Medical closure methods and screen devices

Information

  • Patent Grant
  • 8070773
  • Patent Number
    8,070,773
  • Date Filed
    Friday, May 30, 2008
    16 years ago
  • Date Issued
    Tuesday, December 6, 2011
    13 years ago
Abstract
A medical closure screen device for a separation of first and second tissue portions is provided, which includes a mesh screen comprising tubular vertical risers, vertical strands with barbed filaments, and horizontal spacers connecting the risers and strands in a grid-like configuration. An optional perimeter member partly surrounds the screen and can comprise a perimeter tube fluidically coupled with the vertical risers to form a tubing assembly. Various input/output devices can optionally be connected to the perimeter tube ends for irrigating and/or draining the separation according to methodologies of the present invention. Separation closure, irrigation and drainage methodologies are disclosed utilizing various combinations of closure screens, tubing, sutures, fluid transfer elements and gradient force sources. The use of mechanical forces associated with barbed strands for repositionably securing separated tissues together is disclosed. The use of same for eliminating or reducing the formation of subcutaneous voids or pockets, which can potentially form hematoma and seroma effects, is also disclosed.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical closure and wound fluid management devices, and in particular to an absorbable screen closure member for closing tissue separations, such as incisions and wounds.


2. Description of the Prior Art


In the medical field, cutaneous incisions are commonly performed in surgery to provide access to underlying tissue, organs, joints, skeletal structure, etc. Incision and closure techniques are an important part of surgery in general. They tend to occupy surgical teams and other resources for significant portions of many surgical procedures.


Surgeons generally strive to minimize the traumatic and scarring effects of surgery on their patients by both minimizing the incisions, and by employing a variety of closure techniques which tend to reduce postoperative swelling, bleeding, seroma, infection and other undesirable postoperative side effects. For example, the fields of endoscopic-assisted surgery, microscopic surgery, and computer-enhanced instrumentation (e.g., the DaVinci System available from Intuitive Surgical, Inc. of Sunnyvale, Calif.) are generally concerned with minimally invasive surgery (“MIS”) procedures and techniques, which have proven to be increasingly popular. Such popularity is at least partly due not only to the minimally-sized scars left by such techniques, but also to the minimal trauma to the fascia and muscle layers and the correspondingly faster recoveries this allows. However, surgeons must balance such considerations with providing adequate access to perform various surgical procedures.


Some surgical procedures, by their nature, must include long incisions. Examples include cutaneous excisional procedures such as “lifts” and reduction procedures, flap procedures for closure of defects, and many bariatric procedures.


The “first intention” (primary intention healing) in surgery is to “close” the incision. For load-bearing tissues, such as bone, fascia, and muscle, this requires substantial material, be it suture material, staples, or plates and screws. For the wound to be “closed,” the epithelial layer must seal. To accomplish this, the “load bearing” areas of the cutaneous and subcutaneous layers (i.e., the deep dermal elastic layer and the superficial fascia or fibrous layers of the adipose tissue, respectively) must also at least be held in approximation. Important considerations include controlling infection and bleeding, reducing scarring, eliminating the potential of hematoma, seroma, and “dead-space” formation and managing pain. Dead space problems are more apt to occur in the subcutaneous closure. Relatively shallow incisions can normally be closed with surface-applied closure techniques, such as sutures, staples, glues, and adhesive tape strips. However, deeper incisions may well require not only skin surface closure, but also time-consuming placement of multiple layers of sutures in the load-bearing planes. Absorbable sutures are commonly used for this purpose and comprise an important class of surgical sutures. Depending on various factors, absorbable sutures typically dissolve over a period of a few days to a few months. Commercially available examples include Monocryl® monofilament absorbable synthetic sutures comprising a poliglecaprone and PDS® (polydrioxanone) and Vicryl® (polyglactin) sutures, all available from Ethicon, Inc., of Somerville, N.J.


Surgical mesh represents another important class of surgical closure devices. Applications include reconstruction, hernia repair, and organ repair. In such procedures, surgical mesh fabric prostheses are inserted into patients through either open surgery or endoscopic (MIS) procedures. Knitted surgical mesh for hernia repair is disclosed in the Agarwal et al. U.S. Pat. No. 6,287,316, which is assigned to Ethicon, Inc. Another Ethicon, Inc. patent, Duncan U.S. Pat. No. 4,548,202, discloses mesh tissue fasteners including various fastening members with spaced-apart legs for passing through tissue portions. Another closure procedure involves the placement of pins or rods through skin edge or bone followed by the placement of an external clamp or fixator device spanning the wound and frequently incorporating a worm-screw apparatus capable of progressive tightening over time to effect closure, stabilization or distraction.


Fluid management represents another important aspect of both open and minimally invasive surgery. Postoperative fluid drainage can be accomplished with various combinations of tubes, sponges, and porous materials adapted for gathering and draining bodily fluids. The prior art includes technologies and methodologies for assisting drainage. For example, the Zamierowski U.S. Pat. Nos. 4,969,880; 5,100,396; 5,261,893; 5,527,293; and 6,071,267 disclose the use of pressure gradients, i.e., vacuum and positive pressure, to assist with fluid drainage from wounds, including surgical incision sites. Such pressure gradients can be established by applying porous sponge material either internally or externally to a wound, covering same with a permeable, semi-permeable, or impervious membrane, and connecting a suction vacuum source thereto. Fluid drawn from the patient is collected for disposal. Such fluid control methodologies have been shown to achieve significant improvements in patient healing. Another aspect of fluid management, postoperative and otherwise, relates to the application of fluids to wound sites for purposes of irrigation, infection control, pain control, growth factor application, etc. Wound drainage devices are also used to achieve fixation and immobility of the tissues, thus aiding healing and closure. This can be accomplished by both internal closed wound drainage and external vacuum devices. Fixation of tissues in apposition can also be achieved by bolus tie-over dressings (Stent dressings), taping, strapping and (contact) casting.


Heretofore, there has not been available a medical closure screen with the advantages and features of the present invention, including the combination of same with vacuum-assisted closure.


SUMMARY OF THE INVENTION

In the practice of the present invention, a medical closure screen device is provided, which includes a mesh screen comprising tubular vertical risers, barbed filaments therebetween and horizontal spacers. An optional perimeter member partly surrounds the screen member and can comprise a perimeter tube fluidically coupled with the vertical risers to form a tubing assembly. The tubing assembly cooperates with the vertical risers to extract fluid from the tissue separation in a drain mode and to introduce fluid thereinto in an irrigate mode. In one embodiment of the invention the tubing assembly is fluidically coupled to a vacuum source to facilitate drainage. In another embodiment of the invention, the perimeter tube is passed through the surrounding tissue to secure the screen member in place. Fluid transfer elements, such as sponges, are optionally placed adjacent to and over an extension of the screen for fluid transfer, for example, in conjunction with a vacuum or pump source. Another embodiment of the invention includes a suture connected to the screen and adapted for securing same in a tissue separation. Alternative embodiment vertical risers are also disclosed, and can provide active fluid transfer utilizing the patient's body dynamics. Yet another alternative embodiment of the present invention utilizes the screen barbs for mechanical fixation in a separation for closure of same. Separation closure, irrigation and drainage methodologies are disclosed utilizing various combinations of closure screens, tubing, sutures, fluid transfer elements and gradient force sources. The closure screen of the present invention uses mechanical and other forces associated with screens and barbed strands for securing separated tissues together and for eliminating or reducing the formation of subcutaneous voids or pockets, which can potentially form hematoma and seroma effects.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational view of a medical closure screen device embodying the present invention.



FIG. 2 is an enlarged, fragmentary, side elevational view thereof, taken generally within circle 2 in FIG. 1.



FIG. 3 is an enlarged, fragmentary, side elevational view thereof, taken generally along line 3-3 in FIG. 2, and particularly showing a barbed strand.



FIGS. 4
a-f show alternative perimeter tube end closures comprising: 4a) subdermal termination; 4b) knotted end; 4c) Leur lock; 4d) transfer element (i.e., sponge); 4e) vacuum source; and 4f) clamped end.



FIGS. 5
a-e show a tissue separation closure procedure embodying the method of the present invention.



FIG. 6
a is an enlarged, fragmentary, cross-sectional view of the closure screen in a tissue separation, with skin hooks shown in hidden lines for positioning the separated tissue portions along the closure screen.



FIG. 6
b is an enlarged, fragmentary, cross-sectional view of the closure screen in a substantially closed tissue separation.



FIGS. 7
a-f show a tissue separation closure procedure embodying the method of the present invention and utilizing optional sponge or foam fluid transfer elements and a tubing placement tool.



FIG. 8 is a cross-sectional view of a tissue separation closure utilizing tubing for securing the closure screen with a fluid transfer subassembly connected to an upper edge of the closure screen.



FIG. 9 shows a needle mounting a length of drain tubing and adapted for passing same through tissue.



FIG. 10 is a side elevational view of a closure screen comprising an alternative embodiment of the present invention, with a perimeter suture.



FIG. 11
a is an enlarged, fragmentary, side elevational view thereof, taken within circle 11a in FIG. 10.



FIG. 11
b is an enlarged, fragmentary, side elevational view thereof, showing modified vertical risers.



FIG. 12 is a side elevational view of a screen-only closure screen comprising an alternative embodiment of the present invention.



FIG. 13
a is an enlarged, fragmentary, side elevational view thereof, taken generally within circle 13a in FIG. 12.



FIG. 13
b is an enlarged, fragmentary, side elevational view thereof, showing modified vertical risers.



FIGS. 14
a-g show a tissue separation closure procedure utilizing the screen-only embodiment of the closure screen.



FIG. 15
a is a side elevational view of a modified vertical riser with flexible, multi-tube risers forming a fluid passage.



FIG. 15
b is a cross-sectional view thereof, taken generally along line 15b-15b in FIG. 15a.



FIG. 16
a is a fragmentary, side elevational view thereof, shown in a compressed configuration.



FIG. 16
b is a cross-sectional view thereof, taken generally along line 16b-16b in FIG. 16a.



FIG. 17 is a cross-sectional view of another modified vertical riser construction with risers bundled in a different configuration, with barbs.



FIG. 18 is a cross-sectional view of a modified vertical riser or perimeter element, comprising a fluted tube.



FIG. 19 is an enlarged, fragmentary, side elevational view of a modified barbed strand configuration.



FIG. 20 is an enlarged, fragmentary, side elevational view of another modified barbed strand configuration.



FIG. 21 is an enlarged, cross-sectional view of a closure screen comprising an alternative embodiment of the present invention, with barbs formed by cutting off the ends of looped filaments.



FIG. 22 is an enlarged, cross-sectional view of a closure screen comprising an alternative embodiment of the present invention, with barbs forming hooks and constructed by cutting looped filaments.



FIG. 23 is an enlarged, cross-sectional view of a closure screen comprising yet another alternative embodiment of the present invention, with barbs formed by cutting off the ends of looped filaments, which are laid over in a common direction or orientation.



FIG. 24 is an enlarged, cross-sectional view of a closure screen comprising a further alternative embodiment of the present invention, with barbs forming hooks and constructed by cutting looped filaments, which are laid over in a common direction or orientation.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Introduction and Environment


As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.


Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, the words “upwardly”, “downwardly”, “rightwardly” and “leftwardly” will refer to directions in the drawings to which reference is made. The words “inwardly” and “outwardly” will refer to directions toward and away from, respectively, the geometric center of the embodiment being described and designated parts thereof. The words “horizontal” and “vertical” generally mean side-to-side and end-to-end, respectively. Said terminology will include the words specifically mentioned, derivatives thereof and words of a similar import.


Referring to the drawings in more detail, the reference numeral 2 generally designates a medical closure screen device or system embodying the present invention. Without limitation on the generality of useful applications of the closure screen system 2, the primary application disclosed herein is for assistance with the closing, draining, irrigating and healing of a separation of first and second tissue portions, such as a wound or incision 4. As shown in FIG. 5a, the wound 4 extends from and is open at the dermis 6, through the deep dermal layer 7 and the subcutaneous layer 8, and to approximately the fascia 10. The wound 4 displays edges 12a,b, which correspond to first and second tissue portions. The closure screen device 2 generally comprises a screen 14, a screen perimeter member 16 and an input/output (I/O) subsystem 18.


II. Screen 14


The screen 14 includes upper and lower margins 20a,b; first and second ends 22a,b; and first and second faces 24a,b. The screen 14 generally forms a grid configuration with vertical, hollow, perforated tubular risers 26 cross-connected by horizontal spacer members 28. Multiple barbed strands 30 are positioned between the risers 26. The risers 26, the spacers 28 and the strands 30 are preferably joined at their respective intersections. As shown in FIG. 3, each strand 30 includes a filament 32 with multiple, pointed barbs 34 extending upwardly and outwardly on both sides in staggered, spaced relation. The barbs 34 generally project outwardly from the screen faces 24a,b, for purposes which will be described in more detail hereinafter.


The screen or mesh 14 material can be either dissolvable (absorbable) or non-dissolvable (non-absorbable) and can be chosen from a number of commercially-available, biocompatible products, which are commonly used in medical applications for sutures, implantable meshes, and similar medical devices.


Examples of absorbable materials include, but are not limited to: aliphatic polyesters, which include, but are not limited to: homo polymers and copolymers of lactide, .epsilon.-caprolactone, p-dioxanone, trimethylene carbonate, alkyl derivatives of trimethylene carbonate, .delta.-hydroxyvalerate, 1,4-dioxepan-2-one, 1,5-dioxepan-2-one, 6,6-dimethyl-1,4-dioxan-2-one and polymer blends thereof. Examples of nonabsorbable materials include, but are not limited to: cotton, linen, silk, polyamides, polyesters, fluoropolymers, polyolefins, polyethylene and combinations thereof.


III. Screen Perimeter Member 16


The optional screen perimeter member 16 can comprise, for example, a flexible, perforated, hollow tube 35 with multiple orifices 36. As shown in FIG. 1, the tube 35 includes first and second legs 38, 40 extending generally along the screen first and second ends 22a,b, and a base leg 41 extending generally along the screen lower margin 20b. The tubing first and second legs 38, 40 terminate in respective first and second ends 38a, 40a. The tube 35 can be secured to the screen 14 by multiple ties 42, which can comprise extensions of the horizontal spacer members 28 and the strands 30. By providing dissolvable ties 42, the tube 35 can be designed for separation from the remainder of the closure screen 2 after a relatively short period of time. For example, the dissolvable material can dissolve into the patient's body after a few days, whereafter the tube 35 can be removed.


Optionally, portions of the tube 35 can be cut away from the screen 14. For example, the screen 14 can be separated along each screen end 22a,b, or it can be separated completely from the tube 35. In this manner the screen 14 and the tube 35 can be configured to accommodate a variety of conditions and tissue separation configurations.


The vertical risers 26 are optionally fluidically coupled to the tube 35 at respective T intersections 44. In this configuration the tube 35 and the vertical risers 26 cooperate to provide a manifold for fluid handling, i.e. either extraction or irrigation, as indicated by the fluid flow arrows 45.


IV. Input/Output (I/O) Subsystem 18


The input/output subsystem 18 is designed for extraction and/or irrigation of the patient's bodily fluids and/or external fluids. As shown in FIG. 1, the input/output subsystem 18 includes first and second I/O devices 18a,b attached to the tubing first and second leg ends 38a,b, which in this configuration are considered the “port” ends of the tube 35. One or both of the I/O devices 18a,b can comprise a pressure differential source, such as a VAC® (Vacuum Assisted Closure) unit available from Kinetic Concepts, Inc. of San Antonio, Tex. The use of such units for wound treatment and fluid management is disclosed in the Zamierowski U.S. Pat. Nos. 4,969,880; 5,100,396; 5,261,893; 5,527,293; and 6,071,267, which are incorporated herein by reference.


Alternatively, the tubing port ends 38a,b can be connected to various other sources of pressure differential and various drainage and irrigation devices. For example, they can be cut short below the dermis 6 and left within the separation 4 for sealing by the adjacent tissue portions 12a,b. FIG. 4a shows a truncated tubing end 38b. The tubing ends 38a/40a can be knotted (as shown at 48 in FIG. 4b), clipped, tied (e.g., with a suture) or otherwise closed off either above or below the dermis 6. FIG. 4c shows a Leur lock coupling 46 mounted on a tubing end 38a/40a. Still further, a transfer element comprising a piece of foam or sponge 50 can be coupled to the tube 35 at an end 38a/40a (FIG. 4d). Examples of such foam and sponge materials and configurations are discussed in the Zamierowski U.S. patents identified above. A pressure differential source, such as a vacuum source 51, can be connected to a tube end 38a/40a and to a fluid receptacle 66, as shown in FIG. 4e. A clamp 62 is shown in FIG. 4f and closes the tube end 38a/40a. The clamp 62 can be chosen from among several suitable clamps, which are commonly used for medical applications.


Either tube end 38a/40a can function as either an inlet port or an outlet port with respect to the system 2. For example, suction can be applied for pulling fluid from the patient through the system 2 through either tube end 38a/40a. Still further, fluid can be pulled in both directions through the system 2 by alternately or jointly applying suction to the tube ends 38a/40a. For example, suction can be simultaneously applied to both tube ends 38a/40a.


V. Operation and Closure Method



FIGS. 5
a-e show an installation methodology utilizing the system 2 of the present invention. In FIG. 5a, the closure screen 2 is placed in the separation 4 with the tubing base 41 located at the bottom of the separation (e.g., wound or incision) 4 and in proximity to the fascia layer 10. As shown, the tissue portions or wound/incision edges 12a,b are spaced apart. The screen upper margin 20a can protrude outwardly from the dermis 6. FIG. 5b shows the tissue separation edges 12 being pushed together as indicated by the force arrows 52. FIG. 5c shows the separation edges 12 engaged at the dermis 6, and spaced apart somewhat within the subcutaneous layer 8. The edges 12 can be pushed together as indicated by the force arrows 52. Moreover, the screen 2 can be held or positioned inwardly in order to advance the barbs 34 in the separation edges 12, as indicated by the inward or downward force arrows 54a. FIG. 5d shows the separation edges 12a,b substantially closed on the screen 2. Tugging on the screen 14 in the general direction of the outward force arrow 54b sets the mesh barbs 34.



FIG. 5
e shows the separation 4 closed on the closure screen 2, with the tubing 35 removed from the screen 14. The tubing 35 can be removed either pre-installation by cutting the ties 42, or post-installation by allowing the ties 42 to dissolve, whereafter the unsecured tubing 35 can be extracted.



FIG. 6
a shows the barbs 34 compressed by engagement with the separation edges 12a,b. As shown, the separation edges 12 can be manually closed by pressing along the horizontal force arrows 52. The barbs 34 thus deflect inwardly due to their flexibility, thereby allowing the separation edges 12a,b to slide upwardly or outwardly along the screen 14. This process can be repeated until the separation 4 is closed, as shown in FIG. 6b. Any protruding length of the screen 14 can be cut close to the dermis 6. In the final configuration (FIGS. 5e and 6b), the barbs 34 are embedded in the tissue adjacent to the separation edges 12a,b and thus secure the separation 4 in a closed position. The fluid conducting properties of the screen 14 facilitate extracting fluid. An outward or upward force arrow 54b indicates a force direction whereby the screen barbs 34 are set in the adjoining tissue. It will be appreciated that the screen 14 can be securely set in place with the barbs 34, yet the separation edges 12a,b will remain capable of sliding up on the screen 14 by disengaging the barbs 34 with lateral forces, as shown in FIG. 6a. Skin hooks 55 can be used for engaging the tissue portions 12a,b and tugging same outwardly as shown in FIG. 6a. The skin hooks 55 can facilitate positioning and repositioning the screen 14.


VI. Alternative Embodiment Closure Screen Systems and Methodologies



FIGS. 7
a-f show an alternative procedure for mounting the closure screen 2 in a wound drainage application utilizing pressure differential. As shown in FIG. 7a, the tubing 35 can pass through the tissue adjacent to the wound 4 and exit the dermis 6 for termination of the tubing end 38a/40a as described above. An optional layer of a suitable, biocompatible adhesive 64 is shown applied to the closure screen first face 24a for securing same to the first wound edge 12a. FIG. 7b shows the screen 14 extending upwardly from the dermis 6 with the wound edges 12a,b brought together in a manner similar to that described above.


The input/output subsystem 18 includes a pair of optional fluid transfer elements comprising foam or sponge members 56a,b placed on the dermis 6 on either side of a protruding portion 14a of the screen 14. The screen 14 is then cut to a level generally flush with the upper surfaces of the sponges 56a,b, as shown in FIG. 7c. An optional sponge bridge 58 is placed over the sponge members 56a,b (FIG. 7d). Examples of suitable transfer element materials are discussed in the Zamierowski patents noted above and include open-cell, porous foam materials (e.g., polyurethane ester (PUE)) chosen for their hydrophobic properties and passage of liquids. Polyvinyl acetate (PVA) material can be used for its hydrophilic properties. The transfer element subassembly 59 formed by the sponge members 56a,b and 58 can be connected to a vacuum source, a fluid irrigation source, etc. Moreover, it can be connected to additional fluid transfer elements and covered with various flexible membranes and drapes, which can be semi-permeable or impervious, as indicated for the closure and treatment of particular separations and wounds.



FIG. 7
e shows a tubing placement tool 120 with a handle 122, a shaft 124 and a hook 126 terminating at a pointed or rounded, bullet-shaped tip 128. FIG. 7f shows the tool 120 passing tubing 35 through tissue in the subcutaneous layer 8 and into proximity with the dermis 6. The tip 128 is received in a blind end 134 of the tubing 35 through a notch 136 formed therein. The thrust of the tool 120 causes tenting of the dermis 6, as shown at 138, whereat the dermis 6 can be opened with a scalpel 140 and the tubing 35 can exit the patient for suitable termination arrangements, such as those shown in FIGS. 4a-f above.



FIG. 8 shows a modified embodiment closure system 202 with a pair of screens 14 positioned generally end-to-end in a separation 204. A transfer element subassembly 59 is placed over the separation 204 and a membrane drape 205 is placed thereover. The tube 35 is passed through tissue on either side of the separation 204 (e.g., using the procedure and the tubing placement tool 120 described above) and exits the dermis 6 on either side of the transfer element subassembly 59. The tube 35 lengths are knotted at 206. The tube 35 lengths thus function as sutures or retainers for securing the closure system 202 in the separation 204. The tube ends 38a or 40a can be utilized for this purpose, thus leaving the other tubing ends available for fluid communication with one or more of the input/output subsystems 18 described above.


The tube 35 can be secured by suitable fasteners, such as clips and the like, located above the dermis 6. Moreover, the screens 14 can be overlapped, abutted, spaced slightly and otherwise configured and positioned as necessary for particular tissue separations. Still further, the screens 14 are adapted to be trimmed as necessary.



FIG. 9 shows a modified embodiment tubing/suture subassembly 220 with a needle 222 including a sharpened, distal end 224 and a proximate end 226 with multiple, annular ridges 226a. A length of flexible tubing 228 combines the functions of screen perimeter member and suture. The flexible tubing 228 terminates at an end 228a adapted for releasably mounting on the needle proximate end 226, whereat it is retained in place by the ridges 226a. The tubing 228 is optionally connected to the screen 14 as described above and can include perforations 228b for fluid drainage and/or irrigation in conjunction with input/output subsystems 18, also as described above. The tubing/suture subassembly 220 is adapted for securing the screen 14 in place and for closing the separation 4 by passing the tubing 228 through adjacent tissue. The tubing/suture subassembly 220 and the screen 14 can be prepackaged and presterilized for closing and treating separations, which can include wounds and incisions.



FIGS. 10, 11a and 11b show modified embodiment closure screen systems 302 with first and second suture subassemblies 304, 306 comprising the screen perimeter member. The suture subassemblies 304, 306 include respective curved needles 304a, 306a which are swaged or adhesively connected to opposite ends 304b, 306b of a common length of suture thread 307. The suture thread 307 can be absorbable or nonabsorbable. As shown in FIG. 10, the screen closure system 302 can be preassembled with the suture thread length 307 releasably secured to the perimeter 308a of a screen 308. Prior to installation of the screen 308, the suture 307 can be disconnected or severed therefrom, either partly or completely. For example, the suture 307 can be separated along the screen ends 310a, 310b respectively, thereby leaving the suture thread lengths secured only along a screen lower margin 312.


In operation, the suture subassemblies 304, 306 facilitate installation of the suture/screen closure system 302, thereby providing a preassembled device which incorporates the necessary components for securing same in a separation 4. For example, the screen 308 can be secured at the bottom alone by passing the suture subassemblies 304, 306 through tissue portions located at the bottom of the separation 4. Alternatively, the suture subassemblies 304, 306 can be passed through the adjacent tissue and exit the surface of the dermis 6, whereby the suture subassemblies 304, 306 can be used for closing the separation 4 at the dermis 6. Barbed strands 320 can interact with the tissue portions 12a,b as described above, whereby the screen 308 provides a relatively secure mechanical connection between the separated tissue portions 12a,b. The suture subassemblies 304, 306 can be utilized for various purposes in the separation 4, including attachment and tacking of the dermis 6, the deep dermal layer 7, the subcutaneous layer 8 and the fascia 10. Still further, all or part of the suture subassemblies 304, 306 can be removed, and additional suture subassemblies can be mounted on or sutured to the screen 308.



FIG. 11
a shows the screen 308 attached to the suture thread 307. FIG. 11b shows an alternative construction screen 318 with hollow tubular vertical risers 324 located between adjacent, respective vertical strands 320, all connected by the spacers 322 and adapted for communicating fluid with the separation 4 through the open riser ends 324a and the perforations 324b, as indicated by the fluid flow arrows 326. All or part of the screen/suture system 302 can comprise absorbable material.



FIGS. 12, 13a and 13b show a modified embodiment screen-only closure screen system 402 and application methodology. A screen or mesh 404, similar to the screen 14 with barbed strands 30 described above, is placed in a separation 4 against the first tissue portion 12a. The second tissue portion 12b is then placed against the screen 404 whereby the separation 4 is closed and can be secured by the mechanical action of the screen 404. The screen 404 can be supplemented with sutures, drainage tubing, I/O devices, and other auxiliary components for purposes of closing the wound edges 12, draining the inside of the tissue separation 4, fighting infection, pain management and all other functionalities associated with the present invention, as discussed elsewhere herein. For example, the screen 404 can be secured with sutures at the subcutaneous level 8. Various fluid interconnecting devices can be utilized as necessary, and can be designed for removal after they serve their initial purpose. External drainage can also be achieved at the dermis level 6 utilizing transfer element subassemblies, such as the example designated 59 and described above (FIG. 7d). Moreover, drainage and irrigation tubing can be installed within the wound 4 alongside or adjacent to the screen 404. It will be appreciated that a screen-only version of the invention can comprise various suitable biocompatible absorbable and non-absorbable materials, including the materials disclosed above.



FIG. 13
a is an enlarged view of the screen 404 and particularly shows barbed strands 406 and horizontal spacers 408, which are connected together in a grid pattern forming the screen 404. FIG. 13b shows an alternative embodiment with a modified screen 410 including vertical risers 412 comprising hollow tubing, which are connected to and spaced by horizontal spacers 408. Fluid flows into and out of the vertical risers 412 through open riser ends 412a and perforations 412b, as indicated by the fluid flow arrows 420.



FIGS. 14
a-g show the screen 404 installed in a tissue separation 4 and closing same, utilizing the methodology of the present invention. The methodology shown in FIGS. 14a-g is similar to the methodology shown in FIGS. 5a-e and 6a,b. FIG. 14c shows a downward/inward force arrow 54a indicating a direction in which the screen 404 is pushed or guided into the separation.



FIGS. 15
a,b and 16a,b show a modified vertical riser 502 comprising bundled tubes 504 secured together at spaced intervals by connectors 506. The normal movement of the patient tends to alternately compress and expand the vertical risers 502, thus providing a “pumping” action for transferring fluid from the wound 4, as indicated by the fluid flow arrows 510. FIGS. 15a,b show a riser 502 in an extended configuration. Compressing the screen 14 longitudinally (i.e., end-to-end) compresses the bundled risers 504 to the configuration shown in FIGS. 16a,b, whereby fluid is drawn into the interstitial space 508 and pumped therefrom when the risers 502 extend.



FIG. 17 shows yet another configuration of a vertical riser 602 with bundled tubes 604, which are closely bunched and define passages 606 for conveying fluid. Such fluid conveyance can be enhanced by a pumping action associated with normal patient movements. Barbs 608 project outwardly from the tubes 604. It will be appreciated that various other bundled tube configurations, such as twisted, braided, etc., can be utilized.



FIG. 18 shows yet another vertical riser/perimeter member 702 alternative embodiment configuration. The member 702 has a configuration which is commonly referred to as a “fluted” drain and includes longitudinally-extending passages 704. This configuration can substitute for the perimeter members described above and can function to communicate fluid to and from the wound 4 with the input/output subsystem 18.


As additional alternative embodiment configurations for the vertical risers, they can comprise either barbed monofilament strands, similar to strand 30 shown in FIG. 3, or unbarbed monofilament strands. Such monofilament vertical risers can function as passive drains with fluid flowing alongside same. They can extend above the dermis 6 and abut or connect to transfer elements formed in various configurations with suitable absorbent materials. Examples include gauze dressings and transfer element subassemblies, such as 59 shown in FIG. 7d.



FIG. 19 shows an alternative embodiment strand 802 constructed by twisting and braiding multiple, individual filaments 804. Barbs 805 are formed by respective individual filaments 804a, which terminate at blunt ends 806. The barbs 805 project generally outwardly from the strand 802 and form acute angles with respect to its longitudinal axis. They are adapted for penetrating tissue within a separation 4, as described above. In use, the barbs 805 would normally be oriented in directions generally pointing outwardly from the patient and the tissue separation 4.



FIG. 20 shows another alternative embodiment strand 902 comprising multiple twisted and braided filaments 904. Barbs 905 are formed from individual filaments 904a and have notches 908 and pointed ends 910. The notches 908 and the ends 910 are configured to allow the barbs 905 to easily extract from the separation edge tissues, whereby the screen is adapted for sliding along the separation edges in order to achieve the proper position.



FIG. 21 shows a further modified screen 1002 with barbs 1004 formed by looping individual filaments 1006 and cutting same at cut locations 1010 spaced inwardly from respective apexes 1008 of the filament loops. In operation, the barbs 1004 slightly penetrate the tissue and are imbedded therein. It will be appreciated that the filaments 1006 are relatively thin in diameter, similar to microfibers, whereby patient comfort is optimized.



FIG. 22 shows yet another modified screen 1102 with barbs 1104 formed by looping individual filaments 1106 and cutting same at locations 1110 spaced inwardly from respective apexes 1108 of the filament loops whereby respective hooks 1112 are formed. The hooks 1112 operate in a manner similar to hook-and-loop fasteners, with the adjacent tissue forming the loop parts of the connections. In operation, the hooks 1112 slightly penetrate the tissue and are imbedded therein. The configurations of the hooks 1112 tend to retain them in the tissue adjacent to the separation 4 whereby the separated first and second tissue portions 12a,b can be closed.



FIG. 23 shows a screen 1202 with a configuration similar to the screen 1002 discussed above, with additional fiber elements or filaments 1204. The additional filaments 1204 tend to lay the filament barbs 1206 over whereby the screen 1202 can be directionally oriented within the wound separation 4 and operate in a manner similar to the screen 14 described above. The barbs 1206 are formed by cutting the apexes 1208 at cut locations 1210.


Similarly, FIG. 24 shows a screen 1302 with additional filaments 1304, which engage the filament loops 1306 and orient same in a direction towards the right as shown in FIG. 24. The slanted orientations of the filament loops 1306 facilitate setting same in the tissue portions 12a,b adjacent to the separation 4 by tugging outwardly on the screen 1302. Repositioning the screen 1302 is also possible, as described above. The filament loops 1306 can be cut at cut locations 1310, which are spaced inwardly from filament loop apexes 1308 thereby hooks 1312 are formed.


It will be appreciated that FIGS. 21-24 disclose screens with barbs and ending from one face thereof. The present invention also includes screens with hooks extending from both faces.


It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims
  • 1. A device for closing a separation of first and second portions of body tissue, which device comprises: a pair of closure members each having a perimeter and first and second faces;each said closure member including multiple barbs projecting outwardly from said first and second closure member faces;said barbs being adapted to penetrate the first and second portions of said tissue with said closure members positioned at least partly in said separation and with said separated tissue portions engaging said closure members whereby respective faces of said first and second closure members are attached to said first and second tissue portions respectively;said pair of closure members being positioned face-to-face such thatrespective barbs of each said closure member overlap the barbs extending from the adjacent face of the other closure member;said closure members each comprising a screen with a configuration adapted to admit tissue and body fluids;said closure members adapted to be positioned together in said tissue separation with respective closure member faces engaging;each said closure member including a tubular perimeter member attached to its perimeter and adapted for penetrating tissue adjacent to said separation for securing a respective closure screen therein;an external fluid transfer element adapted to be placed over said tissue separation;said perimeter members being connected to each other over said fluid transfer element such that the perimeter members are adapted to be connected externally of said tissue separation; andsaid closure member screens being adapted to transfer fluid to said perimeter members and said perimeter members being adapted to transfer fluid to said external closure member externally of said tissue separation.
  • 2. A method of closing separated first and second portions of body tissue at a separation, which method comprises the steps of: providing a pair of closure members each having a perimeter and first and second faces;each said closure member including multiple barbs projecting outwardly from said first and second closure member faces;said barbs being adapted to penetrate the first and second portions of said tissue with said closure members positioned at least partly in said separation and with said separated tissue portions engaging said closure members whereby respective faces of said first and second closure members are attached to said first and second tissue portions respectively;said closure members each comprising a screen with a configuration adapted to admit tissue and body fluids;said pair of closure members being positioned face-to-face in said tissue separation;respective barbs of each said closure member overlapping the barbs extending from the adjacent face of the other closure member;each said closure member including a tubular perimeter member attached to its perimeter and adapted for penetrating tissue adjacent to said separation for securing a respective closure screen therein;an external fluid transfer element placed over said tissue separation;said perimeter members being connected to each other over said fluid transfer element externally of said tissue separation; andsaid closure member screens being adapted to transfer fluid to said perimeter members and said perimeter members being adapted to transfer fluid to said external closure member externally of said tissue separation.
  • 3. The method of claim 2, which includes the additional steps of: forming said screens of a dissolvable material; anddissolving at least a portion of each said screen within said tissue separation.
  • 4. The method of claim 2, which includes the additional steps of: providing each said screen with multiple risers extending generally between proximate and distal margins thereof;providing each said riser with a tubular configuration and orifices; andtransferring fluid between said risers and said tissue separation area through said orifices.
  • 5. The method of claim 4, which includes the additional steps of: forming a fluid network consisting of said risers and said tubular perimeter member; andintroducing an irrigation fluid into said tissue separation area through said fluid network.
  • 6. The method of claim 2, which includes the additional steps of: drawing a vacuum through said closure screens and through said fluid transfer element; anddrawing fluid from said closure screens and said fluid transfer element with said fluid transfer system.
  • 7. The method of claim 2, which includes the additional steps of: attaching said perimeter member to said screen perimeter with absorbable connectors;dissolving said absorbable connectors in said tissue separation; andextracting said perimeter member from said tissue separation.
  • 8. The method of claim 2, which includes the additional steps of: engaging said first and second separated tissue areas with first and second skin hooks respectively; anddrawing said first and second separated tissue portions outwardly with said skin hooks.
  • 9. The method of claim 2, which includes the additional steps of: extending a portion of each said closure screen outwardly from a skin surface level;placing primary fluid transfer elements alongside said screen extended portions;trimming a portion of each said screen extended portion which extends beyond said primary fluid transfer elements;placing a bridge fluid transfer element over said primary fluid transfer elements;placing a drape over said fluid transfer elements and attaching same to tissue around said tissue separation; andfluidically communicating said closure screens with said fluid transfer elements.
  • 10. The method according to claim 9, which includes the additional steps of: connecting said fluid transfer elements to a vacuum source; andextracting fluid through said screen and said fluid transfer elements to a receptacle associated with said vacuum source.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of and claims priority in application Ser. No. 10/224,852, filed Aug. 21, 2002, now U.S. Pat. No. 7,381,211, dated Jun. 3, 2008. This application also claims priority in application Ser. No. 11/103,056, filed Apr. 11, 2005, now U.S. Pat. No. 7,410,495, application Ser. No. 11/103,052, filed Apr. 11, 2005, now U.S. Pat. No. 7,413,571, application Ser. No. 11/103,403, filed Apr. 11, 2005, now U.S. Pat. No. 7,351,250, and application Ser. No. 11/103,022, filed Apr. 11, 2005, now U.S. Pat. No. 7,413,570, which are continuations-in-part of the same parent application. All of the foregoing applications are incorporated herein by reference. This application is also related to application Ser. No. 12/130,516, filed May 30, 2008 and entitled Screen Devices and Methods for Closing Tissue Separations.

US Referenced Citations (188)
Number Name Date Kind
221427 Sherman Nov 1879 A
1355846 Rannells Oct 1920 A
2547758 Keeling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. Dec 1962 A
3115138 McEvenny et al. Dec 1963 A
3367332 Groves Feb 1968 A
3520300 Flower Jul 1970 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3826254 Mellor Jul 1974 A
3981051 Brumlik Sep 1976 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4139004 Gonzalez Feb 1979 A
4165748 Johnson Aug 1979 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4248232 Engelbrecht et al. Feb 1981 A
4259959 Walker Apr 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4373519 Errade et al. Feb 1983 A
4382441 Svedman et al. May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419093 Deaton Dec 1983 A
4419097 Rowland Dec 1983 A
4475909 Eisenburg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vailancourt Jun 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4605339 Weston et al. Aug 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielson Aug 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4696301 Barabe Sep 1987 A
4710165 McNeil et al. Dec 1987 A
4733659 Edenbank et al. Mar 1988 A
4743232 Kruger May 1988 A
4758220 Sundblom et al. Jul 1988 A
4787888 Fox Nov 1988 A
4826494 Richmond et al. May 1989 A
4828546 McNeil et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4919654 Kait Apr 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4969880 Zamierowski Nov 1990 A
4976726 Haverstock Dec 1990 A
4985019 Michelson Jan 1991 A
5007921 Brown Apr 1991 A
5007936 Woolson Apr 1991 A
5019083 Klapper et al. May 1991 A
5037397 Kalt et al. Aug 1991 A
5045054 Hood et al. Sep 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5112338 Anspach, III May 1992 A
5134994 Say Aug 1992 A
5139023 Stanley et al. Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5167613 Karami et al. Dec 1992 A
5169399 Ryland et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5215522 Page et al. Jun 1993 A
D337639 Beckman Jul 1993 S
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5291887 Stanley et al. Mar 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5318570 Hood et al. Jun 1994 A
5342376 Ruff Aug 1994 A
5344415 Debusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5383897 Wholey Jan 1995 A
5423885 Williams Jun 1995 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5507833 Bohn Apr 1996 A
5522901 Thomas et al. Jun 1996 A
5527293 Zamierowski Jun 1996 A
D372309 Heldreth Jul 1996 S
5549584 Gross Aug 1996 A
5556375 Ewall Sep 1996 A
5580353 Mendes Dec 1996 A
5584859 Brotz Dec 1996 A
5607388 Ewall Mar 1997 A
5630819 Ashby et al. May 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5716360 Baldwin et al. Feb 1998 A
5738686 Kubein-Meesenburg et al. Apr 1998 A
5785700 Olson Jul 1998 A
5800546 Marik et al. Sep 1998 A
5827246 Bowen Oct 1998 A
5846244 Cripe Dec 1998 A
5911222 Lawrence et al. Jun 1999 A
5921972 Skow Jul 1999 A
5931855 Buncke Aug 1999 A
5941859 Lerman Aug 1999 A
6071267 Zamierowski Jun 2000 A
6113618 Nic Sep 2000 A
6126659 Wack Oct 2000 A
6135116 Vogel et al. Oct 2000 A
6142982 Hunt et al. Nov 2000 A
6146423 Cohen et al. Nov 2000 A
6159246 Mendes et al. Dec 2000 A
6174306 Fleischmann Jan 2001 B1
6179804 Satterfield Jan 2001 B1
6190391 Stubbs Feb 2001 B1
6190392 Vandewalle Feb 2001 B1
6203563 Fernandez Mar 2001 B1
6241747 Ruff Jun 2001 B1
6270517 Brotz Aug 2001 B1
RE37358 Del Rio et al. Sep 2001 E
6287316 Agarwal et al. Sep 2001 B1
6293929 Smith et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6355215 Poggie et al. Mar 2002 B1
6377653 Lee et al. Apr 2002 B1
6398767 Fleischmann Jun 2002 B1
6430427 Lee et al. Aug 2002 B1
6488643 Turney Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6500209 Kolb Dec 2002 B1
6503281 Mallory Jan 2003 B1
6540705 Norstream et al. Apr 2003 B2
6553998 Heaton et al. Apr 2003 B2
6589285 Penenberg Jul 2003 B2
6620132 Skow Sep 2003 B1
6626891 Ohmstede Sep 2003 B2
6645226 Jacobs et al. Nov 2003 B1
6669735 Pelissier Dec 2003 B1
6685681 Lockwood et al. Feb 2004 B2
6695823 Lina et al. Feb 2004 B1
6695824 Howard et al. Feb 2004 B2
6726706 Dominguez Apr 2004 B2
6752794 Lockwood et al. Jun 2004 B2
6800074 Henley et al. Oct 2004 B2
6814079 Heaton et al. Nov 2004 B2
6824533 Risk, Jr. et al. Nov 2004 B2
6828468 Leavanoni et al. Dec 2004 B2
6856821 Johnson Feb 2005 B2
6860903 Mears et al. Mar 2005 B2
6936037 Bubb Aug 2005 B2
6951553 Bubb et al. Oct 2005 B2
6953480 Mears et al. Oct 2005 B2
6991643 Saadat Jan 2006 B2
7108683 Zamierowski Sep 2006 B2
7381211 Zamierowski Jun 2008 B2
20020022861 Jacobs et al. Feb 2002 A1
20020029063 Wittmann Mar 2002 A1
20020077661 Saadat Jun 2002 A1
20020099447 Mears et al. Jul 2002 A1
20020115951 Norstream et al. Aug 2002 A1
20020116067 Mears et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Turney Oct 2002 A1
20020183565 Leavanoni et al. Dec 2002 A1
20020198503 Risk, Jr. et al. Dec 2002 A1
20020198504 Risk et al. Dec 2002 A1
20030050594 Zamierowski Mar 2003 A1
20030097135 Penenberg May 2003 A1
20030204235 Edens et al. Oct 2003 A1
20040039415 Zamierowski Feb 2004 A1
20050043818 Bellon et al. Feb 2005 A1
Foreign Referenced Citations (27)
Number Date Country
550575 Aug 1982 AU
745271 Dec 2002 AU
755496 Dec 2002 AU
2005436 Jun 1990 CA
2640413 Mar 1978 DE
4306478 Sep 1994 DE
29504378 Sep 1995 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
0358302 Mar 1990 EP
1018967 Aug 2004 EP
1513478 Dec 2009 EP
692578 Jun 1953 GB
2197789 Jun 1988 GB
2220357 Jan 1990 GB
2235877 Mar 1991 GB
2333965 Aug 1999 GB
2329127 Aug 2000 GB
4129536 Apr 1992 JP
71559 Apr 2002 SG
WO8002182 Oct 1980 WO
WO9309727 May 1993 WO
WO9420041 Sep 1994 WO
WO9605873 Feb 1996 WO
WO9718007 May 1997 WO
WO9913793 Sep 1998 WO
Related Publications (1)
Number Date Country
20080228222 A1 Sep 2008 US
Divisions (1)
Number Date Country
Parent 10224852 Aug 2002 US
Child 12130682 US
Continuation in Parts (4)
Number Date Country
Parent 11103056 Apr 2005 US
Child 10224852 US
Parent 11103052 Apr 2005 US
Child 11103056 US
Parent 11103403 Apr 2005 US
Child 11103052 US
Parent 11103022 Apr 2005 US
Child 11103403 US