Medical connectors configured to receive emitters of therapeutic agents

Information

  • Patent Grant
  • 11559467
  • Patent Number
    11,559,467
  • Date Filed
    Monday, November 25, 2019
    5 years ago
  • Date Issued
    Tuesday, January 24, 2023
    a year ago
Abstract
In some embodiments, a medical fluid connector is configured to receive an emitter of therapeutic agents to be emitted into a fluid pathway within the connector, the medical fluid connector comprising a proximal female end, an intermediate region, a distal male end, and a fluid pathway extending from the proximal female end, through the intermediate region, to the distal male end. A retaining structure is positioned within the intermediate region. The retaining structure is configured to securely receive an emitter of one or more therapeutic agents in a position and orientation where the fluid pathway is configured to convey fluid moving longitudinally through the fluid pathway directly into a proximal region of the emitter, around one or more lateral surfaces of the emitter, and toward the distal male end.
Description
BACKGROUND
Field

The inventions relate generally to medical connectors and specifically to medical connectors for use in fluid infusion or transfer systems.


Description of the Related Art

Medical connectors are used to attach or interface between or among two or more medical components of patient fluid infusion systems, such as fluid lines or tubes (e.g., catheters), pumps, syringes, IV bags, drip chambers, infusion ports, injection sites, and/or shunts, etc.


Many different types of fluids are used in patient fluid infusion or transfer systems, including hydrating fluids (e.g., saline), nourishing fluids, pain-diminishing medications, antibiotics, antimicrobials, anti-inflammatories, sedatives, anticoagulants, chemotherapy drugs, bodily fluids (e.g., blood in dialysis procedures), and/or other types of medicinal fluids. In health clinics and hospitals, many different types of medicinal fluids need to be purchased, inventoried, stored, and made available to healthcare practitioners, which requires substantial storage space and is expensive, complex, and time-consuming.


In some situations, a fluid line is attached in fluid communication with a patient's vascular system, such as through an injection site into a blood vessel (e.g., an artery or vein). During an initial infusion phase, one or more medicinal fluids are infused through the fluid line into the patient's bloodstream. After the initial infusion phase is complete, the fluid line is sometimes left in place in a standby phase for an extended period until one or more subsequent infusions are performed. While the fluid line is in the standby phase, with the fluid stagnant, the risk of microbial invasion and colonization increases.


To diminish this risk, healthcare practitioners sometimes infuse a small amount of antimicrobial fluid into the end of a fluid line at the beginning of a standby phase to form a microbial block at the entrance of the fluid line. Before the next infusion phase, the antimicrobial fluid is generally removed by aspirating it from the fluid line into a syringe, and then discarding it, in order to avoid infusing the antimicrobial fluid into the patient. This antimicrobial block procedure is usually very effective, but sometimes it is not performed in clinical settings because it requires the purchase, inventory, retrieval, and infusion of an additional medicinal fluid and related disposables, which further adds to the burden of an otherwise onerous fluid supply system in the health clinic or hospital.


In some medical procedures, one or more additives are desired to be added to a particular medical fluid that is flowing through a fluid line for a variety of therapeutic purposes; however, the process for adding such additives requires obtaining and storing bulky liquid containers and utilizing some type of slow liquid-additive infusion procedure.


SUMMARY

In some embodiments, a medical fluid connector is configured to receive an emitter of therapeutic agents to be emitted into a fluid pathway within the connector, the medical fluid connector comprising a proximal female end, an intermediate region, a distal male end, and a fluid pathway extending from the proximal female end, through the intermediate region, to the distal male end. A retaining structure is positioned within the intermediate region. In some embodiments, the retaining structure is configured to securely receive an emitter of one or more therapeutic agents in a position and orientation in which the fluid pathway is configured to convey fluid moving longitudinally through the fluid pathway directly into a proximal region of the emitter, around one or more outside lateral surfaces of the emitter, and toward the distal male end. In some embodiments, the retaining structure is configured to retain the emitter by way of only a friction fit or an interference fit between the retaining structure and the emitter, and not by way of other retaining methods (e.g., adhesive, sonic welding, entrapment between separable housing pieces, coating, molding, heat staking, solvent bonding, chemical bonding, etc.). In some embodiments, any retaining method can be used. In some embodiments, the medical fluid connector is open from end to end in that the connector is configured to allow at least a portion of the fluid to travel freely into and/or from the proximal female end, through the intermediate region, and to and/or out of the distal male end.


In some embodiments, a medical fluid connector comprises a housing with a proximal region and a distal region, with a fluid pathway extending between the proximal and distal regions. The fluid pathway is configured to receive and convey fluid through the housing. In some embodiments, the housing contains an emitter of one or more therapeutic agents that is securely positioned within the housing in a location in which the fluid pathway is configured to pass adjacent to and outside of at least a majority of the external surface area of the emitter. In some embodiments, the fluid pathway is at least partially open and configured to convey fluid freely through the housing about the emitter.


In some embodiments, a method of manufacturing a medical fluid connector is provided. In some embodiments, the method includes one or more of the following steps: (a) providing a housing comprising a proximal female end, an intermediate region, a distal male end, in which a fluid pathway extends from the proximal female end, through the intermediate region, to the distal male end; (b) providing a retaining structure positioned within the intermediate region, the retaining structure comprising a retaining space and a plurality of fluid flow spaces generally surrounding the retaining space; and (c) inserting an emitter of one or more therapeutic agents into the retaining space, such that the emitter is securely retained within the housing and the emitter is configured to remain secured within the connector when fluid moves longitudinally through the fluid pathway directly into a proximal region of the emitter, around one or more outside lateral surfaces of the emitter, and toward the distal male end.


Any of the embodiments described above, or described elsewhere herein, can include one or more of the following features.


In some embodiments, the medical fluid connector comprises an emitter. In some embodiments, the medical fluid connector comprises one or more additional emitters. In some embodiments, the emitter is configured to emit one or more antimicrobial agents into the fluid pathway when fluid passes through the connector. In some embodiments, the emitter is substantially cylindrical, substantially rectangular, substantially spherical, substantially conical, substantially pyramidal, or substantially cubical. In some embodiments, the retaining structure comprises a plurality of longitudinal struts. In some embodiments, the retaining structure comprises a plurality of base portions.


In some embodiments, the proximal female region near the proximal female end comprises a connection structure. In some embodiments, the connection structure comprises a screw thread. In some embodiments, at least a portion of the screw thread is oversized. In some embodiments, the screw thread comprises a disconnection-resistant feature.


In some embodiments, the distal region comprises a distal male protrusion. In some embodiments, the distal male protrusion is oversized.


Some embodiments pertain to a method of providing an antimicrobial block for a standby patient fluid infusion line. In some embodiments, the method comprises attaching a proximal portion of a medical connector to a syringe containing a liquid. In some embodiments, the medical connector comprises an emitter of one or more antimicrobial agents. In some embodiments, the medical connector is configured to securely position the emitter inside of a fluid pathway of the medical connector. In some embodiments, the method comprises attaching a distal portion of the medical connector to a proximal end of a standby fluid line of a patient. In some embodiments, the method comprises infusing fluid from the syringe, through the proximal portion of the medical connector, into contact with at least upper and lateral external surfaces of the emitter, thereby emitting one or more therapeutic agents into the fluid pathway. In some embodiments of the method, the emitter is positioned within an intermediate region of the connector.


Some embodiments pertain to a method of providing an antimicrobial block for a fluid infusion line. In some embodiments, the method comprises providing a connector with an emitter of an antimicrobial agent, the emitter being securely positioned inside of a fluid pathway of the medical connector. In some embodiments, the method comprises instructing a user to attach a proximal portion of the medical connector to a syringe containing a liquid. In some embodiments, the method comprises instructing a user to infuse a fluid from the syringe, through the proximal portion of the medical connector, into contact with at least upper and lateral external surfaces of the emitter to thereby emit one or more therapeutic agents into the fluid pathway.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front view of a medical connector that is configured to receive one or more emitters of one or more therapeutic agents;



FIG. 1A is a front view of another embodiment of a medical connector that is configured to receive one or more emitters of one or more therapeutic agents;



FIG. 2 is a side view of the medical connector of FIG. 1;



FIG. 3A is a front view of the medical connector of FIG. 1 in a vertical cross section along line 3-3 of FIG. 2;



FIG. 3B is the front view of FIG. 3A with an emitter of one or more therapeutic agents being inserted into the fluid pathway;



FIG. 3C is the front view of FIG. 3A with the emitter securely positioned in the fluid pathway;



FIG. 4 is a bottom view of the medical connector of FIG. 1 at a horizontal cross section along line 4-4 of FIG. 2;



FIG. 5 is a top view of the medical connector of FIG. 1 at a horizontal cross section along line 5-5 of FIG. 2;



FIG. 6A is a top view of the medical connector of FIG. 1 with a horizontal cross section along line 6-6 of FIG. 3A;



FIG. 6B is the top view of FIG. 6A with an emitter of one or more therapeutic agents inserted into the fluid pathway;



FIG. 6C is a top view of FIG. 6A with a different type of emitter of one or more therapeutic agents inserted into the fluid pathway (e.g., an emitter with a larger diameter or cross-sectional width than the emitter of FIG. 6B);



FIG. 7A is a top perspective view of the medical connector of FIG. 1;



FIG. 7B is a bottom perspective view of the medical connector of FIG. 1;



FIG. 7C is a front perspective view of the medical connector of FIG. 1 with a vertical cross section along line 4-4 of FIG. 2;



FIG. 8 is the front perspective view of FIG. 7C with an emitter securely positioned in the fluid pathway and fluid flowing through the connector; and



FIG. 8A is another front perspective view of FIG. 7C illustrating another example of fluid flow through the connector.





Nothing illustrated in these drawings or described in the associated text is indispensable or essential; rather, any feature, structure, material, component, or step illustrated or described in any embodiment can be used alone or omitted, or can be used with or instead of any feature, structure, material, component, or step illustrated or described in any other embodiment. For example, some embodiments do not include any emitter, but do include one or more other features illustrated or described in this specification. The features are illustrated and described in discrete embodiments merely for convenience of explanation, but not to limit the inventions or to segregate the inventions into isolated collections of features. The proportions and relative sizes of components and features illustrated in the drawings form part of this disclosure, but should only be interpreted to form part of a claim if recited in such claim, either now or in the future.


DETAILED DESCRIPTION


FIGS. 1-7 illustrate an example of a medical connector 100. Different embodiments of medical connectors are described in this specification, some of which include the features illustrated in FIG. 1-7. A medical connector 100 comprises a housing comprising a proximal region 110 with a proximal end 115, a distal region 120 with a distal end 125, and a body 130 extending between the proximal and distal ends 115, 125. The distal region 120 can comprise a male protrusion 160, such as a male luer protrusion. An internal fluid pathway 135 can extend between the proximal and distal regions 110, 120 of the connector 100, such as between the proximal and distal ends 115, 125. In some embodiments, either or both of the proximal or distal regions 110, 120 can include a connection structure 140, such as one or more threads (as shown), clasps, arms, latches, protrusions, and/or recesses, etc., that is configured to help guide, attach, and/or retain the medical connector to another device, such as another medical connector.


As shown in FIGS. 1 and 2, the proximal region 110 can comprise a threaded connection structure 140 configured to rotatably attach and detach from a corresponding threaded connection structure on another device, such as a male end of a syringe (not shown). A thread-stop or collar 129 can be positioned distally from the connection structure 140 to prevent or resist over-extending the threaded connection between the connector 100 and another medical device. As illustrated in FIGS. 3A-C and 4, the proximal region can include a female coupling 150 configured to slidably receive a corresponding male coupling of another device such as a syringe (not shown). In some embodiments, as shown, the female coupling 150 comprises a conduit 155 within the proximal region 110. The conduit 155 can comprise a tapering wall structure that diminishes in diameter or horizontal cross-sectional width from the proximal end 115 toward the distal end 125. In some embodiments, the taper can conform to a standard within the medical industry, such as any version of the ISO 594 standard (which includes a 6% luer taper) or any other applicable standard (e.g., DIN and EN standard 1707:1996 and/or 20594-1:1993). The conduit 155 can be configured to snugly and tightly receive a male coupling of another standard-compliant device with a corresponding taper or other shape, such as a corresponding luer taper, to produce resistance against fluid leakage after the male coupling is inserted fully into the female coupling 150. In some embodiments, as shown, the connector 100 is separate from the syringe; and in some embodiments, the connector 100 is integrated into or bonded to the syringe.


In some embodiments, as illustrated, the connection structure 140 can comprise one or more disconnection-resisting features or structures configured to resist disconnection between the connector 100 and another medical implement (such as a syringe or other connector or other structure). The disconnection-resisting features(s) or structure(s) can have many different forms, such as one or more freely spinning positions or stages after connection is accomplished, one or more increased friction-inducing anti-rotation impediments, and/or one or more disconnection-resisting thread shapes. For example, in a threaded connection structure 140, as shown in FIGS. 1, 2, and 4, a friction-inducing impediment can comprise one or more (e.g., at least two) protrusions 190 positioned between multiple thread turns, the one or more protrusions 190 extending radially outwardly from the inner surface 194 of the threading 197, thereby providing a region of radial space between the radially outermost surface 196 of the protrusion 190 and the radially outermost surface 198 of the threading 197 that is smaller than the radial space between the inner surface 194 of the threading 197 and the outermost surface 198 of the threading 197. In this example of an impediment, as the threading of another device (such as a syringe, not shown) is rotatably attached to the threading 197 of the connection structure 140, the relative rotation of the two devices is slowed down or resisted through increased frictional contact between the impediment and the threading of the other device, thereby requiring greater torque to attach the two devices and/or requiring greater torque to detach the two devices, which diminishes the risk of accidental disconnection. The contact between the impediment and the threading of the other device may cause wedging, compaction, crushing, and/or compression of either or both structures. Many different types of impediments can be used to resist disconnection that are different from those described and/or illustrated.


A disconnection-resisting thread shape can help resist or prevent disconnection between the connector 100 and another medical device, such as a syringe. For example, as illustrated in FIGS. 1, 2, and 7C, a helical threading 197 with multiple thread turns can comprise a thread portion with an oversized region 201, and/or an outwardly flaring or outwardly tapering region 203. In some embodiments, as shown, the outermost diameter of a beginning thread portion 199 can be a first diameter that is a standard size or within a standard range of sizes, such as may be specified in any applicable medical device standard (e.g., any of those mentioned elsewhere in this specification), or slightly smaller than a standard size or range of sizes. As the thread progresses around the proximal region 110 in the distal direction, the outermost diameter of a portion of the thread can flare or taper outwardly to a non-standard second diameter than is larger than the first diameter and larger than the diameter or range of diameters specified in one or more applicable medical device standards. Since the other medical device to which the proximal region 110 of the connector 100 is configured to attach (e.g., a syringe) will typically have a standard diameter of threading, the outward taper or flare of the disconnection-resisting thread shape of the connector 100 can cause the space between the respective threads to decrease, or can cause the attachment region of the other medical device to stretch by a small amount, and/or can cause the threading 197 of the connector 100 to compress by a small amount. One or more of these effects can create opposing radial forces between the threading surface of the other medical device and the threading surface 197 of the connector 100, which can increase the friction between the respective surfaces and thereby resist or prevent rotational movement and decrease the risk of accidental disconnection between the two devices. As shown in this example, the connector 100 can be configured to resist disconnection from a syringe. In some embodiments, the connection structure 140 is configured such that the resistance is sufficiently high that it is not possible under normal conditions of use to disconnect the connector 100 from the other medical device (e.g., disconnection is prevented). Many other different types of disconnection-resisting or disconnection-preventing features can be used instead of or in addition to those illustrated and/or described in this specification, including one or more structures not including thread shapes or impediments, or any type of threads at all.


In some uses, it may be desirable to temporarily attach the distal region 120 of the connector 100 to a standby fluid line that has at its proximal end a resealable needleless female connector, such as a Clave@ connector sold by ICU Medical, Inc. or a SmartSite® connector sold by CareFusion Corporation. This type of configuration can allow a healthcare practitioner to infuse fluid from a fluid source (such as a syringe) into the proximal end 115 of connector 100, through the distal end 125 of connector 100, and into the resealable needleless female connector, the fluid line, and ultimately the patient. However, it may be undesirable, in some embodiments, to leave the connector 100 attached to a resealable female connector for a prolonged period, especially when unattended, since the connector 100 may not include a seal at its proximal end in some embodiments (as shown), and may therefore expose the fluid in the fluid line to the outside environment or even allow fluid in the fluid line to flow out of the fluid line. Thus, in some embodiments, there is no connection-securing structure (such as threads) in the distal region 120 of the connector 100 to discourage long-term connection. Rather, the illustrated connector 100, without connection-securing structure, is configured to be rapidly and easily slidably inserted into and/or removed from a corresponding female connector without requiring any additional motion (e.g., twisting, rotating, clasping, etc.) in a non-secured connection. Also, the absence of connection-securing structure in the distal region 120 of the connector obviates the need to use a reverse twisting motion to remove the distal region 120 from the resealable needleless female connector, which would otherwise increase the risk that a threadably secured connection between a syringe and the proximal region 110 of the connector would be inadvertently partially or completely disconnected or backed out, potentially causing a leak.


In some embodiments (not shown), the distal region 120 can comprise any suitable connection structure, such as any connection structure that is illustrated and/or described in connection with the proximal region 110 of medical connector 100 or in connection with any other embodiment. If used, the connection structure can be included in an inner region 165 generally surrounding the male luer protrusion 160. As illustrated, the inner region 165 can be generally surrounded by a shroud or skirt that is configured to pass over and around a corresponding female end of another fluid connector to which the male protrusion 160 of the connector 100 is configured to be attached. As illustrated in FIG. 7C, in some embodiments, the proximal end of the inner region 165 is positioned further in the distal direction than the distal end of the intermediate region 192. In some embodiments, including those in which there is no gripping portion 170 in the distal region 120 of the connector 120 (or no gripping portion 170 at all), the shroud or skirt can be omitted, as with any other feature, structure, material, or step disclosed or illustrated in this specification. When the shroud or skirt is omitted, the male protrusion 160 can be fully exposed along its length from a proximal base region to a distal end region.


The male protrusion 160 can include one or more features to facilitate temporary attachment to a resealable needleless female connector. For example, the male protrusion 160 may not be a standard luer, in that it may have a non-standard size and/or shape (e.g., a size and/or shape that does not conform with one or more features or requirements of one or more medical industry standards, such as the ISO 594 medical luer standard and/or one or more other medical standards). In the illustrated embodiment, the male protrusion 160 has a taper that is about 6%, which comports with one or more medical standards, but the male protrusion 160 is oversized in that it has a larger outer diameter on its distal end than is specified in one or more medical standards. For example, in some embodiments, the distal outer diameter of the male protrusion 160 can be at least about 1/1,000 of an inch and or at least about 3/1,000 of an inch larger than a standard distal outer diameter. Many other sizes can be used.


Since most resealable needleless female connectors have proximal openings with standard-size diameters, the oversized, non-standard male protrusion 160 will have a larger diameter at its distal end than the diameter at the distal end of the conduit of the female opening in a standard medical device to which the connector 100 is configured to attach. The larger diameter on the male protrusion 160 can enable it to fit more tightly or snugly at a lesser penetration depth into the female opening than would a male luer protrusion with a standard distal outer diameter. This can help to facilitate a non-secured, temporary attachment of the distal region 120 of the connector 100 to a resealable needleless female connector (not shown). Most, if not all, resealable needleless female connectors include a compressible elastomeric sealing element or other movable sealing element that can be advanced distally within such connector to temporarily open it to fluid flow, such as by inserting the male protrusion 160 into a proximal female opening on such a resealable needleless female connector. The sealing element is configured to rebound to a sealed position by pushing back against an inserted male protrusion. The amount of rebound or push-back force increases as the penetration depth of the inserted male protrusion increases. Since the male protrusion 160 is non-standard, having a larger distal outer diameter, it penetrates less distance into the needleless female connector when fully inserted, and therefore the sealing element exerts less proximally-directed rebound force against it, lowering the risk that the male protrusion 160 will be pushed back in the proximal direction by the sealing element and thereby dislodged from the resealable needleless female connector.


As shown, in some embodiments, the overall longitudinal length of the connector 100 can be relatively short. For example, either or both of the longitudinal length of the portion of the fluid pathway 135 within the threaded region (or the region on which the connection structure 140 is affixed, in some embodiments) and/or the longitudinal length of the portion of the fluid pathway 135 within the male protrusion 160 can be greater than the longitudinal length of the portion of the fluid pathway 135 that extends between the threaded region and the male protrusion 160, as shown in FIG. 3. As illustrated, a base portion 180 of the distal region 120 of the connector 100 can be relatively wide. For example, the external diameter and/or external horizontal cross sectional width of the base portion 180 can be larger than an external neck portion 191 located between the proximal region 110 and the base portion 180. Many different sizes and proportions of the portions of the connector 100 can be used.


The connector 100 can comprise a grasping portion 170, such as one or more tabs (as shown), recesses, protrusions, stripes, bumps, and/or friction-inducing gripping surfaces, etc. In the embodiment illustrated in FIG. 1, the grasping portion 170 enables a user to securely retain the connector 110 during connection and disconnection with another device, such as when another device is twisted, or swayed or rocked back and forth, onto or away from the threaded proximal region 110, or when the threaded proximal region 110 is twisted, or swayed or rocked back and forth, into or out of another device.


The grasping portion 170 can be relatively large in comparison to the size of the overall connector 100. For example, as shown in FIGS. 5 and 6, the horizontal cross-sectional width (e.g., extending between respective lateral edges) of the grasping portion 170 can be larger than the external diameter or horizontal cross-sectional width of the base portion 180, in some embodiments. As illustrated, the longitudinal length (in the proximal-to-distal dimension) of the grasping portion 170 can be larger than the longitudinal length of the connection structure 140 in the proximal region 110 of the connector 100. In some embodiments, as shown, the longitudinal length of the grasping portion 170 can extend over more than half of the overall longitudinal length of the connector 100. The grasping portion 170 can comprise one or more curved lateral edges or sides, as illustrated.


As illustrated in FIG. 1A, in some embodiments the grasping portion 170 can comprise one or more upper edges 131 and/or one or more lower edges 132. As shown, one or both of the upper edges 131 can be slanted, such as with a downwardly sloped slant; and/or one or both of the lower edges 132 can be slanted, such as with an upwardly sloped slant. In an intermediate region of the connector 100 (e.g., below the thread-stop or collar 129 and above the distal region 120), the connector body can comprise a first region having a first cross-sectional width or diameter, a second region positioned distal from the first region and having a second cross-sectional width or diameter, and a third region positioned distal from the second region and having a third cross-section width or diameter. As shown in FIG. 1A, the second cross-sectional width or diameter can be smaller than either or both of the first cross-sectional width or diameter and/or the third cross-sectional width or diameter. As shown, in a region of the connector body below the second region, the connector body can comprise a continuously increasing outer cross-section or diameter that produces an outward flare from the second region in a distal direction toward the distal region 120 of the connector 100.


As shown in FIG. 1A, in some embodiments one or more friction-inducing impediments 190 can be positioned circumferentially along the connection structure 140 in a region that is generally about midway between the grasping portions 170. In some embodiments, such as shown in FIG. 1, the friction-inducing impediment 190 can be positioned circumferentially along the connection structure 140 in general alignment with one or more longitudinal edges of one or more grasping portions 170 (see FIG. 2).


In some embodiments (not shown), the horizontal cross-sectional width of the grasping portion 170 is no larger than the external diameter or horizontal cross-sectional width of the base portion 180, and/or may comprise one or more small friction-inducing structures, such as one or more protrusions, grooves, and/or other slide-resistant structures or materials. In some embodiments, the grasping portion 170 can be omitted, as with any other feature, structure, material, or step disclosed or illustrated in this specification.


In some embodiments, all or a portion of the fluid pathway 135 inside of the connector 100 can be straight, as illustrated in FIG. 3A (either before or after insertion of an emitter 200, as shown in FIGS. 3B and 3C), from the proximal region 110 or proximal end 115 to the distal region 120 or end 125 of the connector 100, such that a single straight line can be drawn within the fluid pathway 135 from the beginning to the end of the fluid pathway 135. In some embodiments, the fluid pathway 135 can extend along a generally straight path without one or multiple sharp, angular, perpendicular, and/or obtuse changes in direction in the fluid pathway 135. In some embodiments, the fluid pathway 135 is straight or generally straight at least along a majority of the longitudinal length of the fluid pathway 135. The fluid pathway 135 can be straight or generally straight along any particular segment of the fluid pathway, such as along the distance between all or a majority of the proximal end 115 of the connector 100 and the proximal end of the intermediate region 192, between all or a majority of the proximal end of the intermediate region 192 and the distal end of the intermediate region 192, and/or between all or a majority of the proximal end of the portion of the fluid pathway 135 within the male protrusion 160 and the distal end of the portion of the fluid pathway 135 within the male protrusion. A straight path or a generally straight path can diminish turbulence and/or stagnation in one or more portions of the fluid pathway 135 and/or can provide a high flow rate and low fluid resistance.


As shown in FIG. 3A, the diameter or horizontal cross sectional width of the fluid pathway 135 can vary along the longitudinal length of the fluid pathway 135. For example, as illustrated in FIG. 3A, the diameter or cross sectional width of the fluid pathway 135 in at least a portion of the proximal region 110 can be larger than the diameter or cross sectional width of the fluid pathway 135 in at least a portion of an intermediate region 192, which in turn can be larger than the diameter or cross sectional width of the fluid pathway 135 in at least a portion of the distal region 120, such as the portion of the fluid pathway 135 inside of the male protrusion 160.


In some embodiments, as shown, the connector 100 can comprise a stationary structure without any moving external and/or internal parts during use. For example, the external and/or internal shape, orientation, position, and/or size of the connector 100 and its internal components before attachment to or engagement with another medical device can be the same as it is after attachment to or engagement with another medical device. In some embodiments, the connector 100 can comprise moving parts to facilitate connection and disconnection, opening and closing of the connector to form a valve, and/or regulation of pressure or volume.


The connector 100 can comprise one or more additional features that are not shown in FIGS. 1-7, such as proximal and/or distal ends 115, 125 that include resealably openable and closeable apertures with one or more resilient or rigid sealing elements to enable selective fluid flow; a rigid internal cannula or support member or spike that is configured to assist in supporting or opening a sealing element; a body 130 that is clear or transparent or includes a clear or transparent portion and/or one or more other internal structures that are clear or transparent or include a clear or transparent portion that is or are configured to enable viewing of fluid within the internal fluid pathway 135 during use; a cap for selectively closing the fluid pathway; and/or a pressure-regulating or volume-regulating feature inside of the connector 100 to enable neutral flow, etc. For example, any feature, structure, material, component, or step illustrated or described in any embodiment of U.S. Pat. Nos. 5,685,866; 7,815,614; 8,454,579; and/or 8,758,306, which are each incorporated by reference herein in their entireties, can be used with or instead of any feature, structure, material, component, or step illustrated or described in any embodiment in this specification.


In some embodiments, as shown, the connector 100 can be configured to receive or include one or more components that are configured to provide one or more therapeutic agents into the medicinal fluid that is inside and/or moving through the fluid pathway 135. For example, as illustrated in FIGS. 3B, 3C, and 6B, an emitter 200 of one or more therapeutic agents can be inserted into the connector 100 in an internal region, such as in the intermediate region 192, of the fluid pathway 135. As illustrated, in some embodiments, the emitter 200 is positioned entirely within the connector 100 and not partially or entirely positioned within another medical device, such as a syringe. The connector 100 can be temporarily or permanently attached to a syringe or any other medical device. The connector 100 with the emitter 200 can be configured to provide infusion of one or more therapeutic agents in a low-profile, non-bulky, inexpensive manner, without requiring large or complex storage or logistical requirements.


The emitter 200 can comprise any material and/or structure that is configured to provide, leach out, release, diffuse, infuse, dissolve, erode into, or otherwise emit a therapeutic agent into the fluid pathway 135, alone or in combination with fluid flowing through the fluid pathway 135. In some embodiments, the emitter 200 can comprise a non-dissolving substrate or storage material or matrix or other base material in which a therapeutic agent is temporarily held or captured or bound until the therapeutic agent is emitted within the fluid pathway 135. The emitter 200 can have any suitable shape. For example, the emitter 200 can be cylindrical (as shown) or rectangular. In some embodiments, as shown, the emitter 200 can be elongate (e.g., its longitudinal length, from its proximal end 201 or face to its distal end 203 or face is larger than its diameter or cross sectional area). As illustrated, some emitters 200 are solid or substantially solid or resistive to fluid flow from a proximal end or face 201 to a distal end or face 203. For example, as shown, in some embodiments there are no internal, discrete, and/or generally longitudinally oriented fluid pathways within or through the emitter 200; rather, fluid may be permitted to soak into or be absorbed by or pass through the emitter 200 only in essentially random or highly tortious directions (e.g., not a direct or discrete pathway), and/or fluid may not be permitted to soak into or pass through the emitter 200 at all. In some embodiments (not shown), an emitter 200 for use with the connector 100, or with any other embodiment of a connector, can include one or more apertures, channels, tunnels, passages, and/or fluid pathways that are configured to carry or convey fluid through or within the emitter (e.g., from a proximal end or face 201 to a distal end or face 203) without substantial resistance to fluid flow.


In some embodiments, all or at least a portion of the outer housing of the connector 100 where all or at least a portion of the emitter 200 is contained can be clear or transparent to permit viewing of the emitter 200 from outside of the connector 100. In some embodiments, as shown, the emitter 200 is very small. For example, as shown in FIG. 3a, the longitudinal length of the emitter 200, from its proximal face to its distal face can be less than or equal to about the longitudinal length of the conduit 155 within the proximal region 110 and/or less than or equal to about the longitudinal length of the male protrusion 160; and/or the diameter or cross-sectional area of the emitter 200 can be less than or equal to about the outer diameter of the male protrusion 160. In some embodiments, the longitudinal length of the emitter 200 and/or the diameter of the emitter can be a few millimeters (e.g., at least about 2 millimeters or at least about 4 millimeters). Many other sizes and shapes and configurations can be used for the emitter 200.


As illustrated, in some applications, the emitter 200 can comprise a compressible and/or fibrous matrix material on which a therapeutic agent has been coated or into which a therapeutic agent has been infused, impregnated, soaked, absorbed, and/or bonded. In some embodiments, the emitter 200 can include any suitable biocompatible binder to facilitate a temporary water-soluble or other liquid-soluble bond between the base material and the therapeutic agent, or the emitter 200 may not include any binder. In some embodiments, the emitter 200 does not include a substrate but is instead formed of a consumable material that gradually erodes away or dissolves into the fluid pathway 135 during infusion until it is used up. Any type of therapeutic agent can be used, including but not limited to one or more nourishing agents (e.g., vitamins, minerals, etc.), pain-diminishing medications, antibiotics, antimicrobials (e.g., any chlorhexidine-based compound), anti-inflammatories, sedatives, anticoagulants (e.g., heparin), chemotherapy drugs, and/or other types of therapeutic agent. The size and shape of the emitter 200 and/or of the overall connector 100 can be very different depending upon the amount or type of therapeutic agent that is intended to be infused. For example, a very large connector can be used when a large amount of therapeutic agent needs to be infused. Many other different types of emitters can be used instead of or in addition to the emitter 200 as illustrated. For example, an emitter can be provided in the form of a coating on an interior surface of the connector 100 or a material integrated into a portion of the base of the body 130 of the connector 100, or any other suitable material or structure that provides a therapeutic agent at a desired time, in a desired dosage, and/or at a desired infusion rate. Among many other embodiments, an emitter for use with the connector 100 can be provided in the form of any of the cartridges or other emitters that are illustrated or described in International PCT Publication No. WO2013/023146 A1 (Di Fiore), which is incorporated by reference herein in its entirety. Many other types of emitters can be used instead of or in addition to those illustrated or described.


In some embodiments in which an emitter 200 is provided in the form of an inserted material, such as is shown in the example of FIG. 3B, the interior region of the connector 100 can comprise a retaining structure 210 for the emitter 200, as illustrated in FIG. 3A. Although the retaining structure 210 is illustrated with particular dimensions and features, the retaining structure 210 can comprise any suitable material or structure that retains the emitter 200 in such a way that the emitter 200 can be configured to emit one or more therapeutic agents as desired for a particular medical therapy.


As illustrated, in some examples, the retaining structure 210 can comprise one or more retaining components 230 that extend from an internal wall of the connector 100 into an internal space of the connector (such as radially inwardly). For example, as shown, the retaining components 230 can be retaining struts that extend generally longitudinally along the fluid pathway 135. The retaining components 230 can be positioned in the intermediate region 192, as shown. In some embodiments, the retaining structure 210 can comprise at least two or at least three or at least four (as shown in FIG. 6B) retaining components 230 such as retaining struts. As shown in FIG. 7C, one or more of the retaining components 230 can comprise a first portion or component that extends a first distance from an internal wall of the connector 100 into an internal space of the connector and a second portion or component that extends a second distance from an internal wall of the connector 100 into an internal space of the connect. The second distance can be greater than the first distance. For example, one or more of the retaining struts can comprise a retaining protrusion, such as an elongate longitudinal portion, and a base portion 240. The longitudinal portion can be formed as a protrusion extending radially inwardly from the interior wall of the intermediate region 192 of the fluid pathway 135 of the connector 100. As shown, in some embodiments, one or more of the base portions 240 can be radially aligned with one or more of the longitudinal portions 230. One or more of the base portions 240 can extend radially inwardly from the interior wall of the fluid pathway 135 further than one or more of the longitudinal portions 230, as illustrated in FIGS. 3A-3C, 6A, 7A, and 7C, for example.


In some embodiments, as shown, the retaining structure 210 can provide a retaining space within which the emitter 200 can be retained. For example, the retaining space can correspond to the outer width or thickness of the emitter 200, such as by being about the same size as or slightly smaller than the outer width or thickness of the emitter 200. When an emitter 200 is inserted into a retaining space, such as by pushing the retainer into the proximal end 215 of the connector 100, through the proximal portion of the fluid pathway 135, and into the intermediate portion 192, the emitter 200 can radially compress or contract by a small amount such that the retaining structure 210 can exert a radially inwardly directed retaining force against the emitter 200 that is sufficient to produce an increase in friction that resists dislodgment of the emitter 200 from the retaining space (for example, as shown in FIG. 6C). In some embodiments, as illustrated, the emitter 200 can be securely retained within the connector 100 in a manner that resists or prevents either or both of longitudinal or lateral movement of the emitter 200 within the retaining space. In some embodiments (not shown), the retaining space is configured to be somewhat larger than the emitter 200 to permit the emitter 200 to move or float within the retaining space, either before or during infusion.


As shown, a plurality of longitudinal portions 230 can be positioned radially around the retaining space such that the plurality of longitudinal portions 230 are configured to contact the outer surface of the emitter 200 when inserted. In some embodiments, as illustrated, the longitudinal portions 230 are provided generally equally spaced circumferentially from each other. As illustrated, one or more of the longitudinal portions can comprise longitudinal faces (e.g., facing radially inwardly) that are slightly inwardly tapered along the longitudinal dimension in the proximal-to-distal direction, such that the distance between respective longitudinal portions is slightly less on the distal side of the longitudinal portions than on the proximal side of the longitudinal portions. This inward tapering can help to securely retain the emitter 200 when inserted into the retaining space. As shown in FIG. 7C, one or more of the longitudinal portions 230 can include a proximal face or region 260 that is tapered or beveled or slanted to facilitate insertion of an emitter 200 into the retaining space by providing an initially wide but gradually narrowing region for the emitter 200 upon insertion of the emitter 200 into the retaining space.


As shown in FIGS. 6B and 8, a flow space 250 can be provided between two or more retaining components (e.g., longitudinal portions 230) sequentially positioned circumferentially around the fluid pathway 135 (and/or generally surrounding or positioned generally around the retaining space). As shown in FIGS. 8 and 8A, the one or more flow spaces 250 can be configured to permit fluid flowing through the fluid pathway 135 within the connector 100 to flow around the longitudinal portions 230 and through the flow spaces 250, along one or more lateral sides or lateral surfaces of the emitter 200, such as between the one or more lateral sides or lateral surfaces of the emitter 200 and the internal wall of the fluid pathway 135. In some embodiments, there is at least one flow space 250, or at least two flow spaces 250, or at least four flow spaces 250 (as shown). In some embodiments, as illustrated in FIG. 8, at least a majority of the external surface area of the emitter 200 is spaced from the internal surface of the fluid pathway 135 so that the fluid pathway 135 can pass adjacent to and around the outside of the emitter 200 to permit some or all of the fluid to flow around the outside of the emitter 200 (e.g., at least a majority of the external lateral surface area of the emitter 200 does not contact one or more retaining components or other surfaces inside of the connector 100). In some embodiments of connector 100, there are no flow spaces or only very small and/or very constricted flow spaces, such that all or a majority of the fluid pathway and the fluid flowing through the connector is configured to pass within or through the emitter 200 (e.g., by passing through a proximal portion or face 201 of the emitter 200 and exiting out of a distal portion or face 203 of the emitter 200). Such an emitter 200 can have many forms; for example, it can be solid and/or porous and/or include one or more apertures, channels, tunnels, passages, and/or fluid pathways for conveying or carrying fluid.


A base retainer can be formed in any suitable manner, such as by a plurality of base portions 240 (as illustrated), that can provide a lower flow space 280 between a distal end of the intermediate region 192 and a distal end of the emitter 200, as shown in FIGS. 3C and 8. The distal end of the retaining space, as shown, can include an aperture 270 that is smaller in diameter than another portion of the flow pathway 135 in the intermediate region 192 and/or that is smaller in diameter than the retaining space. Within the flow pathway 135, the aperture 270 can lead from the intermediate region 192 to the interior of the male protrusion 160, as illustrated. The base retainer can assist in retaining the emitter 200 apart or spaced away from the distal end of the intermediate region and/or from the aperture 270, so as to enable fluid flowing through the fluid pathway 135 to flow around the distal end of the emitter 200 and out of the aperture 270 (without causing the emitter 200 to plug up or block the aperture 270).


In some embodiments, as shown in FIG. 7C, the circumference of a circle transcribed by the longitudinal portions 230 and/or the base portions 240 of the retaining structures 210 around the fluid path can be greater than the circumference of the internal fluid pathway 135 of the distal end 125 (and/or greater than the circumference of the aperture 270 of the fluid pathway of the distal end 125). In some embodiments, as shown in FIG. 7C, the distance across the intermediate region 192 between generally opposite facing longitudinal portions 230 and/or base portions 240 can be greater than a minimum diameter of the internal fluid pathway 135 of the distal end 125 and/or greater than the diameter of the aperture 270 of the fluid pathway of the distal end 125. For instance, as shown in FIG. 7C, in some embodiments, where two retaining structures are positioned generally opposite one another about a circumference formed by the retaining structures 210 around the fluid path, the transverse distance between the oppositely positioned retaining structures 210 and/or base portions 240 is greater than the diameter of the internal fluid pathway 135 of the distal end 125 (and/or greater than a diameter of the aperture 270). As shown in FIGS. 6B and 6C, respectively, in some embodiments, the circumference formed by the retaining structures 210 around the fluid pathway is about the same size or just smaller than the circumference of an emitter 200. In some embodiments, when the circumference formed by the retaining structures 210 around fluid pathway is just smaller than the circumference of an emitter 200, the longitudinal portions 230 of the retaining structures 210 can engage (e.g., hold or restrain) the emitter 200 (e.g., by friction). In some embodiments, as shown in FIG. 7C, when the internal fluid pathway 135 is smaller than the portion of the intermediate region 192 between the longitudinal portions 230, then a distal shelf or support region or fluid diverting region can be formed in the internal region 192 between the longitudinal portions and the internal fluid pathway 135 of the distal end 125. As shown in FIG. 7C, the shelf or support region or fluid diverting region can be generally horizontal or generally transverse in some embodiments.


In some embodiments, as shown in FIGS. 6A and 7C, a circumference formed by the base portions 240 about the fluid path within the of the intermediate region 192 can be greater than the circumference of the internal fluid pathway 135 of the distal end 125 (and/or greater than the circumference of the aperture 270 of the fluid pathway of the distal end 125). For instance, as shown in FIG. 7C, in some embodiments, where two base portion 240 structures are positioned generally opposite from one another about a circumference formed by the base structures 240 around the fluid path, the transverse distance between the oppositely positioned retaining structures 210 is greater than the diameter of the internal fluid pathway 135 of the distal end 125 (and/or greater than a diameter of the aperture 270). As shown in FIG. 7C, in some embodiments, the internal-most circumference formed by the base portions 240 terminates circumferentially outwardly of the circumference of the aperture 270. In some embodiments, as shown in FIG. 3A, the portion of the intermediate region 192 within the longitudinal portions 230 is smaller in transverse width or diameter or circumference than the conduit 155 within the proximal region 110.


As illustrated in FIGS. 8 and 8A, the connector 100 can be configured so that the position and orientation of the retaining structure and the emitter 200 permits fluid flowing through the fluid pathway 135 to flow mostly or entirely around and/or outside of the emitter 200. In its initial state, the emitter 200 can be dry or not saturated with fluid. As fluid flows around and/or outside of the emitter 200, the emitter 200 is wetted or the level of wetness of the emitter 200 is increased and therapeutic agent is emitted from the emitter 200 into the flowing fluid, first from the periphery of the emitter 200 (which is closest to the flowing fluid) and then from the core or interior of the emitter 200. As the fluid flowing around the emitter 200 soaks into and/or eventually saturates the emitter 200, therapeutic agent contained within the interior of the emitter 200 migrates toward the periphery of the emitter 200 and is eventually emitted into the fluid pathway 135. By directing the fluid flow predominantly around and/or outside, rather than predominantly through, the emitter 200, the connector 100 does not become plugged up or require excessive force on the syringe to accomplish fluid infusion. In some embodiments (not shown), most or all of the fluid flow can be directed through the emitter 200, for example in embodiments in which there are no flow spaces 250, 280. Also, by directing the fluid flow predominantly around and/or outside, rather than predominantly through the emitter 200, the connector 100 allows at least a portion of fluid to flow freely through the connector.


As shown in the example of FIG. 8, in some embodiments, the proximal face of the emitter 200 can be unobstructed by the retaining structure 210 within the fluid pathway 135. For example, as shown, the retaining structure 210 can be positioned only on or along or in contact with one or more outer lateral or longitudinal sides of the emitter 200 and/or not on or along or in contact with or in blocking relationship with a proximal face of the emitter 200. In some embodiments, the proximal face of the emitter 200 is exposed to the full diameter or cross-sectional width of the fluid pathway 135 of the conduit 155 within the proximal region 110, such that the fluid flowing through the fluid pathway is configured to initially contact the full proximal face of the emitter 200 when flowing in a distally directed longitudinal direction, without being required to twist or turn to contact the proximal face of the emitter 200. In some embodiments, as illustrated in FIG. 8, there is no constriction or blockage of the fluid pathway 135 within the proximal region 110 between the conduit 155 and the proximal face of the emitter 200.


The emitter 200, in some implementations, can be positioned within the fluid pathway 135 a sufficient distance from the proximal end 115 of the connector 100 that when a male protrusion (such as from a syringe) is inserted into the proximal region 110 of the connector, the distal end of the male protrusion does not contact the emitter 200.


In some embodiments, as illustrated, the portion of the fluid pathway 135 located within the male protrusion 160 can be generally or completely unobstructed and/or unimpeded. For example, as shown, the emitter 200 can be located entirely outside of the fluid pathway 135 located within the male protrusion 160. For example, the emitter 200 can be configured to be positioned within the intermediate portion 192 of the connector 100, as shown. In some embodiments, as illustrated, the emitter 200 can be positioned entirely inside of the connector 100, with no portion of the emitter protruding outside of the connector 100. As shown in FIGS. 8 and 8A, the connector can be shaped, structured, and/or contoured such that the fluid pathway 135 of the connector 100 can be configured to convey liquid along a first portion of the fluid pathway 135 around the outside of the emitter 200, the first portion having an outer perimeter that is wider than the diameter of the emitter 200, and along a second portion of the fluid pathway 135 in a distal direction from the emitter 200 into a region having an outer perimeter that is narrower than the diameter of the emitter 200 (e.g., inside of the male protrusion 160).


The connector 100 can be used in many different ways and/or in many different systems for providing one or more therapeutic medical effects. An example of using the connector 100 in a method of providing an anti-microbial block in a patient standby fluid line or providing an emitted therapeutic agent (such as any agent disclosed elsewhere in this specification) in any fluid line can include one or more of the following steps, and/or one or more instructions can be provided to the user (e.g., healthcare practitioner or patient) to perform one or more of the following steps, in any suitable order:


(1) The connector 100 with an antimicrobial emitter 200 or another type of emitter 200 of one or more therapeutic agents can be attached to the proximal end of a fluid line at the end of an infusion stage to initiate the beginning of a standby stage. In some embodiments, the emitter 200 can comprise a dry or unsaturated, biocompatible, clinically safe dosage of an anti-microbial material, such as a chlorhexidine compound, or an anti-thrombotic material, or any other therapeutic material, that is configured to be infused into the fluid pathway 135. A standard liquid, such as water or saline, or any other suitable liquid, can be forced into or infused into the proximal end 115 of the connector 100 from another medical device, such as a syringe or a pump or a vial or a fluid line or an IV bag, and brought into fluid communication with the emitter 200 (e.g. by passing around or through, and/or within it).


(2) An antimicrobial or other therapeutic agent can be automatically emitted from the emitter 200 and infused into the fluid line to form an antimicrobial block downstream of the emitter 200 and/or to provide any other therapeutic effect in the fluid line. In some embodiments, only a small amount of standard or other liquid is passed from the syringe into the connector 100 (e.g., less than or equal to about 10 cc or less than or equal to about 20 cc or less than or equal to about 50 cc of water or saline), such that the antimicrobial or other agent remains in the fluid line during the standby stage and does not migrate in any appreciable amount into the patient's bloodstream.


In some embodiments, by utilizing connectors 100 with antimicrobial-infused emitters 200 or other therapeutic-agent-infused emitters 200, a health clinic or hospital can conveniently diminish the space, expense, and logistics associated with providing and infusing antimicrobial liquid or other therapeutic liquid into fluid lines to perform antimicrobial blocks. The connector 100 can be used in many different types of methods.


In some embodiments, as shown, the medical connector 100 is not a valve. In some embodiments, the medical connector 100 does not have a dynamic sealing mechanism. In some embodiments, for example, the medical connector 100 does not have both a closed mode (a position where fluids do not pass and/or are restricted through the medical connector 100) and an open mode (a position where fluids pass through the medical connector 100 freely). In some embodiments, the medical connector 100 is not configured to stop the flow of fluid through the medical connector 100. In some embodiments, the medical connector is not configured to provide a low pressure seal. In some embodiments, the medical connector lacks a closable aperture. In some embodiments, the medical connector 100 is open. In some embodiments, fluid can flow freely (and/or in unrestricted fashion) through the proximal end 115, to the intermediate region 192, and through the distal region 120 via the internal fluid pathway 135 (e.g., when the medical connector 100 lacks or has an emitter 200). In some embodiments, the medical connector 100 lacks a ring seal around the fluid path and in the intermediate region.


In some embodiments, the internal fluid pathway 135 of the medical connector 100 does not have a stretchable and/or compressible gland or resilient seal. In some embodiments, the internal fluid pathway 135 of the medical connector 100 is not configured to receive a stretchable and/or compressible gland or resilient seal. In some embodiments, the medical connector 100 is not configured to allow the compression of a stretchable and/or compressible gland or resilient seal within the internal fluid pathway 135. In some embodiments, the medical connector 100 lacks an actuator configured to open and close. In some embodiments, the medical connector 100 lacks a rigid supporting or centering or piercing member (e.g., a cannula, needle, spike, etc.). In some embodiments, the internal fluid pathway 135 lacks a rigid member. In some embodiments, the medical the intermediate portion 192 is not configured to allow a rigid member to pass into the intermediate portion 192. In some embodiments, the base portions 240 do not extend into the internal fluid pathway 135 of the distal end 125. In some embodiments, the fluid pathway 135 in the distal region 120 is of insufficient diameter to accommodate a rigid member.


Any terms generally associated with circles, such as “radius” or “radial” or “diameter” or “circumference” or “circumferential” or any derivatives or similar types of terms are intended to be used to designate any corresponding structure in any type of geometry, not just circular structures. For example, “radial” as applied to another geometric structure should be understood to refer to a direction or distance between a location corresponding to a general geometric center of such structure to a perimeter of such structure; “diameter” as applied to another geometric structure should be understood to refer to a cross sectional width of such structure; and “circumference” as applied to another geometric structure should be understood to refer to a perimeter region. Nothing in this specification or drawings should be interpreted to limit these terms to only circles or circular structures.

Claims
  • 1. A medical fluid connector configured to receive an emitter of therapeutic agents to be emitted into a fluid pathway within the medical fluid connector, the medical fluid connector comprising: an outer housing comprising a proximal female end, an intermediate region, a distal male end, an internal wall, and a fluid pathway, wherein the fluid pathway extends from the proximal female end through the intermediate region to the distal male end; anda retaining structure configured to securely receive an emitter of one or more therapeutic agents within a receiving region such that a movement of the emitter is restricted, the emitter is spaced away from the internal wall, and there is not an emitter position in which a fluid cannot flow around the emitter, wherein the retaining structure is configured to receive the emitter in a position and an orientation such that the fluid pathway conveys fluid moving longitudinally through the fluid pathway directly into a proximal region of the emitter, around one or more lateral surfaces of the emitter, around a distal end of the emitter, and toward the distal male end.
  • 2. The medical fluid connector of claim 1, wherein the retaining structure is configured to receiving the emitter in the position and the orientation such that one or more fluid flow spaces are between the one or more lateral surfaces of the emitter and the internal wall.
  • 3. The medical fluid connector of claim 2, wherein the fluid pathway conveys fluid moving longitudinally through the fluid pathway through the one or more fluid flow spaces.
  • 4. The medical fluid connector of claim 1, further comprising a plurality of base portions that provide a plurality of distal flow spaces between the distal end of the emitter and a distal end of the intermediate region, wherein the fluid pathway conveys fluid moving through the fluid pathway through the plurality of distal flow spaces.
  • 5. The medical fluid connector of claim 1, wherein the receiving region gradually narrows to securely receive the emitter.
  • 6. The medical fluid connector of claim 1, wherein a proximal female region near the proximal female end comprises a connection structure.
  • 7. The medical fluid connector of claim 6, wherein the connection structure comprises a screw thread.
  • 8. The medical fluid connector of claim 7, wherein at least a portion of the screw thread is oversized.
  • 9. The medical fluid connector of claim 8, wherein the screw thread comprises a disconnection-resistant feature.
  • 10. The medical fluid connector of claim 1, wherein a distal region near the distal male end does not comprise a connection structure.
  • 11. The medical fluid connector of claim 10, wherein the distal region comprises a distal male protrusion.
  • 12. The medical fluid connector of claim 11, wherein the distal male protrusion is oversized.
  • 13. A medical fluid connector comprising: a housing comprising a proximal region, an intermediate region, and a distal region, with a fluid pathway extending between the proximal and distal regions, wherein the fluid pathway is surrounded by an internal surface and at least partially open such that the fluid pathway is configured to receive and convey fluid freely through the housing; anda structure comprising a plurality of protrusions and a plurality of base portions configured to securely position an emitter within a retaining space of the intermediate region in a fixed location, wherein the plurality of protrusions are configured to space lateral sides of the emitter away from the internal surface and the plurality of base portions are configured to space a distal end of the emitter away from a distal end of the intermediate region such that the fluid pathway is configured to convey fluid adjacent to and outside of at least a majority of an external surface area of the emitter.
  • 14. The medical fluid connector of claim 13, wherein the retaining space narrows in a proximal-to-distal direction.
  • 15. The medical fluid connector of claim 13, wherein the plurality of protrusions are longitudinal portions.
  • 16. The medical fluid connector of claim 15, wherein the plurality of longitudinal portions are equally spaced circumferentially from each other.
  • 17. The medical fluid connector of claim 15, wherein the plurality of longitudinal portions are tapered in a proximal-to-distal direction.
  • 18. A method of manufacturing a medical fluid connector, the method comprising: providing a housing comprising a proximal female end, an intermediate region, a distal male end, and a fluid pathway extending from the proximal female end, through the intermediate region, to the distal male end; andproviding a retaining structure positioned within the intermediate region, the retaining structure comprising a retaining space and one or more fluid flow spaces generally surrounding the retaining space;wherein the retaining space is configured to fixedly retain an emitter within the housing, wherein the retaining structure is configured to retain the emitter as a fluid moves longitudinally through the fluid pathway directly into a proximal region of the emitter, through the one or more fluid flow spaces such that fluid is conveyed to contact one or more outside surfaces of the emitter, around a distal end of the emitter, and toward the distal male end.
  • 19. The medical fluid connector of claim 18, wherein the intermediate region has an internal surface, and wherein the retaining structure has a plurality of retaining components, and wherein the one or more fluid flow spaces are positioned between the plurality of retaining components.
  • 20. The medical fluid connector of claim 19, wherein the retaining structure comprises a plurality of base portions configured to retain the emitter such that the emitter is spaced away from a distal end of the intermediate region.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 15/726,838, filed Oct. 6, 2017, which is a continuation of International Application No. PCT/US2016/030844, filed May 4, 2016, which claims the benefit of priority to U.S. Provisional Patent Application No. 62/212,473, filed Aug. 31, 2015, and U.S. Provisional Patent Application No. 62/159,130, filed May 8, 2015. All of the foregoing applications are hereby incorporated by reference herein in their entireties.

US Referenced Citations (973)
Number Name Date Kind
382297 Fry May 1888 A
559697 Tiugti et al. May 1896 A
877946 Overton Feb 1908 A
975939 Edwards et al. Nov 1910 A
1445642 O'Neill Feb 1923 A
1793068 Dickinson Feb 1931 A
2098340 Henahan Nov 1937 A
2436297 Guarnaschelli Feb 1948 A
2457052 Le Clair Dec 1948 A
2771644 Martin Nov 1956 A
2842382 Franck Jul 1958 A
2968497 Treleman Jan 1961 A
3127892 Bellamy, Jr. et al. Apr 1964 A
3262448 Ring et al. Jul 1966 A
3270743 Gingras Sep 1966 A
3301392 Eddingfield Jan 1967 A
3304047 Martin Feb 1967 A
3334860 Bolton, Jr. Aug 1967 A
3411665 Blum Nov 1968 A
3484121 Quinton Dec 1969 A
3485416 Fohrman Dec 1969 A
3538950 Porteners Nov 1970 A
3595241 Sheridan Jul 1971 A
3604582 Boudin Sep 1971 A
3707972 Villari et al. Jan 1973 A
3729031 Baldwin Apr 1973 A
3882858 Klemm May 1975 A
3977401 Pike Aug 1976 A
3977517 Kadlecik et al. Aug 1976 A
3987930 Fuson Oct 1976 A
3993066 Virag Nov 1976 A
4041934 Genese Aug 1977 A
4046889 Ondetti et al. Sep 1977 A
4052511 Cushman et al. Oct 1977 A
4053052 Jasper Oct 1977 A
4053651 Ondetti et al. Oct 1977 A
4066067 Micheli Jan 1978 A
4076285 Martinez Feb 1978 A
4078686 Karesh et al. Mar 1978 A
4079738 Dunn et al. Mar 1978 A
4095810 Kulle Jun 1978 A
4113751 Arnold Sep 1978 A
4121585 Becker, Jr. Oct 1978 A
4129571 Ondetti et al. Dec 1978 A
4133441 Mittleman et al. Jan 1979 A
4143853 Abramson Mar 1979 A
4150845 Kopacz et al. Apr 1979 A
4154840 Ondetti et al. May 1979 A
4154960 Ondetti et al. May 1979 A
4192443 McLaren Mar 1980 A
4194509 Pickering et al. Mar 1980 A
4195632 Parker et al. Apr 1980 A
4233982 Bauer et al. Nov 1980 A
4243035 Barrett Jan 1981 A
4245635 Kontos Jan 1981 A
4264664 Kunz Apr 1981 A
4280632 Yuhara Jul 1981 A
4294370 Toeppen Oct 1981 A
4317446 Ambrosio et al. Mar 1982 A
4324239 Gordon et al. Apr 1982 A
4325368 Kaemmerer Apr 1982 A
4331783 Stoy May 1982 A
4334551 Pfister Jun 1982 A
4335756 Sharp et al. Jun 1982 A
4337327 Stoy Jun 1982 A
4340049 Munsch Jul 1982 A
4340052 Dennehey et al. Jul 1982 A
4354490 Rogers Oct 1982 A
4369294 Stoy Jan 1983 A
4370451 Stoy Jan 1983 A
4379458 Bauer et al. Apr 1983 A
4379874 Stoy Apr 1983 A
4384589 Morris May 1983 A
4387879 Tauschinski Jun 1983 A
4390016 Riess Jun 1983 A
4397442 Larkin Aug 1983 A
4402691 Rosenthal et al. Sep 1983 A
4405312 Gross et al. Sep 1983 A
4417890 Dennehey et al. Nov 1983 A
4420589 Stoy Dec 1983 A
4427126 Ostrowsky Jan 1984 A
4430073 Bemis et al. Feb 1984 A
4432764 Lopez Feb 1984 A
4432766 Bellotti et al. Feb 1984 A
4436125 Blenkush Mar 1984 A
4439179 Lueders et al. Mar 1984 A
4439184 Wheeler Mar 1984 A
4440207 Genatempo et al. Apr 1984 A
4444310 Odell Apr 1984 A
4446967 Halkyard May 1984 A
4447419 Quadro May 1984 A
4457749 Bellotti et al. Jul 1984 A
4461368 Plourde Jul 1984 A
4461896 Portlock Jul 1984 A
4480940 Woodruff Nov 1984 A
4507111 Gordon et al. Mar 1985 A
4511359 Vaillancourt Apr 1985 A
4534764 Mittleman et al. Aug 1985 A
4538836 Kruetten Sep 1985 A
4559043 Whitehouse Dec 1985 A
4568675 Bush et al. Feb 1986 A
4585758 Huang et al. Apr 1986 A
4602042 Chantler et al. Jul 1986 A
4610469 Wolff-Mooij Sep 1986 A
4619640 Potolsky et al. Oct 1986 A
4623332 Lindmayer et al. Nov 1986 A
4624664 Peluso et al. Nov 1986 A
4626545 Taub Dec 1986 A
4629159 Wellenstam Dec 1986 A
4631188 Stoy Dec 1986 A
4642091 Richmond Feb 1987 A
4660803 Johnston et al. Apr 1987 A
4662878 Lindmayer May 1987 A
4666057 Come et al. May 1987 A
4666427 Larsson et al. May 1987 A
4671306 Spector Jun 1987 A
4671412 Gatten Jun 1987 A
4681886 Haugwitz et al. Jul 1987 A
4692458 Ryan et al. Sep 1987 A
4692459 Ryan et al. Sep 1987 A
4700744 Rutter et al. Oct 1987 A
4703762 Rathbone et al. Nov 1987 A
4705790 Hubele et al. Nov 1987 A
4723603 Plummer Feb 1988 A
4728075 Paradis Mar 1988 A
4728321 Chen Mar 1988 A
4738668 Bellotti et al. Apr 1988 A
4745950 Mathieu May 1988 A
4747502 Luenser May 1988 A
4748160 Bennion et al. May 1988 A
4752983 Grieshaber Jun 1988 A
4769013 Lorenz et al. Sep 1988 A
4774964 Bonaldo Oct 1988 A
4774965 Rodriguez et al. Oct 1988 A
4778447 Velde et al. Oct 1988 A
4781702 Herrli Nov 1988 A
4799926 Haber Jan 1989 A
4804015 Albinsson Feb 1989 A
4808158 Kreuzer et al. Feb 1989 A
4810241 Rogers Mar 1989 A
4811847 Reif et al. Mar 1989 A
4813933 Turner Mar 1989 A
4816024 Sitar et al. Mar 1989 A
4834271 Litwin May 1989 A
4862913 Wildfang Sep 1989 A
4874366 Zdeb et al. Oct 1989 A
4883483 Lindmayer Nov 1989 A
4889255 Schiemann et al. Dec 1989 A
4894056 Bommarito Jan 1990 A
4898580 Growley Feb 1990 A
4915687 Sivert Apr 1990 A
4917669 Bonaldo Apr 1990 A
4919658 Badia Apr 1990 A
4927019 Haber et al. May 1990 A
4935010 Cox et al. Jun 1990 A
4941873 Fischer Jul 1990 A
4950260 Bonaldo Aug 1990 A
4957637 Cornell Sep 1990 A
4963132 Gibson Oct 1990 A
D313277 Haining Dec 1990 S
D314050 Sone Jan 1991 S
4983161 Dadson et al. Jan 1991 A
4985017 Theeuwes Jan 1991 A
4989733 Patry Feb 1991 A
4991629 Ernesto et al. Feb 1991 A
4997371 Fischer Mar 1991 A
4999210 Solomon et al. Mar 1991 A
5002964 Loscalzo Mar 1991 A
5006114 Rogers et al. Apr 1991 A
5015238 Solomon et al. May 1991 A
5019096 Fox, Jr. et al. May 1991 A
5021059 Kensey et al. Jun 1991 A
5024657 Needham et al. Jun 1991 A
5025001 Loscalzo et al. Jun 1991 A
5026359 Burroughs Jun 1991 A
5031622 LaHaye Jul 1991 A
5033961 Kandler et al. Jul 1991 A
5047021 Utterberg Sep 1991 A
5049139 Gilchrist Sep 1991 A
5059186 Yamamoto et al. Oct 1991 A
5065783 Ogle, II Nov 1991 A
5070885 Bonaldo Dec 1991 A
5071411 Hillstead Dec 1991 A
5071413 Utterberg Dec 1991 A
5098385 Walsh Mar 1992 A
5108376 Bonaldo Apr 1992 A
5122123 Vaillancourt Jun 1992 A
5127626 Hilal et al. Jul 1992 A
5129824 Keller Jul 1992 A
5139483 Ryan Aug 1992 A
5143104 Iba et al. Sep 1992 A
5147333 Raines Sep 1992 A
5154703 Bonaldo Oct 1992 A
5154920 Flesher et al. Oct 1992 A
5184742 DeCaprio et al. Feb 1993 A
5190534 Kendell Mar 1993 A
5195957 Tollini Mar 1993 A
RE34223 Bonaldo Apr 1993 E
5199948 McPhee Apr 1993 A
5201725 Kling Apr 1993 A
5203775 Frank et al. Apr 1993 A
5205820 Kriesel Apr 1993 A
5205821 Kruger et al. Apr 1993 A
5207706 Menaker May 1993 A
5211634 Vaillancourt May 1993 A
5212204 Keefer et al. May 1993 A
5215537 Lynn et al. Jun 1993 A
5240675 Wilk et al. Aug 1993 A
5242421 Chan Sep 1993 A
5242425 White et al. Sep 1993 A
5246011 Caillouette Sep 1993 A
5250550 Keefer et al. Oct 1993 A
5251873 Atkinson et al. Oct 1993 A
D342134 Mongeon Dec 1993 S
5269771 Thomas et al. Dec 1993 A
5278192 Fung et al. Jan 1994 A
5281206 Lopez Jan 1994 A
5284475 Mackal Feb 1994 A
5295657 Atkinson Mar 1994 A
5297310 Cox et al. Mar 1994 A
5301686 Newman Apr 1994 A
5304130 Button Apr 1994 A
5306243 Bonaldo Apr 1994 A
5312377 Dalton May 1994 A
5324270 Kayan et al. Jun 1994 A
5324647 Rubens et al. Jun 1994 A
5330235 Wagner et al. Jul 1994 A
5330426 Kriesel Jul 1994 A
5330450 Lopez Jul 1994 A
5330899 Devaughn et al. Jul 1994 A
5337730 Maguire Aug 1994 A
5344414 Lopez et al. Sep 1994 A
5352410 Hansen et al. Oct 1994 A
5354267 Niermann et al. Oct 1994 A
5356396 Wyatt et al. Oct 1994 A
5360413 Leason et al. Nov 1994 A
5366505 Farber Nov 1994 A
5366997 Keefer et al. Nov 1994 A
5370614 Amundson et al. Dec 1994 A
5370636 Von Witzleben Dec 1994 A
5370640 Kolff Dec 1994 A
5375589 Bhatta Dec 1994 A
5380306 Brinon Jan 1995 A
5380758 Stamler et al. Jan 1995 A
5391150 Richmond Feb 1995 A
5402826 Molnar et al. Apr 1995 A
5405331 Behnke et al. Apr 1995 A
5405333 Richmond Apr 1995 A
5405919 Keefer et al. Apr 1995 A
5407807 Markus Apr 1995 A
5409012 Sahatjian Apr 1995 A
5411499 Dudar et al. May 1995 A
5417673 Gordon May 1995 A
5425465 Healy Jun 1995 A
5428070 Cooke et al. Jun 1995 A
5433330 Yatsko et al. Jul 1995 A
5433705 Giebel et al. Jul 1995 A
5439451 Collinson et al. Aug 1995 A
5441487 Vedder Aug 1995 A
5445623 Richmond Aug 1995 A
5456668 Ogle, II Oct 1995 A
5456675 Wolbring et al. Oct 1995 A
5464399 Boettger Nov 1995 A
5470307 Lindall Nov 1995 A
5470327 Helgren et al. Nov 1995 A
5471706 Wallock et al. Dec 1995 A
5474536 Bonaldo Dec 1995 A
5480393 Bommarito Jan 1996 A
5492147 Challender et al. Feb 1996 A
5496288 Sweeney Mar 1996 A
5501426 Atkinson et al. Mar 1996 A
5507733 Larkin et al. Apr 1996 A
5507744 Tay et al. Apr 1996 A
5514177 Kurz et al. May 1996 A
5518026 Benjey May 1996 A
5520665 Fleetwood May 1996 A
5520666 Choudhury et al. May 1996 A
5485827 Zapol et al. Jun 1996 A
5525357 Keefer et al. Jun 1996 A
5531695 Swisher Jul 1996 A
5533708 Atkinson et al. Jul 1996 A
5533983 Haining Jul 1996 A
5535785 Werge et al. Jul 1996 A
5536241 Zapol Jul 1996 A
5536258 Folden Jul 1996 A
5540661 Tomisaka et al. Jul 1996 A
5545614 Stamler et al. Aug 1996 A
5549566 Elias et al. Aug 1996 A
5549651 Lynn Aug 1996 A
5552115 Malchesky Sep 1996 A
5552118 Mayer Sep 1996 A
5554127 Crouther et al. Sep 1996 A
5554135 Menyhay Sep 1996 A
5555908 Edwards et al. Sep 1996 A
5569235 Ross et al. Oct 1996 A
5573516 Tyner Nov 1996 A
5575769 Vaillancourt Nov 1996 A
5578059 Patzer Nov 1996 A
5580530 Kowatsch et al. Dec 1996 A
5584819 Kopfer Dec 1996 A
5591137 Stevens Jan 1997 A
5591143 Trombley, III et al. Jan 1997 A
5597536 Mayer Jan 1997 A
5599352 Dinh et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607072 Rigney et al. Mar 1997 A
5613615 Zeyfang et al. Mar 1997 A
5616130 Mayer Apr 1997 A
5620088 Martin et al. Apr 1997 A
5620427 Werschmidt et al. Apr 1997 A
5624402 Imbert Apr 1997 A
5628733 Zinreich et al. May 1997 A
RE35539 Bonaldo Jun 1997 E
5645538 Richmond Jul 1997 A
5665077 Resen et al. Sep 1997 A
5674206 Allton et al. Oct 1997 A
5676346 Leinsing Oct 1997 A
5685835 Brugger Nov 1997 A
5685866 Lopez Nov 1997 A
5685868 Lundquist Nov 1997 A
5688253 Lundquist Nov 1997 A
5694978 Heilmann et al. Dec 1997 A
5699821 Paradis Dec 1997 A
5700248 Lopez Dec 1997 A
5702017 Goncalves Dec 1997 A
5716339 Tanaka et al. Feb 1998 A
5722537 Sigler Mar 1998 A
5735826 Richmond Apr 1998 A
5738144 Rogers Apr 1998 A
5743892 Loh et al. Apr 1998 A
5749861 Guala et al. May 1998 A
5763409 Bayol et al. Jun 1998 A
5770645 Stamler et al. Jun 1998 A
5776116 Lopez Jul 1998 A
5782808 Folden Jul 1998 A
5782816 Werschmidt et al. Jul 1998 A
5785693 Haining Jul 1998 A
5792120 Menyhay Aug 1998 A
5797887 Rosen et al. Aug 1998 A
5806831 Paradis Sep 1998 A
5810792 Fangrow, Jr. et al. Sep 1998 A
5814024 Thompson et al. Sep 1998 A
5814666 Green et al. Sep 1998 A
5820601 Mayer Oct 1998 A
5820604 Fox et al. Oct 1998 A
5827244 Boettger Oct 1998 A
5839715 Leinsing Nov 1998 A
5848994 Richmond Dec 1998 A
5902631 Wang et al. May 1999 A
5941857 Nguyen et al. Aug 1999 A
5947954 Bonaldo Sep 1999 A
5951519 Utterberg Sep 1999 A
5954957 Chin-Loy et al. Sep 1999 A
5971972 Rosenbaum Oct 1999 A
D416086 Parris et al. Nov 1999 S
5989229 Chiappetta Nov 1999 A
5994444 Trescony Nov 1999 A
6029946 Doyle Feb 2000 A
6036171 Weinheimer et al. Mar 2000 A
6041805 Gydesen et al. Mar 2000 A
6045539 Menyhay Apr 2000 A
6045623 Cannon Apr 2000 A
6050978 Orr et al. Apr 2000 A
6059107 Nosted et al. May 2000 A
6063062 Paradis May 2000 A
6068011 Paradis May 2000 A
6068475 Stoyka, Jr. et al. May 2000 A
6068617 Richmond May 2000 A
6071413 Dyke Jun 2000 A
6079432 Paradis Jun 2000 A
6087479 Stamler et al. Jul 2000 A
6093743 Lai et al. Jul 2000 A
6095356 Rits Aug 2000 A
6099519 Olsen et al. Aug 2000 A
6105812 Riordan Aug 2000 A
6106502 Richmond Aug 2000 A
6113068 Ryan Sep 2000 A
6113572 Gailey et al. Sep 2000 A
6116468 Nilson Sep 2000 A
6117114 Paradis Sep 2000 A
6126640 Tucker et al. Oct 2000 A
6142446 Leinsing Nov 2000 A
6143318 Gilchrist et al. Nov 2000 A
6146363 Giebel et al. Nov 2000 A
6152913 Feith et al. Nov 2000 A
6158614 Haines et al. Dec 2000 A
6170522 Tanida Jan 2001 B1
6171287 Lynn et al. Jan 2001 B1
6174539 Stamler et al. Jan 2001 B1
6179141 Nakamura Jan 2001 B1
6183450 Lois Feb 2001 B1
6202870 Pearce Mar 2001 B1
6202901 Gerber et al. Mar 2001 B1
6206134 Stark et al. Mar 2001 B1
6206860 Richmond Mar 2001 B1
6207855 Toone et al. Mar 2001 B1
6217564 Peters et al. Apr 2001 B1
6227391 King May 2001 B1
6232406 Stoy May 2001 B1
6232434 Stamler et al. May 2001 B1
6237800 Barrett et al. May 2001 B1
6242393 Ishida et al. Jun 2001 B1
6245048 Fangrow et al. Jun 2001 B1
6245056 Walker et al. Jun 2001 B1
6248380 Kocher et al. Jun 2001 B1
6250315 Ernster Jun 2001 B1
6255277 Stamler et al. Jul 2001 B1
6267754 Peters Jul 2001 B1
6299132 Weinheimer et al. Oct 2001 B1
6315113 Britton et al. Nov 2001 B1
6315761 Shcherbina et al. Nov 2001 B1
6359167 Toone et al. Mar 2002 B2
6359182 Stamler et al. Mar 2002 B1
6375231 Picha et al. Apr 2002 B1
6379660 Saavedra et al. Apr 2002 B1
6379691 Tedeschi et al. Apr 2002 B1
6394983 Mayoral et al. May 2002 B1
6402207 Segal et al. Jun 2002 B1
6403759 Stamler et al. Jun 2002 B2
6409716 Sahatjian et al. Jun 2002 B1
6428520 Lopez Aug 2002 B1
6431219 Redler et al. Aug 2002 B1
6444318 Guire et al. Sep 2002 B1
6468259 Djokic et al. Oct 2002 B1
6471978 Stamler et al. Oct 2002 B1
6488951 Toone et al. Dec 2002 B2
6491965 Berry et al. Dec 2002 B1
6499719 Clancy et al. Dec 2002 B1
6508792 Szames et al. Jan 2003 B2
6508807 Peters Jan 2003 B1
6538116 Stamler et al. Mar 2003 B2
6541802 Doyle Apr 2003 B2
6543745 Enerson Apr 2003 B1
6550493 Williamson et al. Apr 2003 B2
6555504 Ayai et al. Apr 2003 B1
6562781 Berry et al. May 2003 B1
6581906 Pott et al. Jun 2003 B2
6583311 Toone et al. Jun 2003 B2
6585691 Vitello Jul 2003 B1
6595964 Finley et al. Jul 2003 B2
6595981 Huet Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6605751 Gibbins et al. Aug 2003 B1
6609696 Enerson Aug 2003 B2
6632199 Tucker et al. Oct 2003 B1
6634498 Kayerod et al. Oct 2003 B2
6656217 Herzog, Jr. et al. Dec 2003 B1
6666852 Niedospial, Jr. Dec 2003 B2
6673891 Stamler et al. Jan 2004 B2
6679395 Pfefferkorn et al. Jan 2004 B1
6679870 Finch et al. Jan 2004 B1
6681803 Taneya et al. Jan 2004 B2
6685694 Finch et al. Feb 2004 B2
6692468 Waldenburg Feb 2004 B1
6695817 Fangrow Feb 2004 B1
6716396 Anderson Apr 2004 B1
6722705 Korkor Apr 2004 B2
6725492 Moore et al. Apr 2004 B2
6745998 Doyle Jun 2004 B2
6786884 DeCant, Jr. et al. Sep 2004 B1
6808510 DiFiore Oct 2004 B1
6827766 Carnes et al. Dec 2004 B2
6840501 Doyle Jan 2005 B2
6871087 Hughes et al. Mar 2005 B1
6875205 Leinsing Apr 2005 B2
6875840 Stamler et al. Apr 2005 B2
6887994 Stamler et al. May 2005 B2
6899315 Mailville et al. May 2005 B2
6911025 Miyahara Jun 2005 B2
6916051 Fisher Jul 2005 B2
6929005 Sullivan et al. Aug 2005 B2
6943035 Davies et al. Sep 2005 B1
6955669 Curutcharry Oct 2005 B2
6964406 Doyle Nov 2005 B2
7004934 Vaillancourt Feb 2006 B2
7015347 Toone et al. Mar 2006 B2
7030238 Stamler et al. Apr 2006 B2
7037302 Vaillancourt May 2006 B2
7040598 Raybuck May 2006 B2
7044441 Doyle May 2006 B2
7045585 Berry et al. May 2006 B2
7049308 Stamler et al. May 2006 B2
7052711 West et al. May 2006 B2
7056308 Utterberg Jun 2006 B2
7067659 Stamler et al. Jun 2006 B2
7081109 Tighe Jul 2006 B2
7083605 Miyahara Aug 2006 B2
7087709 Stamler et al. Aug 2006 B2
7097850 Chappa et al. Aug 2006 B2
7100891 Doyle Sep 2006 B2
7125396 Leinsing et al. Oct 2006 B2
7140592 Phillips Nov 2006 B2
7147625 Sarangapani et al. Dec 2006 B2
7160272 Eyal et al. Jan 2007 B1
7182313 Doyle Feb 2007 B2
7195615 Tan Mar 2007 B2
7198611 Connell et al. Apr 2007 B2
7244249 Leinsing et al. Jul 2007 B2
7259250 Stamler et al. Aug 2007 B2
7279176 West et al. Oct 2007 B1
7282186 Lake, Jr. et al. Oct 2007 B2
7306197 Parrino et al. Dec 2007 B2
7306198 Doyle Dec 2007 B2
7306566 Raybuck Dec 2007 B2
7309326 Fangrow, Jr. Dec 2007 B2
7316669 Ranalletta Jan 2008 B2
7347458 Rome et al. Mar 2008 B2
7347853 DiFiore et al. Mar 2008 B2
7350764 Raybuck Apr 2008 B2
7361164 Simpson et al. Apr 2008 B2
7417109 Stamler et al. Aug 2008 B2
7431712 Kim Oct 2008 B2
7442402 Chudzik et al. Oct 2008 B2
7452349 Miyahara Nov 2008 B2
7485107 DiFiore et al. Feb 2009 B2
7491192 DiFiore Feb 2009 B2
7497484 Ziman Mar 2009 B2
7516846 Hansen Apr 2009 B2
7588563 Guala Sep 2009 B2
7611505 Ranalletta et al. Nov 2009 B2
7614426 Kitani et al. Nov 2009 B2
7615034 DiFiore Nov 2009 B2
7625907 Stamler et al. Dec 2009 B2
7635344 Tennican et al. Dec 2009 B2
D607325 Rogers et al. Jan 2010 S
7645274 Whitley Jan 2010 B2
7651481 Raybuck Jan 2010 B2
7666170 Guala Feb 2010 B2
7708714 Connell et al. May 2010 B2
7731678 Tennican et al. Jun 2010 B2
7731679 Tennican et al. Jun 2010 B2
7749189 Tennican et al. Jul 2010 B2
7753891 Tennican et al. Jul 2010 B2
7758530 DiFiore et al. Jul 2010 B2
7758566 Simpson et al. Jul 2010 B2
7762524 Cawthon et al. Jul 2010 B2
7763006 Tennican Jul 2010 B2
7766182 Trent et al. Aug 2010 B2
7766897 Ramsey et al. Aug 2010 B2
7776011 Tennican et al. Aug 2010 B2
7780794 Rogers et al. Aug 2010 B2
7785616 Stamler et al. Aug 2010 B2
7794675 Lynn Sep 2010 B2
7799010 Tennican Sep 2010 B2
7803139 Fangrow, Jr. Sep 2010 B2
7803140 Fangrow, Jr. Sep 2010 B2
7815614 Fangrow, Jr. Oct 2010 B2
7857793 Raulerson et al. Dec 2010 B2
7922701 Buchman Apr 2011 B2
7922711 Ranalletta et al. Apr 2011 B2
7928079 Hrabie et al. Apr 2011 B2
7938795 DiFiore et al. May 2011 B2
7956062 Stamler et al. Jun 2011 B2
7959026 Bertani Jun 2011 B2
7963565 Suter Jun 2011 B2
7972137 Rosen Jul 2011 B2
7972322 Tennican Jul 2011 B2
7981090 Plishka et al. Jul 2011 B2
7985302 Rogers et al. Jul 2011 B2
7993309 Schweikert Aug 2011 B2
7998134 Fangrow et al. Aug 2011 B2
8034454 Terry Oct 2011 B2
8065773 Vaillancourt et al. Nov 2011 B2
8066670 Cluff et al. Nov 2011 B2
8069523 Vaillancourt et al. Dec 2011 B2
8113837 Zegarelli Feb 2012 B2
8146757 Abreu et al. Apr 2012 B2
8162899 Tennican Apr 2012 B2
8167847 Anderson et al. May 2012 B2
8172825 Solomon et al. May 2012 B2
8177761 Howlett et al. May 2012 B2
8177772 Christensen et al. May 2012 B2
8197749 Howlett et al. Jun 2012 B2
8206514 Rogers et al. Jun 2012 B2
8231587 Solomon et al. Jul 2012 B2
8231602 Anderson et al. Jul 2012 B2
8252247 Ferlic Aug 2012 B2
8262628 Fangrow, Jr. Sep 2012 B2
8262643 Tennican Sep 2012 B2
8273303 Ferlic et al. Sep 2012 B2
8281824 Molema et al. Oct 2012 B2
8328767 Solomon et al. Dec 2012 B2
8336152 Kerr et al. Dec 2012 B2
8343112 Solomon et al. Jan 2013 B2
8361408 Lynn Jan 2013 B2
8372045 Needle et al. Feb 2013 B2
8377040 Burkholz et al. Feb 2013 B2
8414547 DiFiore et al. Apr 2013 B2
8419713 Solomon et al. Apr 2013 B1
8454579 Fangrow, Jr. Jun 2013 B2
8480968 Lynn Jul 2013 B2
8491546 Hoang et al. Jul 2013 B2
8500717 Becker Aug 2013 B2
8506527 Carlyon Aug 2013 B2
8506538 Chelak Aug 2013 B2
8523798 DiFiore Sep 2013 B2
8523830 Solomon et al. Sep 2013 B2
8523831 Solomon et al. Sep 2013 B2
8533887 Hirst Sep 2013 B2
8545479 Kitani et al. Oct 2013 B2
8568371 Siopes et al. Oct 2013 B2
8622995 Ziebol et al. Jan 2014 B2
8622996 Ziebol et al. Jan 2014 B2
8641681 Solomon et al. Feb 2014 B2
8641684 Utterberg et al. Feb 2014 B2
8647308 Solomon et al. Feb 2014 B2
8647326 Solomon et al. Feb 2014 B2
8651271 Shen Feb 2014 B1
8671496 Kerr et al. Mar 2014 B2
8740864 Hoang et al. Jun 2014 B2
8777504 Shaw et al. Jul 2014 B2
8791073 West et al. Jul 2014 B2
8845593 Anderson et al. Sep 2014 B2
8877231 Rosen Nov 2014 B2
8910919 Bonnal et al. Dec 2014 B2
8920404 DiFiore et al. Dec 2014 B2
8968268 Anderson et al. Mar 2015 B2
8981139 Schoenfisch et al. Mar 2015 B2
8999073 Rogers et al. Apr 2015 B2
9022984 Ziebol et al. May 2015 B2
9072296 Mills et al. Jul 2015 B2
9072868 Ziebol et al. Jul 2015 B2
9078992 Ziebol et al. Jul 2015 B2
9089680 Ueda et al. Jul 2015 B2
9095500 Brandenburger et al. Aug 2015 B2
9095667 Von Schuckmann Aug 2015 B2
9101685 Li et al. Aug 2015 B2
9101750 Solomon et al. Aug 2015 B2
9114915 Solomon et al. Aug 2015 B2
9125600 Steube et al. Sep 2015 B2
9149624 Lewis Oct 2015 B2
9180252 Gelblum et al. Nov 2015 B2
9192449 Kerr et al. Nov 2015 B2
9205248 Wu et al. Dec 2015 B2
9216440 Ma et al. Dec 2015 B2
9233208 Tekeste Jan 2016 B2
9242084 Solomon et al. Jan 2016 B2
9248093 Kelley, III et al. Feb 2016 B2
9248229 Devouassoux et al. Feb 2016 B2
9259284 Rogers et al. Feb 2016 B2
9259535 Anderson et al. Feb 2016 B2
9283367 Hoang et al. Mar 2016 B2
9283368 Hoang et al. Mar 2016 B2
9283369 Ma et al. Mar 2016 B2
9289588 Chen Mar 2016 B2
9296525 Murphy et al. Mar 2016 B2
9302049 Tekeste Apr 2016 B2
9320858 Grimm et al. Apr 2016 B2
9320859 Grimm et al. Apr 2016 B2
9320860 Grimm et al. Apr 2016 B2
9352080 Goodall et al. May 2016 B2
9352140 Kerr et al. May 2016 B2
9352141 Wong May 2016 B2
9352142 Ziebol et al. May 2016 B2
9381339 Wu et al. Jul 2016 B2
9399125 Burkholz Jul 2016 B2
9408971 Carlyon Aug 2016 B2
9527660 Tennican Dec 2016 B2
9592375 Tennican Mar 2017 B2
9700676 Anderson et al. Jul 2017 B2
9700677 Anderson et al. Jul 2017 B2
9700710 Anderson et al. Jul 2017 B2
9707348 Anderson et al. Jul 2017 B2
9707349 Anderson et al. Jul 2017 B2
9707350 Anderson et al. Jul 2017 B2
9809355 Solomon et al. Nov 2017 B2
9849276 Ziebol et al. Dec 2017 B2
9867975 Gardner et al. Jan 2018 B2
9907617 Rogers Mar 2018 B2
9933094 Fangrow Apr 2018 B2
9999471 Rogers et al. Jun 2018 B2
10016587 Gardner et al. Jul 2018 B2
10046156 Gardner et al. Aug 2018 B2
10159829 Ziebol et al. Dec 2018 B2
10166381 Gardner et al. Jan 2019 B2
10195000 Rogers et al. Feb 2019 B2
10201692 Chang Feb 2019 B2
10328207 Anderson et al. Jun 2019 B2
10524982 Fangrow Jan 2020 B2
10525250 Ziebol et al. Jan 2020 B1
10695550 Gardner et al. Jun 2020 B2
10744316 Fangrow Aug 2020 B2
10806919 Gardner et al. Oct 2020 B2
10821278 Gardner et al. Nov 2020 B2
11160932 Anderson et al. Nov 2021 B2
11229746 Anderson et al. Jan 2022 B2
11351353 Ziebol et al. Jun 2022 B2
11389634 Ziebol et al. Jul 2022 B2
11400195 Ziebol et al. Aug 2022 B2
11433215 Ziebol et al. Sep 2022 B2
20020077693 Barclay et al. Jun 2002 A1
20020082682 Barclay et al. Jun 2002 A1
20020098278 Bates et al. Jun 2002 A1
20030039697 Zhao et al. Feb 2003 A1
20030062376 Sears et al. Apr 2003 A1
20030072783 Stamler et al. Apr 2003 A1
20030153865 Connell et al. Aug 2003 A1
20030199835 Leinsing et al. Oct 2003 A1
20030208165 Christensen et al. Nov 2003 A1
20040034042 Tsuji et al. Feb 2004 A1
20040034329 Mankus et al. Feb 2004 A1
20040037836 Stamler et al. Feb 2004 A1
20040048542 Thomaschefsky et al. Mar 2004 A1
20040052689 Yao Mar 2004 A1
20040052831 Modak et al. Mar 2004 A1
20040156908 Polaschegg et al. Aug 2004 A1
20040210201 Farnan Oct 2004 A1
20040215148 Hwang et al. Oct 2004 A1
20040247640 Zhao et al. Dec 2004 A1
20040249337 DiFiore Dec 2004 A1
20040249338 DeCant, Jr. et al. Dec 2004 A1
20040258560 Lake, Jr. et al. Dec 2004 A1
20050013836 Raad Jan 2005 A1
20050015075 Wright et al. Jan 2005 A1
20050065479 Schiller et al. Mar 2005 A1
20050098527 Yates et al. May 2005 A1
20050124942 Richmond Jun 2005 A1
20050124970 Kunin et al. Jun 2005 A1
20050147524 Bousquet Jul 2005 A1
20050147525 Bousquet Jul 2005 A1
20050148930 Hseih et al. Jul 2005 A1
20050152891 Toone et al. Jul 2005 A1
20050171493 Nicholls Aug 2005 A1
20050214185 Castaneda Sep 2005 A1
20050220882 Pritchard et al. Oct 2005 A1
20050228362 Vaillancourt Oct 2005 A1
20050228482 Herzog et al. Oct 2005 A1
20050256461 DiFiore et al. Nov 2005 A1
20050265958 West et al. Dec 2005 A1
20050267421 Wing Dec 2005 A1
20050271711 Lynch et al. Dec 2005 A1
20050288551 Callister et al. Dec 2005 A1
20060004316 DiFiore et al. Jan 2006 A1
20060024372 Utterberg et al. Feb 2006 A1
20060030827 Raulerson et al. Feb 2006 A1
20060058734 Phillips Mar 2006 A1
20060096348 DiFiore May 2006 A1
20060118122 Martens et al. Jun 2006 A1
20060129109 Shaw et al. Jun 2006 A1
20060142730 Proulx et al. Jun 2006 A1
20060149191 DiFiore Jul 2006 A1
20060161115 Fangrow Jul 2006 A1
20060195117 Rucker et al. Aug 2006 A1
20060202146 Doyle Sep 2006 A1
20060206178 Kim Sep 2006 A1
20060253084 Nordgren Nov 2006 A1
20060261076 Anderson Nov 2006 A1
20070003603 Karandikar et al. Jan 2007 A1
20070088292 Fangrow Apr 2007 A1
20070088293 Fangrow Apr 2007 A1
20070088294 Fangrow Apr 2007 A1
20070106205 Connell et al. May 2007 A1
20070112333 Hoang et al. May 2007 A1
20070167910 Tennican et al. Jul 2007 A1
20070179453 Lim et al. Aug 2007 A1
20070187353 Fox et al. Aug 2007 A1
20070202177 Hoang Aug 2007 A1
20070212381 DiFiore et al. Sep 2007 A1
20070231315 Lichte et al. Oct 2007 A1
20070248676 Stamler et al. Oct 2007 A1
20070249996 Tennican et al. Oct 2007 A1
20070265578 Tennican et al. Nov 2007 A1
20070282280 Tennican Dec 2007 A1
20070287989 Crawford et al. Dec 2007 A1
20080027399 Harding et al. Jan 2008 A1
20080027401 Ou-Yang Jan 2008 A1
20080033371 Updegraff et al. Feb 2008 A1
20080039803 Lynn Feb 2008 A1
20080058733 Vogt et al. Mar 2008 A1
20080093245 Periasamy et al. Apr 2008 A1
20080095680 Steffens et al. Apr 2008 A1
20080097315 Miner et al. Apr 2008 A1
20080097407 Plishka Apr 2008 A1
20080103485 Kruger May 2008 A1
20080287920 Fangrow et al. May 2008 A1
20080014005 Shirley Jun 2008 A1
20080128646 Clawson Jun 2008 A1
20080132880 Buchman Jun 2008 A1
20080147047 Davis et al. Jun 2008 A1
20080161763 Harding et al. Jul 2008 A1
20080172007 Bousquet Jul 2008 A1
20080177250 Howlett et al. Jul 2008 A1
20080187460 Utterberg et al. Aug 2008 A1
20080188791 DiFiore et al. Aug 2008 A1
20080190485 Guala Aug 2008 A1
20080235888 Vaillancourt et al. Oct 2008 A1
20080262465 Zinger et al. Oct 2008 A1
20080318333 Nielsen et al. Dec 2008 A1
20080319423 Tanghoj et al. Dec 2008 A1
20090008393 Howlett et al. Jan 2009 A1
20090012426 Tennican Jan 2009 A1
20090024096 Hai et al. Jan 2009 A1
20090028750 Ryan Jan 2009 A1
20090062766 Howlett et al. Mar 2009 A1
20090093757 Tennican Apr 2009 A1
20090099529 Anderson et al. Apr 2009 A1
20090126867 Decant, Jr. et al. May 2009 A1
20090137969 Colantonio et al. May 2009 A1
20090149820 DiFiore Jun 2009 A1
20090163876 Chebator et al. Jun 2009 A1
20090205151 Fisher et al. Aug 2009 A1
20090205656 Nishibayashi et al. Aug 2009 A1
20090247485 Ahmed et al. Oct 2009 A1
20090247961 Carlyon Oct 2009 A1
20090259194 Pinedjian et al. Oct 2009 A1
20090270832 Vancaillie et al. Oct 2009 A1
20090293882 Terry Dec 2009 A1
20100004510 Kuroshima Jan 2010 A1
20100047123 Solomon et al. Feb 2010 A1
20100049170 Solomon et al. Feb 2010 A1
20100050351 Colantonio et al. Mar 2010 A1
20100059474 Brandenburger et al. Mar 2010 A1
20100064456 Ferlic Mar 2010 A1
20100074932 Talsma Mar 2010 A1
20100106102 Ziebol et al. Apr 2010 A1
20100106103 Ziebol et al. Apr 2010 A1
20100137472 Ou-Yang Jun 2010 A1
20100143427 King et al. Jun 2010 A1
20100152670 Low Jun 2010 A1
20100160894 Julian et al. Jun 2010 A1
20100172794 Ferlic et al. Jul 2010 A1
20100242993 Hoang et al. Sep 2010 A1
20100253070 Cheon et al. Oct 2010 A1
20100280805 DiFiore Nov 2010 A1
20100292673 Korogi et al. Nov 2010 A1
20100292674 Jepson et al. Nov 2010 A1
20100306938 Rogers et al. Dec 2010 A1
20100318040 Kelley, III et al. Dec 2010 A1
20110030726 Vaillancourt et al. Feb 2011 A1
20110044850 Solomon et al. Feb 2011 A1
20110046564 Zhong Feb 2011 A1
20110046603 Felsovalyi et al. Feb 2011 A1
20110054440 Lewis Mar 2011 A1
20110062703 Lopez Mar 2011 A1
20110064512 Shaw et al. Mar 2011 A1
20110071475 Horvath et al. Mar 2011 A1
20110082431 Burgess et al. Apr 2011 A1
20110175347 Okiyama Jul 2011 A1
20110184338 McKay Jul 2011 A1
20110184382 Cady Jul 2011 A1
20110208128 Wu et al. Aug 2011 A1
20110217212 Solomon et al. Sep 2011 A1
20110265825 Rogers et al. Nov 2011 A1
20110276031 Hoang et al. Nov 2011 A1
20110277788 Rogers et al. Nov 2011 A1
20110282302 Lopez et al. Nov 2011 A1
20110290799 Anderson et al. Dec 2011 A1
20110311602 Mills et al. Dec 2011 A1
20110314619 Schweikert Dec 2011 A1
20120022469 Alpert Jan 2012 A1
20120031904 Kuhn et al. Feb 2012 A1
20120039764 Solomon et al. Feb 2012 A1
20120083730 Rush et al. Apr 2012 A1
20120083750 Sansoucy Apr 2012 A1
20120157965 Wotton et al. Jun 2012 A1
20120191029 Hopf et al. Jul 2012 A1
20120195807 Ferlic Aug 2012 A1
20120216359 Rogers et al. Aug 2012 A1
20120216360 Rogers et al. Aug 2012 A1
20120220955 Maseda et al. Aug 2012 A1
20120283693 Anderson et al. Nov 2012 A1
20120283696 Cronenberg et al. Nov 2012 A1
20120296284 Anderson et al. Nov 2012 A1
20120302968 Tennican Nov 2012 A1
20120302970 Tennican Nov 2012 A1
20120302997 Gardner et al. Nov 2012 A1
20120315201 Ferlic et al. Dec 2012 A1
20130006194 Anderson et al. Jan 2013 A1
20130023828 Anderson et al. Jan 2013 A1
20130030414 Gardner et al. Jan 2013 A1
20130035667 Anderson et al. Feb 2013 A1
20130039953 Dudnyk et al. Feb 2013 A1
20130053751 Holtham Feb 2013 A1
20130072908 Solomon et al. Mar 2013 A1
20130072909 Solomon et al. Mar 2013 A1
20130085313 Fowler et al. Apr 2013 A1
20130085474 Charles et al. Apr 2013 A1
20130098398 Kerr et al. Apr 2013 A1
20130098938 Efthimiadis Apr 2013 A1
20130102950 DiFiore Apr 2013 A1
20130123754 Solomon et al. May 2013 A1
20130134161 Fogel et al. May 2013 A1
20130138085 Tennican May 2013 A1
20130144258 Ziebol et al. Jun 2013 A1
20130150795 Snow Jun 2013 A1
20130164189 Hadden Jun 2013 A1
20130171030 Ferlic et al. Jul 2013 A1
20130183635 Wilhoit Jul 2013 A1
20130184679 Ziebol et al. Jul 2013 A1
20130197485 Gardner et al. Aug 2013 A1
20130204231 Ziebol et al. Aug 2013 A1
20130274686 Ziebol et al. Oct 2013 A1
20140042116 Shen et al. Feb 2014 A1
20140048079 Gardner et al. Feb 2014 A1
20140052074 Tekeste Feb 2014 A1
20140101876 Rogers et al. Apr 2014 A1
20140155868 Nelson et al. Jun 2014 A1
20140227144 Liu et al. Aug 2014 A1
20140228775 Burkholz et al. Aug 2014 A1
20140228809 Wong Aug 2014 A1
20140243797 Jensen et al. Aug 2014 A1
20140248182 Solomon et al. Sep 2014 A1
20140336610 Michel et al. Nov 2014 A1
20140339812 Carney et al. Nov 2014 A1
20140339813 Cederschiöld et al. Nov 2014 A1
20140366914 Kerr et al. Dec 2014 A1
20150018774 Anderson et al. Jan 2015 A1
20150141934 Gardner et al. May 2015 A1
20150148287 Woo et al. May 2015 A1
20150165127 Haefele et al. Jun 2015 A1
20150217106 Banik et al. Aug 2015 A1
20150231380 Hoang et al. Aug 2015 A1
20150237854 Mills et al. Aug 2015 A1
20150238703 Glocker Aug 2015 A1
20150258324 Chida et al. Sep 2015 A1
20150273199 Adams et al. Oct 2015 A1
20150297455 Sanders et al. Oct 2015 A1
20150297881 Sanders et al. Oct 2015 A1
20150306367 DiFiore Oct 2015 A1
20150306369 Burkholz et al. Oct 2015 A1
20150314119 Anderson et al. Nov 2015 A1
20150320926 Fitzpatrick et al. Nov 2015 A1
20150320992 Bonnet et al. Nov 2015 A1
20150343174 Ziebol et al. Dec 2015 A1
20150374968 Solomon et al. Dec 2015 A1
20160001056 Nelson et al. Jan 2016 A1
20160001058 Ziebol et al. Jan 2016 A1
20160015863 Gupta et al. Jan 2016 A1
20160015931 Ryan et al. Jan 2016 A1
20160015959 Solomon et al. Jan 2016 A1
20160045629 Gardner et al. Feb 2016 A1
20160067365 Ma et al. Mar 2016 A1
20160067471 Ingram et al. Mar 2016 A1
20160088995 Ueda et al. Mar 2016 A1
20160089530 Sathe Mar 2016 A1
20160101223 Kelley, III et al. Apr 2016 A1
20160101276 Tekeste Apr 2016 A1
20160106969 Neftel Apr 2016 A1
20160121097 Steele May 2016 A1
20160144118 Solomon et al. May 2016 A1
20160158520 Ma et al. Jun 2016 A1
20160158521 Hoang et al. Jun 2016 A1
20160158522 Hoang et al. Jun 2016 A1
20160184527 Tekeste Jun 2016 A1
20160213912 Daneluzzi Jul 2016 A1
20160250420 Maritan et al. Sep 2016 A1
20160354596 DiFiore Dec 2016 A1
20170020911 Berry et al. Jan 2017 A1
20170042636 Young Feb 2017 A1
20170143447 Rogers et al. May 2017 A1
20170182241 DiFiore Jun 2017 A1
20170203092 Ryan et al. Jul 2017 A1
20170239443 Abitabilo et al. Aug 2017 A1
20180028403 Fangrow Feb 2018 A1
20180200500 Ziebol et al. Jul 2018 A1
20180214684 Avula et al. Aug 2018 A1
20190201681 Ziebol et al. Jul 2019 A1
20200069931 Fangrow Mar 2020 A1
20200121858 Anderson et al. Apr 2020 A1
20200139037 Ziebol et al. May 2020 A1
20200139101 Ziebol et al. May 2020 A1
20200139102 Ziebol et al. May 2020 A1
20200139103 Ziebol et al. May 2020 A1
20200139104 Ziebol et al. May 2020 A1
20200155794 Ziebol et al. May 2020 A1
20200324102 Fangrow et al. Oct 2020 A1
20200330741 Fangrow Oct 2020 A1
20200406020 Fangrow Dec 2020 A1
20210106805 Fangrow Apr 2021 A1
20210162194 Gardner Jun 2021 A1
20210205596 Ziebol et al. Jul 2021 A1
20210308442 Gardner Oct 2021 A1
20220226629 Ziebel Jul 2022 A1
Foreign Referenced Citations (131)
Number Date Country
2014 216 480 Aug 2015 AU
2013 224680 Sep 2016 AU
2 148 847 Dec 1995 CA
2825217 Mar 2007 CA
2 841 832 Jun 2019 CA
2402327 Oct 2000 CN
2815392 Sep 2006 CN
201150420 Nov 2008 CN
201519335 Jul 2010 CN
102 844 073 Dec 2012 CN
106902402 Jun 2017 CN
3515665 May 1986 DE
89 06 628 Sep 1989 DE
43 34 272 Apr 1995 DE
29617133 Jan 1997 DE
0 088 341 Sep 1983 EP
0 108 785 May 1984 EP
0 174 162 Mar 1986 EP
0 227 219 Jul 1987 EP
0 237 239 Sep 1987 EP
0 245 872 Nov 1987 EP
0 257 485 Mar 1988 EP
0 639 385 Feb 1995 EP
0 734 721 Oct 1996 EP
0 769 265 Apr 1997 EP
1 061 000 Oct 2000 EP
1 331 020 Jul 2003 EP
1 471 011 Oct 2004 EP
1 442 753 Feb 2007 EP
1 813 293 Aug 2007 EP
1 977 714 Oct 2008 EP
2 444 117 Apr 2012 EP
2 606 930 Jun 2013 EP
2 671 604 Dec 2013 EP
2 731 658 May 2014 EP
2 493 149 May 1982 FR
2 506 162 Nov 1982 FR
2 782 910 Mar 2000 FR
123221 Feb 1919 GB
2 296 182 Jun 1996 GB
2 333 097 Jul 1999 GB
2 387 772 Oct 2003 GB
57-131462 Aug 1982 JP
04-99950 Feb 1992 JP
09-216661 Aug 1997 JP
2000-157630 Jun 2000 JP
2002-234567 Aug 2002 JP
2002-291906 Oct 2002 JP
2005-218649 Aug 2005 JP
2006-182663 Jul 2006 JP
2011-036691 Feb 2011 JP
2011-528647 Nov 2011 JP
2013-520287 Jun 2013 JP
2014-117461 Jun 2014 JP
2 246 321 Feb 2005 RU
WO 198303975 Nov 1983 WO
WO 198505040 Nov 1985 WO
WO 199320806 Oct 1993 WO
WO 199507691 Mar 1995 WO
WO 199635416 Nov 1996 WO
WO 199638136 Dec 1996 WO
WO 199719701 Jun 1997 WO
WO 199812125 Mar 1998 WO
WO 199944665 Sep 1999 WO
WO 200170199 Sep 2001 WO
WO 200205188 Jan 2002 WO
WO 200247581 Jun 2002 WO
WO 200249544 Jun 2002 WO
WO 2003015677 Feb 2003 WO
WO 2003070296 Aug 2003 WO
WO 2004035129 Apr 2004 WO
WO 2004112846 Dec 2004 WO
WO 2005112954 Dec 2005 WO
WO 2005112974 Dec 2005 WO
WO 2006007690 Jan 2006 WO
WO 2006044236 Apr 2006 WO
WO 2006102756 Oct 2006 WO
WO 2007008511 Jan 2007 WO
WO 2007056773 May 2007 WO
WO 2007137056 Nov 2007 WO
WO 2008042285 Apr 2008 WO
WO 2008086631 Jul 2008 WO
WO 2008089196 Jul 2008 WO
WO 2008100950 Aug 2008 WO
WO 2008140807 Nov 2008 WO
WO 2009002474 Dec 2008 WO
WO 2009060322 May 2009 WO
WO 2009117135 Sep 2009 WO
WO 2009123709 Oct 2009 WO
WO 2009136957 Nov 2009 WO
WO 2009153224 Dec 2009 WO
WO 2010002757 Jan 2010 WO
WO 2010002808 Jan 2010 WO
WO 2010011616 Jan 2010 WO
WO 2010034470 Apr 2010 WO
WO 2010039171 Apr 2010 WO
WO 2010062589 Jun 2010 WO
WO 2011028722 Mar 2011 WO
WO 2011053924 May 2011 WO
WO 2011106374 Sep 2011 WO
WO 2011119021 Sep 2011 WO
WO 2012118829 Sep 2012 WO
WO 2012162006 Nov 2012 WO
WO 2013009998 Jan 2013 WO
WO 2013023146 Feb 2013 WO
WO 2012184716 Dec 2013 WO
WO 2013192574 Dec 2013 WO
WO 2014074929 May 2014 WO
WO 2014140949 Sep 2014 WO
WO 2014159346 Oct 2014 WO
WO 2015074087 May 2015 WO
WO 2015119940 Aug 2015 WO
WO 2015120336 Aug 2015 WO
WO 2015164129 Oct 2015 WO
WO 2015168677 Nov 2015 WO
WO 2015174953 Nov 2015 WO
WO 2016025775 Feb 2016 WO
WO 2016182822 Nov 2016 WO
WO 2017015047 Jan 2017 WO
WO 2017127364 Jul 2017 WO
WO 2017127365 Jul 2017 WO
WO 2018009653 Jan 2018 WO
WO 2018071717 Apr 2018 WO
WO 2018204206 Nov 2018 WO
WO 2018237090 Dec 2018 WO
WO 2018237122 Dec 2018 WO
WO 2019178560 Sep 2019 WO
WO 2019246472 Dec 2019 WO
WO 2020097366 May 2020 WO
WO 2020251947 Dec 2020 WO
WO 2022125474 Jun 2022 WO
Non-Patent Literature Citations (22)
Entry
International Search Report and Written Opinion, re PCT Application No. PCT/US16/30844, dated Jul. 20, 2016.
International Preliminary Report on Patentability, re PCT Application No. PCT/US16/30844, dated Nov. 14, 2017.
Du. Y, et al. Protein adsorption on polyurethane catheters modified with a novel antithrombin-heparin covalent complex, Journal of Biomedical Materials Research Part A, 2006, 216-225.
Holmer, E. et al. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, Factor Xa, Factor IXa, Factor XIa, Factor XIIa and kallikrein by antithrombin, Biochem. J. (1981) 193, 395-400.
ICU Medical Antimicrobial Microclave, first sold Jan. 21, 2010, p. 1-2.
Klement, P. et al. Chronic performance of polyurethane catheters covalently coated with ATH complex: A rabbit jugular vein model, Biomaterials, (2006), 27, 5107-5117.
Antibiotic Lock Therapy Guideline, Stanford Hospital and Clinics, Pharmacy Department Policies and Procedures, issued Jun. 2011.
Baxter Minicap: Photographs of the Baxter Minicap (Sep. 1, 1998) (4 pages).
Baxter, “Peritoneal Dialysis Patient Connectology,” Product Descriptions in 1 page, downloaded Jul. 1, 2011.
BETA CAP II Advertisement from Quinton Instrument Co. (Aug. 1981).
Catheter Connections, “Introducing DualCap,” Product Brochure in 1 page, Copyright 2011.
Charney, “Baxter Healthcare InterlinkTM IV Access System” in 1 page, from Handbook of Modern Hospital Safety. Published Mar. 1999.
Clave® Needlefree Connector, icumedial, human connections, 2 page brochure. 2012, M1-1065 Rev. 04.
Conical Fittings: International Standard, “Conical fittings with 6% (Luer) Taper for Syringes, Needles and certain Other Medical Equipment—Part 2: Lock Fittings”, Ref. No. ISO 594-2:1998. International Organization for Standardization (Sep. 1, 1998) 2nd ed. (16 pages).
Devine, Redacted version of letter from David A. Divine, Esq. of Lee & Hayes, dated May 16, 2011 (3 pages).
Devine, Redacted version of letter from David A. Divine, Esq. of Lee & Hayes, dated May 27, 2011 (3 pages).
Hospira, “You Work in Neverland,” Lifeshield Product Brochure in 2 pages, Published 2009.
Hyprotek, “Port Protek,” Product Brochure in 1 page, downloaded Sep. 19, 2011 from http://www.hyprotek.com/products.html.
Menyhay et al., “Disinfection of Needleless Catheter Connectors and Access Ports with Alcohol May Not Prevent Microbial Entry: The Promise of a Novel Antiseptic-Barrier Cap” Infection Control Hospital and Epidemiology, vol. 27, No. 1 (Jan. 2006) (5 pages).
Otto, Mosby's Pocket Guide to Infusion Therapy. Elsevier Health Sciences, 2004. Pages 65-66. Accessed at: http://books.google.com/books?id=j8T14HwWdS4C&lpg=PP1&pg=PP1#v=onepage&f=false (Year: 2004).
“Small-bore connectors for liquids and gases in healthcare applications—Part : Connectors for intravascular or hypodermic applications,” ISO 80369-7, Corrected version dated Dec. 1, 2016 (50 pages).
V-Link Luer Activated Device, with VitalShield Protective Coating, 2 page brochure, Baxter Dec. 2009.
Related Publications (1)
Number Date Country
20200085690 A1 Mar 2020 US
Provisional Applications (2)
Number Date Country
62212473 Aug 2015 US
62159130 May 2015 US
Continuations (2)
Number Date Country
Parent 15726838 Oct 2017 US
Child 16694564 US
Parent PCT/US2016/030844 May 2016 US
Child 15726838 US