After the sloped face 133 passes the active side of the spring 210, the active side 211 will snap back into the engagement position 215 (by means of the spring-bias), thereby locking the compartment 130 in the medication module 100.
An additional safety (and access) measure may be provided to address a situation in which the keypad 238 fails or the battery powered solenoid 240 loses power. Specifically, the compartments 130 may be unlocked manually by a hard (back-up) lock 220, as shown in
Although the keyless entry system 600 has been described with respect to the medication module 100, the same system 600 can be applied to the compartments 330, 530 of the medical carts 300, 500, respectively.
As a result of the ability to lock the compartments 130, 330, 530, a nurse can use a medication module 100 and/or medical cart 300, 500 to deliver medication to various patients, without worrying about unauthorized access to the compartments 130, 330, 530 while attending to a particular patient. Moreover, as a result of the keypad 238, a nurse does not have to worry about losing a key, except for the hard lock key which may be kept at a central location.
The base 110, which is supported by a plurality of rolling members 120 (e.g., casters), is designed to provide stability to the frame 111, similar to the base 310 of the medical cart 300, 500. However, the base 110 is also designed such that the two of the rolling members 121 on one side of the module 100 are spaced apart farther than the two rolling members 123 on the other side of the module 100. As a result, when two medication modules 100 (or a medication module 100 and a medical cart 300, 500) are brought together, the closer spaced rolling members 123 of one module 100 can fit between the farther spaced rolling members 121 of the other module 100 (or medical cart 300, 500), thereby enabling the modules 100 (or module 100 and medical cart 300, 500) to nest closer together to form a train 200.
As a result of the ability to nest the bases 110 of a plurality of consecutive medication modules 100 in a train 200 (as later described in detail), the sidewalls 112, 112 of adjacent modules 100 can be positioned in close proximity, thereby creating a small footprint for the train 200. Similarly, as a result of the ability to nest the base 110 of a medication module 100 and the base 310 of a medical carts 300, 500, the compartments of the medication module 100 can be in close proximity to the work platform 340 of the medical cart 300, 500, thereby providing a user with easy access thereto.
To releaseably link the nested medication modules 100 (or a medication module 100 and nested a medical cart 300, 500), the base 110 of the medication module 100 is provided with a connection mechanism 171. The connection mechanism 171 includes an actuator 180, a first locking mechanism 170, and a second locking mechanism 190, as best shown in
The first locking mechanism 170 includes beams 188, cover plates 186 having sloped surfaces 194, and catches 184 which comprise cavities 187. When the rod 182 of the actuator 180 rotates, it pulls the beams 188 toward the center of the base 110. In turn, the beams 188 cause the cover plates 186 to rotate toward the center of the base 110. As the cover plates 186 rotate, they expose the cavities 187 in the catches 184. Correspondingly, when the actuator 180 is released, the rod 182 rotates back to the resting position, thereby pushing the beams 188 away from the center of the base 110 and, in turn, rotating the cover plates 186 to enclose the cavities 187.
When the cavities 187 are closed, they are designed to releaseably contain posts 197 of a second locking mechanism 190 of another medication module 100 or of a medical cart 300, 500. In addition, although the posts 197 may be provided separately on the base 110, 310, of the medication module 100 and medical carts 300, 500, they are preferably integrally formed by means of a crossbar 196. Regardless of the design of the posts 197, they enable a medication module 100 to be joined to another medication module 100 to form a train 200, as shown in
A train 200 of medication modules 100A-100C can be formed by releaseably aligning the posts 197 of a second locking mechanism 190 of one medication module 100A with the cover plates 186 of a first locking mechanism 170 of an adjacent medication module 100B. By pushing the modules 100A, 100B toward each other, the posts 197 will slide along the sloped surfaces 194 of the cover plates 186, thereby causing the cover plates 186 to rotate. As the cover plates 186 rotate, the cavities 187 will be exposed and the posts 197 will slide into them. After the posts 197 slide into the cavities 187, the cover plates 186 will retract, thereby locking the posts 197 in the cavities. Of course, to add a third medication module 100C, the posts 197 of the second medication module 100B would be similarly inserted into the cavities 187 of the third medication module 100C.
As the medical carts 300, 500 also include second locking mechanisms 190, the medication module can be releaseably joined with the medical carts 300, 500. For example, as shown in
As shown in
Similar to the aforementioned method, a modification may be made. Specifically, there may arise situations in which a nurse 750 does not want to push a combined medication module 100 and medical cart 300, 500 but wants to enjoy the functionality of the medical cart 300, 500. In these situations, the nurse 750 may unlock the compartments 130 of medication module 100 at the second location 800 and remove one or more compartments 130. The removed compartments 130 could then be exchanged with compartments 530 in the medical cart 500 or placed on the work platform of the medical cart 300 so that the medical cart 300, 500 then contains the medications which the nurse 750 needs to deliver.
If the compartments 130 of the medication module 100 are exchanged with the compartments 530 of the medical cart 500, the medication modules 100 containing the empty compartments 530 of the medical carts 500 may then be taken back to central location 700 for refilling while the original medication is being taken by nurses to the patients, so that the method of medication transport can be repeated.
Although the aforementioned describes embodiments of the invention, the invention is not so restricted. It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments of the present invention without departing from the scope or spirit of the invention. Accordingly, these other medication modules, medical carts, height adjustment mechanisms, keyless entry systems, and methods of medication transport are fully within the scope of the claimed invention. Therefore, it should be understood that the apparatuses and methods described herein are illustrative only and are not limiting upon the scope of the invention, which is indicated by the following claims.
This application is a Divisional of U.S. application Ser. No. 13/544,922, filed Jul. 9, 2012, which is a Continuation of U.S. application Ser. No. 13/187,328, filed Jul. 20, 2011, incorporated herein by reference in its entirety, which is a Continuation of U.S. application Ser. No. 12/550,771, filed Aug. 31, 2009, incorporated herein by reference in its entirety, which is a Divisional of U.S. application Ser. No. 12/193,346, filed Aug. 18, 2008, incorporated herein by reference in its entirety, which is a Continuation of U.S. application Ser. No. 10/783,030, filed Feb. 23, 2004, incorporated herein by reference in its entirety, which claims priority from Provisional Application U.S. Application 60/448,920, filed Feb. 24, 2003, incorporated herein by reference in its entirety and which claims priority from Provisional Application U.S. Application 60/484,658, filed Jul. 7, 2003, incorporated herein by reference in its entirety and which claims priority from Provisional Application U.S. Application 60/518,649, filed Nov. 12, 2003, incorporated herein by reference in its entirety and which claims priority from Provisional Application U.S. Application 60/532,900, filed Dec. 30, 2003, incorporated herein by reference in its entirety and which is a Continuation-In-Part of U.S. application Ser. No. 29/196,712, filed Jan. 2, 2004, incorporated herein by reference in its entirety and which is a Continuation-In-Part of U.S. application Ser. No. 29/196,713, filed Jan. 2, 2004, incorporated herein by reference in its entirety and which is a Continuation-In-Part of U.S. application Ser. No. 29/196,714, filed Jan. 2, 2004, incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D146375 | Obrig | Feb 1947 | S |
2848290 | Doty | Aug 1958 | A |
3015494 | Fosbrook, Sr. | Jan 1962 | A |
3024036 | Reynolds | Mar 1962 | A |
3031207 | Bard | Apr 1962 | A |
3174768 | Sanders et al. | Mar 1965 | A |
3208768 | Hulbert | Sep 1965 | A |
3910659 | Peterson | Oct 1975 | A |
D240629 | Cope | Jul 1976 | S |
3993319 | Day | Nov 1976 | A |
4071740 | Gogulski | Jan 1978 | A |
4114965 | Oye et al. | Sep 1978 | A |
4127202 | Jennings et al. | Nov 1978 | A |
4440096 | Rice et al. | Apr 1984 | A |
4735469 | Liggett | Apr 1988 | A |
4766422 | Wolters et al. | Aug 1988 | A |
4790610 | Welch et al. | Dec 1988 | A |
4875696 | Welch et al. | Oct 1989 | A |
4894600 | Kearney | Jan 1990 | A |
4967928 | Carter | Nov 1990 | A |
4976450 | Ellefson | Dec 1990 | A |
4986555 | Andreen | Jan 1991 | A |
4989291 | Parent | Feb 1991 | A |
5058911 | Hunter et al. | Oct 1991 | A |
5151581 | Krichever et al. | Sep 1992 | A |
5174223 | Nagy et al. | Dec 1992 | A |
5187641 | Muskatello et al. | Feb 1993 | A |
5257767 | McConnell | Nov 1993 | A |
D349594 | Bonazza | Aug 1994 | S |
5348324 | Trotta | Sep 1994 | A |
5472220 | Stephan | Dec 1995 | A |
D367381 | Licari | Feb 1996 | S |
5526756 | Watson | Jun 1996 | A |
5564803 | McDonald et al. | Oct 1996 | A |
5634649 | Breining et al. | Jun 1997 | A |
5653413 | Fink | Aug 1997 | A |
5655743 | Gillis | Aug 1997 | A |
5680820 | Randolph | Oct 1997 | A |
D387168 | Edelman et al. | Dec 1997 | S |
D389917 | Hornback et al. | Jan 1998 | S |
5704625 | Presnell et al. | Jan 1998 | A |
5704698 | Lin | Jan 1998 | A |
D390733 | Brunner et al. | Feb 1998 | S |
5734839 | Enoki et al. | Mar 1998 | A |
5758848 | Beule | Jun 1998 | A |
5758935 | Coonan | Jun 1998 | A |
5765842 | Phaneuf et al. | Jun 1998 | A |
5806943 | Dell et al. | Sep 1998 | A |
5841361 | Hoffman | Nov 1998 | A |
D402529 | Husted | Dec 1998 | S |
5842708 | Miyaoka | Dec 1998 | A |
D410230 | Witte | May 1999 | S |
5918892 | Aaron et al. | Jul 1999 | A |
5966760 | Gallant et al. | Oct 1999 | A |
5967479 | Sweere et al. | Oct 1999 | A |
6045098 | Timm | Apr 2000 | A |
6050660 | Gurley | Apr 2000 | A |
6073942 | Heneveld, Sr. | Jun 2000 | A |
6079676 | Hackett et al. | Jun 2000 | A |
D438952 | Cimino et al. | Mar 2001 | S |
6219587 | Ahlin et al. | Apr 2001 | B1 |
D441513 | Mullen et al. | May 2001 | S |
6240856 | Paskey et al. | Jun 2001 | B1 |
6289825 | Long | Sep 2001 | B1 |
6339732 | Phoon et al. | Jan 2002 | B1 |
D458780 | Siepmann et al. | Jun 2002 | S |
D459477 | Stocks et al. | Jun 2002 | S |
6397761 | Moore | Jun 2002 | B1 |
6418854 | Kraft | Jul 2002 | B1 |
6435407 | Fiordelisi | Aug 2002 | B1 |
D462674 | Siepmann et al. | Sep 2002 | S |
6454293 | Anderson | Sep 2002 | B1 |
D465895 | Pfefferle et al. | Nov 2002 | S |
6484939 | Blaeuer | Nov 2002 | B1 |
6493220 | Clark et al. | Dec 2002 | B1 |
6497391 | Timm | Dec 2002 | B1 |
D468420 | Bolmsjo | Jan 2003 | S |
6561530 | Carbonero | May 2003 | B2 |
6578501 | Moore | Jun 2003 | B1 |
6615744 | Eckstein et al. | Sep 2003 | B1 |
6626445 | Murphy et al. | Sep 2003 | B2 |
6626686 | D'Souza et al. | Sep 2003 | B1 |
D481847 | Van Landingham, Jr. | Nov 2003 | S |
D482173 | Van Landingham, Jr. | Nov 2003 | S |
6682030 | Santoro et al. | Jan 2004 | B2 |
6683784 | Bidwell et al. | Jan 2004 | B1 |
D486915 | Warschewske et al. | Feb 2004 | S |
D487178 | Cuzzocrea | Feb 2004 | S |
6721178 | Clark et al. | Apr 2004 | B1 |
6722673 | Hamlin | Apr 2004 | B1 |
6749158 | Timm | Jun 2004 | B2 |
D497462 | Ryan | Oct 2004 | S |
D500575 | Lucas | Jan 2005 | S |
6860494 | Chisholm | Mar 2005 | B1 |
6874807 | Labadie et al. | Apr 2005 | B1 |
6883439 | Moore | Apr 2005 | B1 |
7104556 | Young | Sep 2006 | B1 |
7106014 | Mastalir et al. | Sep 2006 | B1 |
7490837 | Pond et al. | Feb 2009 | B2 |
7540243 | George et al. | Jun 2009 | B2 |
7594668 | Arceta et al. | Sep 2009 | B2 |
20020125664 | Eriksson et al. | Sep 2002 | A1 |
20020165641 | Manalang et al. | Nov 2002 | A1 |
20030102784 | Friar et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
195 40 058 | Jun 1996 | DE |
196 49 982 | Jun 1998 | DE |
0 834 268 | Apr 1998 | EP |
WO-0197745 | Dec 2001 | WO |
Entry |
---|
MLT 2001 Variable Height Laptop/Peripheral Cart (1997); 4 pgs. |
Tremont Medical PCT-SC Ergonomically designed Trans-Mobile self-contained clinical computing workstation system Brochure (1997) 2 pp. |
www.Ergotron.com; Mobile WorkCenter System brochure, 1997, 5 pp. |
U.S. Appl. No. 60/369,858, filed Apr. 5, 2002, Warchewske et al. |
Brochure Pages regarding Range of Motion; dtd Feb. 2002; 5 pp. |
Ergotron® ErgoCart Optional Components; dtd Oct. 2001; 2 pgs. |
Ergotron® HD Series Cart, Orderguide, dtd Feb. 1, 2003; 8 pp. |
Ergotron® HD Series Cart; Product Bulletin; dtd Aug. 2002,6 pp. |
Ergotron® Mobile Work Center Brochure, self contained computer workstation on wheels; dtd Apr. 9, 2003; 16 pp. |
Ergotron® Mobile Work Center Brochure; dtd Jun. 2000; 16 pp. |
Ergotron® Mobile Work Center Product Sheet; dtd Apr. 23, 2003; 2 pp. |
Ergotron® Organizational solutions brochure; 2pp. |
Ergotron®ErgoCart Product Bulletin; dtd Oct. 2001; 2pp. |
Flo Healthcare Solutions, LLC v. David Kappos (USPTO) and Rioux Vision, Inc., No. 2011-1476 (CAFC) DTD Oct. 23, 2012. |
iCart PointofCare Brochure (Lionville), Jun. 2004, 2 pages. |
Notice of Allowance dated Jul. 7, 2005 received in corresponding U.S. Appl. No. 29/196,712. |
Notice of Allowance dated Jun. 1, 2005 received in corresponding U.S. Appl. No. 29/196,714. |
Notice of Allowance dated May 31, 2005 received in corresponding U.S. Appl. No. 29/196,713. |
Notice of Allowance dated Nov. 17, 2004 received in corresponding U.S. Appl. No. 29/199,985. |
Notice of Allowance dated Nov. 18, 2004 received in corresponding U.S. Appl. No. 29/199,984. |
Notice of Allowance received in U.S. Appl. No. 12/193,346 dated May 20, 2009. |
Office Action received in U.S. Appl. No. 10/783,030 dated Jun. 26, 2006. |
Office Action received in U.S. Appl. No. 10/783,030 dated Feb. 19, 2008. |
Office Action received in U.S. Appl. No. 10/783,030 dated Jun. 13, 2007. |
Photo Image of EMS Cart With Optional Locking Drawers, 1 page. |
Rioux Vision, Inc. v. Flo Healthcare Solutions, LLC, No. 2010-010026, 2011 WL 289281 (Bd.Pat.App.& Interf.)Appeal dtd Jan. 26, 2011. |
Ritter Installation and Operation Manual for 345 Procedures Cart, 1998, 11 pages. |
Rubbermaid Incorporated d/b/a Rubbermaid Medical Solutions v. Ergotron, Inc.; Defendant Ergotron Inc.'s First Amended Invalidity Contentions; Case No. 3:12-CV-00416-RJC-DSC; 2013 (W.D.N.C.). |
Rubbermaid Incorporated d/b/a Rubbermaid Medical Solutions v. Ergotron, Inc.; Defendant Ergotron, Inc.'s Initial Invalidity Contentions; Case No. 3:12-CV-00416-RJC-DSC; 2013 (W.D.N.C.). |
Supplemental Notice of Allowability dated Dec. 28, 2005 received in corresponding U.S. Appl. No. 29/196,713. |
Supplemental Notice of Allowability dated Nov. 25, 2005 received in corresponding U.S. Appl. No. 29/196,712. |
The Ergotron® ErgoCart Product Sheet, (2001); 4 pp. |
US Notice of Allowance received in connection with U.S. Appl. No. 13/187,328 DTD May 14, 2012. |
US Office Action on U.S. Appl. No. 12/550,771 DTD Jan. 28, 2011. |
US Office Action on U.S. Appl. No. 12/550,771 DTD Jun. 24, 2011. |
US Office Action on U.S. Appl. No. 13/544,922 DTD Feb. 5, 2013. |
US Office Action received in connection with U.S. Appl. No. 13/187,328 DTD Jan. 12, 2012. |
www.hoise.com/vmw/LV-VM-03-01-24.html; Virtual Medical Worlds, NorthEast Medical Center in North Carolina First to Test New EMS Mobile Clinical Workstation, Atlanta, Feb. 5, 2001, 2 pages. |
www.infologixsys.com; InfoLogix Web Page Printouts for Mobile Cart Computing: Info Carts, Organizer Cart, Mobile Laptop/Integrated Flat Screen/Peripheral Cart, Variable Height Laptop Cart, SL-Cart and SL-Laptop Cart, © 2002-2003, 7 pages. |
www.lionville.com/news1.html; Lionville Webpage Capture, Mar.-Apr. © 2004, 3 pages. |
www.naware.com; NaWare Brochure, Nov. 5, 2001, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20130300075 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
60448920 | Feb 2003 | US | |
60484658 | Jul 2003 | US | |
60518649 | Nov 2003 | US | |
60532900 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13544922 | Jul 2012 | US |
Child | 13942463 | US | |
Parent | 12193346 | Aug 2008 | US |
Child | 12550771 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13187328 | Jul 2011 | US |
Child | 13544922 | US | |
Parent | 12550771 | Aug 2009 | US |
Child | 13187328 | US | |
Parent | 10783030 | Feb 2004 | US |
Child | 12193346 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29196712 | Jan 2004 | US |
Child | 10783030 | US | |
Parent | 29196714 | Jan 2004 | US |
Child | 29196712 | US | |
Parent | 29196713 | Jan 2004 | US |
Child | 29196714 | US |