The present invention relates generally to a medical chair protective barrier and gas distribution system. More so, the present invention relates to a protective barrier and gas distribution system that is operable with a medical chair, provides a mobile frame that operates adjacent to the head area of a medical chair to: deliver a medical gas to the head area of the medical chair, support a protective hood for containing the medical gas in the head area and preventing the medical professional from contacting the medical gas, vent the medical gas out of the protective hood through an exhaust port, and retain at least one medical armamentarium within easy access to the medical professional.
The following background information may present examples of specific aspects of the prior art (e.g., without limitation, approaches, facts, or common wisdom) that, while expected to be helpful to further educate the reader as to additional aspects of the prior art, is not to be construed as limiting the present invention, or any embodiments thereof, to anything stated or implied therein or inferred thereupon.
Typically, a reclining chair used in the field of dentistry is an elongated chair or bed, that is adjustable in height and is shaped to support the patient's body, generally from the head to the lower legs. The chair can usually be reclined to position the patient, and particularly the patient's mouth, for convenience to the dentist and dental technician.
Dental interventions in patients which are performed in dental offices require operating with a high degree of local sterility, in order to ensure health and safety for the patient. In particular, in dental medical offices, a high degree of sterility can be desired in an extremely reduced operative area. Such need does not typically justify the extremely burdensome use of certain methods and apparatuses typically employed in the hospital operating rooms. Thus, an aerosol that is produced from dental instruments like ultrasonic scalers, dental handpieces, three-way syringes and other high-speed instruments. These aerosols are air suspended in the clinical environment. These aerosols can pose risks to the clinical, staff and other patients as well.
Other proposals have involved dental chair sterilization systems. The problem with these dental systems is that they do not efficiently deliver aerosols to the head of the patient. Also, the dentist is not protected from splatter and contamination from the aerosol. Even though the above cited dental systems meet some of the needs of the market, a protective barrier and gas distribution system that is operable with a medical chair, provides a mobile frame that operates adjacent to the head area of a medical chair to: deliver a medical gas to the head area of the medical chair, support a protective hood for containing the medical gas in the head area and preventing the medical professional from contacting the medical gas, vent the medical gas out of the protective hood through an exhaust port, and retain at least one medical armamentarium within easy access to the medical professional, is still desired.
Illustrative embodiments of the disclosure are generally directed to a medical chair protective barrier and gas distribution system. The medical chair protective barrier and gas distribution system serves to create a protective environment near the head of a medical chair that introduces, contains, and vents a medical gas at the head area of the patient.
In some embodiments, the medical chair protective barrier and gas distribution system provides a frame that forms a protective environment near the head of a medical chair. A laminar flow subassembly secures to the frame. The laminar flow subassembly includes a vacuum pump, tubing, positive pressure inlet ports, negative pressure outlet ports, and a vent for delivering medical gas to the head area of the medical chair; and consequently, to the head of the patient. The frame carries a protective hood that covers the head of area of the medical chair. The hood retains the medical gas in a sealed environment, while also allowing the medical professional access to the patient. The hood is resilient, opaque, and thereby, configured to substantially contain the medical gas in proximity the head area while protecting the medical professional from contact with the medical gas. A window in the hood regulates access to the inside of hood. Additionally, the frame helps retain at least one medical armamentarium to enable easy access by the medical professional.
In essence, the invention provides a net negative pressure hood or canopy for a dental delivery unit. The whole concept of an all in one dental delivery unit that can help mitigate aerosol, contagion spread, and even self-disinfect, while increasing dentist efficiency as well as patient comfort.
In one aspect, a medical chair protective barrier and gas distribution system, comprises:
In another aspect, the frame is operable in proximity to a head region of a medical chair.
In another aspect, the frame fastens to the medical chair.
In another aspect, the frame rolls to the head region of the medical chair.
In another aspect, the medical chair comprises a dental chair.
In another aspect, the at least two vertical bars comprise four vertical bars.
In another aspect, the system further comprises a mobility mechanism at a bottom end of the vertical bars.
In another aspect, the mobility mechanism includes at least one of the following: a wheel, a castor wheel, a roller, a blade, and a slick mat.
In another aspect, the at least two horizontal bars comprise a U-shaped arrangement of horizontal bars supporting the vertical bars, the horizontal bars further comprising multiple transverse support bars.
In another aspect, the fluid comprises a gas.
In another aspect, the gas comprises a dental aerosol.
In another aspect, the vacuum subassembly comprises a vacuum pump, a positive pressure port, and a negative pressure port, the vacuum pump being operable to displace the fluid from the positive pressure port to the negative pressure port.
In another aspect, the vent of the laminar flow subassembly comprises an FDA approved HVAC subassembly, or a filtration subassembly, or both.
In another aspect, the hood is resilient.
In another aspect, the hood is at least partially transparent.
In another aspect, the hood comprises a window, the window enabling access to the area in proximity to the frame.
In another aspect, the hood is fabricated from a clear acrylic material.
In another aspect, the medical gas comprises infectious aerosols, disinfectants, and air.
One objective of the present invention is to prevent escape of dental aerosols from the head region of a dental chair with a protective hood.
Another objective is to minimize compromise to patient comfort and the medical professional in the course of performing dental procedures.
Yet another objective is to retrofit the frame, laminar flow subassembly, and hood to existing dental chairs and delivery systems.
An exemplary objective is to prevent greater than 90% of gas and aerosol from escaping; and also prevent 100% of splatter from transferring from the patient to the medical professional.
Yet another objective is to mitigating transfer of infectious agents from the patient area to the medical professional.
Another objective is to provide a disposable frame.
Additional objectives are to provide an inexpensive to manufacture medical chair protective barrier and gas distribution system.
Other systems, devices, methods, features, and advantages will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims and drawings.
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Like reference numerals refer to like parts throughout the various views of the drawings.
The following detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
A medical chair protective barrier and gas distribution system 100 is referenced in
As
Looking now at
In some embodiments, the frame 102 may comprise of at least two vertical bars 104a-d that interconnect with at least two horizontal bars 106a-e. In one non-limiting embodiment, the at least two vertical bars 104a-d comprise four vertical bars 104a-d. In other embodiments, the at least two horizontal bars 106a-e comprise a U-shaped arrangement of horizontal bars 106a-e supporting the vertical bars 104a-d. The horizontal bars 106a-e further comprising multiple transverse support bars that add structural integrity to the frame 102. In other embodiments, the bars 104a-d, 106a-e are pivotable about a hinge 128. However, the bars may also be stationary. Suitable materials for the frame 102 may include, without limitation, steel, aluminum, metal alloy, a rigid polymer, and wood.
In some embodiments, the system 100 may also utilize a mobility mechanism 108a-b at a bottom end 110 of the vertical bars 104a-d. The mobility mechanism 108a, 108b may include, without limitation, a wheel, a castor wheel, a roller, a blade, and a slick mat. Thus, the mobility mechanism 108a-b allows the frame 102 to roll or slide in proximity to the head region 124 of the medical chair 126. Additionally, the frame 102 helps retain at least one medical armamentarium to enable easy access by the medical professional 700. For example, the horizontal bars serve as hanging surfaces for dental instruments.
As illustrated in
In one possible embodiment, the vacuum subassembly 112 has inlet ports 300a-n that are positive pressure ports. Conversely, the outlet ports 118 include a negative pressure port. As is known in the art, the fluid travels from the positive pressure to the negative pressure. This is especially true for gases. The laminar flow subassembly 112 may also include various types of internal electrical components, vacuum ports, compressed air, sand, and a water supply, as known in the art. These all serve to carry the fluid 304 to the head region 124 of the medical chair 126. In an alternative embodiment, the inlet and outlet vacuum ports 300a-n, 118 utilizes a high efficiency particulate air (HEPA) filter 802, and a hidden UV light 804 to provide additional disinfecting capacity.
In some embodiments, the system 100 utilizes a vacuum pump 302 that is configured to operatively connect to the laminar flow subassembly 112 (See
In one possible embodiment, the vent 116 of the laminar flow subassembly 112 comprises an FDA approved HVAC subassembly, and a filtration subassembly. It is known in the art that introducing a gas, such as an aerosol, to a dental patient is necessary when performing complicated dental procedures, including endodontics. Thus, the frame 102 brings the fluid 304 in proximity to the head region of the medical chair, the laminar flow subassembly 112 introduces the gas, and the hood 120 maintains the gas extensively in the confines of the head region 124 for the medical chair 126.
As illustrated in
In one possible embodiment shown in
The hood 120 also forms a pair of arm passageways 702a, 702b at the lateral sides. The arm passageways 702a-b enable passage of the arms from the medical professional. The arm passageways 702a-b are sized and dimensioned to enable a snug fit for the arms, so that the medical professional can access the patient 704.
In conclusion,
Looking now at
These and other advantages of the invention will be further understood and appreciated by those skilled in the art by reference to the following written specification, claims and appended drawings. Because many modifications, variations, and changes in detail can be made to the described preferred embodiments of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalence.