Medical device delivery

Information

  • Patent Grant
  • 9849014
  • Patent Number
    9,849,014
  • Date Filed
    Monday, November 11, 2013
    11 years ago
  • Date Issued
    Tuesday, December 26, 2017
    7 years ago
Abstract
A stent delivery assembly can include a stent, a tube, a shaft slidably disposed within the tube, and an engagement member on the shaft. The engagement member is operable via the shaft so as to facilitate manipulation of the stent via the shaft. The engagement member can engage the stent inner wall and cooperating with the tube to grip the stent. The shaft is arranged within the tube with a close tolerance between the shaft and the tube so as to provide stability during retraction or advancement of the shaft.
Description
FIELD OF THE INVENTIONS

The present inventions relates generally to medical devices. More specifically, the present inventions relate to stents. The stents may find particular use in intravascular procedures in general, and in cardiovascular procedures in particular, as well as other areas.


BACKGROUND

Stents are well known to those skilled in the biomedical arts. In particular, stents are commonly used in cardiovascular applications. Stents have gained increasing acceptance, particularly when used in conjunction with minimally invasive procedures such as angioplasty. Blockages of the coronary arteries may result from various causes, including plaque build-up, and stenosed or thrombosed vessel regions. The vessel regions thus partially occluded can cause angina and, when totally occluded, myocardial infarction, and even death. Minimally invasive procedures such as balloon angioplasty have been used to dilate such blocked vessel regions, thereby at least partially restoring patent vessel lumens.


In a significant percentage of cases, a stenosed, then dilated vessel region may narrow after treatment over a period ranging from days to months. This re-narrowing or restenosis, limits the efficacy of the angioplasty procedures, may require further angioplasty, or can lead to myocardial infarction and even death.


Cerebral blockages are typically caused by a thrombus. The thrombus can form or lodge in a cerebral artery, preventing brain regions downstream from receiving perfusing blood flow. The loss of oxygen can rapidly cause brain death in the affected brain regions if the blockage is not soon treated. The cerebral arteries are generally smaller and more tortuous than the corresponding coronary arteries. The required timing and difficult vessel characteristics make reaching and treating the thrombus to prevent brain cell death a most difficult task. The narrow cerebral vessels make placing stents within the brain very difficult using current stents and stent delivery systems. Microcatheters are currently used to infuse drugs into cerebral blood vessels. The microcatheters are typically not greater than about 4 Fr. (1⅓ mm.) in outer diameter, currently being generally unsuitable for delivery of cerebral stents.


Stents have been extensively utilized in an attempt to prevent or limit restenosis. Stents are typically tubular devices delivered to the stenosed and dilated site. The stents can be expanded into place against the treated region walls, hopefully preventing restenosis and further narrowing at the stented location. Stents are often formed of metal, commonly stainless steel or Nitinol. The stents can be open walled structures formed from lattice-like cages, spiral wire structures, braided structures, and helically wound and counterwound structures. Stents can be self-expanding, designed to expand radially when distally advanced from a restraining delivery catheter. Stents can also be balloon-expandable. Balloon-expandable stents can be positioned and then expanded from within using a stent delivery balloon and/or an angioplasty balloon.


A typical stent delivery device includes a stent constrained within an outer delivery sheath extending over the length of the stent. When the device is advanced to the target site, the outer sheath is proximally retracted and/or the stent is distally advanced from within the sheath to the target site. The delivery sheaths may work as intended, but do add bulk to the distal end of the delivery device. In particular, the delivery sheath adds at least one additional layer surrounding the stent. The delivery sheaths are generally cylindrical in nature and extend over the entire length of the stent. The stent can act to reinforce the outer sheath. The delivery sheath and enclosed stent thus act to form a rather rigid composite structure that is not as able to bend and traverse the tortuous vessel regions often found in the human body. The composite structure is thus not as flexible as either the stent or sheath alone would be in traversing these passages.


The added bulk and profile or cross-sectional area of the delivery device can thus act to restrict the use of such stents to larger vessels. In particular, this may leave smaller vessels unreachable and untreatable. Sites requiring treatment disposed on the distal side of a tortuous curve may also be unreachable and untreatable.


In use, some currently available stents and delivery systems also have another limitation. For self-expanding stents, stent placement is often imprecise. The placed or final stent length is related to the final stent diameter that is related to the vessel diameter. Within a vessel, the diameter is not always precisely known, and can vary over the region to be stented. It may be nearly impossible to predict the final stent length before the stent is fully expanded in the vessel.


The difficulty in accurate stent placement can become an issue in stenting a vessel ostium. It is often desirable to place a stent precisely at the ostium of a vessel, especially in coronary and renal vessels. If the stent is positioned too proximal, the stent extends into the trunk line, and can cause flow disturbance. If the stent is positioned too distal, the disease at the ostium is not treated. Self-expanding stent delivery systems typically deploy the stent from distal to proximal, with the distal stent end being advanced distal-most. In particular, a self-expanding stent may be advanced while disposed within a delivery sheath. When the sheath distal end is in position, the sheath can be retracted, allowing the accurately placed stent distal end to expand first. The proximal end of the stent can vary depending on the vessel diameter. In order to accurately place the stent proximal end, the treating physician thus needs to guess at the position to start stent deployment based on the assumed final stent length, so that the proximal end of the stent ends up at the precise ostial location desired.


What would be desirable are devices and methods for delivering stents to target vessel regions that do not require the added bulk of an external restraint or capture sleeve over the stent. Applicants believe that devices and methods not absolutely requiring a delivery sheath over the stent would allow smaller, more tortuous, and more distal vessels to be effectively treated.


SUMMARY

The present inventions include devices and methods for delivering stents to target vessel regions within the body. Methods and devices for delivering everted stents are preferred and disclosed. One stent delivery assembly includes a delivery tube having a stent slidably disposed over the delivery tube distal region, and having the stent distal region everted over the delivery tube distal end, such that the stent distal end is tucked inside of the delivery tube distal end lumen. An elongate release member having a distal element can be slidably disposed within the delivery tube lumen. The release member distal element can be dimensioned relative to the surrounding delivery tube distal end inside diameter so as to form a tight fit between the release member distal element and the surrounding delivery tube. The stent distal region can be held by a friction or interference fit between the release member distal element and surrounding delivery tube walls. The stent is thus everted and reduced in outer diameter at the leading, everted distal end.


In one delivery device, the elongate release member is pulled from the proximal region, thereby proximally urging the release member distal element free of the stent distal end captured between the release member distal element and the surrounding delivery tube distal end. In such embodiments, the release member function may be served by an elongate string or wire having significant strength mainly in tension rather than compression. In another embodiment of the inventions, the elongate release member function is served by a shaft having sufficient strength in compression to distally urge the release member distal element by manipulating the release element proximal region, forcing the distal element from the surrounding delivery tube distal end, thereby freeing and unconstraining the stent distal region. In some embodiments, the delivery tube functionality is served by a delivery shaft having only the distal region being tubular in nature. In one such embodiment, the delivery shaft has a distal hoop or annular ring for surrounding and capturing the everted stent distal region within.


In use, the stent can be everted over the delivery tube or shaft, with the stent distal end everted and captured by the elongate release member. The everted stent, delivery shaft or tube, and release member can be advanced distally to a target vessel region to be stented. Once at the target region location, the everted and constrained stent may be freed of the delivery shaft or tube by the release member. The release member may be retracted proximally in some embodiments, and advanced distally in other embodiments, as previously discussed, to release the everted stent. Once released, the stent is free to expand radially and approach the surrounding vessel walls or blockage.


Self-expanding stents can be used in some embodiments of the inventions. The stents are preferably biased to radially expand when freed of the constraints of the delivery tube and release member. In other embodiments, balloon expandable stents are used, which can be expanded using inflatable balloon catheters or other stent delivery devices.


Some methods according to the present inventions can utilize a guide wire to facilitate advancement of a guide catheter or microcatheter to a location near the vessel region to be stented. The guide wire can be retracted, and the carried everted stent advanced by the release member and guide tube together through the guide catheter or microcatheter to the target region. In one method, the everted stent carried by the delivery tube and release member are advanced distally from the guide catheter to cross the target region, for example, a blood vessel stenosis. In another method, the microcatheter together with the everted stent carried by the delivery tube and release member are advanced through the stenosis or other blockage, followed by proximally retracting the microcatheter, leaving the everted stent to expand against the target region vessel or blockage walls. Once the everted stent is in location, the release member can be activated by advancing or retracting the member to free the everted stent.


Once unconstrained, the stent, for example, a self-expanding stent, may expand to approach the vessel walls or the blockage. In some embodiments, the release member may be advanced distally through the previously placed stent lumen to guarantee a minimal lumen through the stent and/or to act as a guide member for other devices to be passed through the now stented region. In one method, the delivery tube is advanced through the now stented region, which can act to further dilate the stent. In another method, the guide catheter or microcatheter can also be advanced through the now stented region, which can act to further dilate the stent. Thus, a succession of ever increasing diameter devices may be advanced through the stent after stent deployment in some methods. In another method, a balloon catheter is advanced through the now stented region followed by inflation of the balloon and concomitant dilation of the stent.


In another use of the present inventions, an everted porous stent carried by a delivery tube can be distally advanced through a thrombosed blood vessel region. A wire mesh or braided stent may be used. The everted stent can be released from the delivery tube to expand against the thrombus. The delivered stent can thus act to stabilize the thrombus. After stenting, the thrombus can be treated by infusing thrombolytic agents near the thrombus, through the walls of the porous stent. The stent can thus act to stabilize the thrombus, preventing large pieces from breaking off and being carried downstream during the thrombolysis.


Some embodiments of the present inventions have distally tapered delivery tubes having very small distal end profiles. In these embodiments, the release member distal element may be very small in profile as well. The limit of the distal profile in such devices may approach the lower size limit in gathering, everting, and compressing the distal region of the stent to be delivered. In these and other embodiments, the leading edge of the stent delivery device can be very benign and atraumatic due to the everted stent forming the distal-most leading edge of the device. Many embodiments of the device thus eliminate the absolute need for a delivery sheath or tube disposed about the stent, thereby eliminating one set of tube profiles from the device, making the distal region more flexible, smaller in profile, and able to reach even more distal and smaller diameter vessels which will benefit from treatment.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary, longitudinal, cross-sectional view of a stent delivery assembly including a stent captured between the distal ends of an elongate release member and the surrounding stent delivery tube shown prior to everting the stent proximally over the delivery tube;



FIG. 2 is a fragmentary, longitudinal, cross-sectional view of the stent delivery assembly of FIG. 1 after the stent has been everted and the device disposed within a guide catheter or microcatheter;



FIG. 3 is a fragmentary, longitudinal, cross-sectional view of the stent delivery assembly of FIG. 2 after the microcatheter has been advanced proximal of a blockage and the captured, everted stent carried further distally by the release member and delivery tube;



FIG. 4 is a fragmentary, longitudinal, cross-sectional view of the assembly of FIG. 3 after the stent has been released and expanded within the target vessel region;



FIG. 5A is a fragmentary, longitudinal, cross-sectional view of an alternate embodiment of the inventions where the delivery tube is a delivery shaft having a distal tube or ring;



FIG. 5B is a wafer view taken through 5B of FIG. 5A, illustrating the fit between the release member distal end, everted stent, and delivery shaft distal end; and



FIG. 5C is a fragmentary, longitudinal, cross-sectional view of another embodiment of the inventions, where the delivery tube has a tubular distal region and coupled to a proximal shaft.





DETAILED DESCRIPTION

The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered identically. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the inventions. Several forms of inventions have been shown and described, and other forms will now be apparent to those skilled in art. It will be understood that embodiments shown in drawings and described above are merely for illustrative purposes, and are not intended to limit scope of the inventions as defined in the claims that follow.



FIG. 1 illustrates a stent delivery assembly including a stent delivery device 20, a stent 26, a delivery shaft or tube 22, and an elongate release member 24. Release member 24 can be used to releasably secure or couple stent 26 to delivery shaft or tube 22. Stent 26 is illustrated in a configuration prior to being everted and proximally disposed about delivery tube 22. Delivery tube 22 may be seen to have a distal region 30, a distal end 28, an intermediate region 32, a tube wall 38, a tube wall inner surface 36, and a lumen 34 therethrough. Release member 24 may be seen to have a distal region 40 and a distal end 42 having a distal element 43. In the embodiment illustrated in FIG. 1, release member distal end 42 is dimensioned so as to form an interference fit between stent 26 and delivery tube wall inner surface 36. Delivery tube wall 38 may be seen to be slightly distended in the area of release member distal end 42. Stent 26, described with reference to the everted state, has generally a distal region 46, a distal end 47, an intermediate region 44, a proximal region 48, a proximal end 50, and a lumen 52 therethrough.


Release member 24 may be seen, at distal end 42, to have an outside diameter D1 which closely approximates the inside diameter of delivery tube 22 in the distal region. Stent 26 may be seen gripped between release member distal end 42 and delivery tube 22. Stent 26, in some embodiments, may be biased to expand radially when unconstrained. As illustrated in FIG. 1, stent proximal end 50 has an unconstrained diameter D2 that is substantially larger than the constrained diameter D1. Self-expanding stents are well known to those skilled in the art. Such self-expanding stents may be formed, for example, from Nitinol, which can be heat set to assume a desired shape when unconstrained. Stent 26 in FIG. 1 is illustrated in an intermediate step during assembly. Stent proximal end 50 may be everted and pulled proximally as a sleeve over delivery tube 22. Other methods of assembly are possible. In preferable methods, stent 26 may be heat set in an uneverted shape and disposed as a sleeve over delivery tube distal region 30 in the uneverted state. Stent distal region 46 may then be everted and tucked within delivery tube distal end 28. Release member 24 may then have its proximal end threaded through stent lumen 52 and delivery tube lumen 34 until release member distal end 42 has been proximally retracted within delivery tube distal region 28, firmly capturing stent distal region 46 between the elongate member distal end 42 and the delivery tube distal region 28.



FIG. 2 illustrates stent delivery device 20 further included within a more comprehensive stent delivery assembly 60. Stent delivery assembly 60 includes generally a guide catheter or microcatheter 62 having a distal region 64, an intermediate region 69, a proximal region 72, and a distal end 66 having a lumen 68 therethrough. Release member 24 can have an optional collar 51 disposed about the release member distal region and dimensioned to slidably fit within delivery tube 22. FIG. 2 further illustrates release member 24 having a proximal region 25 coupled to an optional larger diameter proximal end 27 dimensioned so as to form an axially slidable seal between release member proximal end 27 and the surrounding delivery tube proximal region 33. FIG. 2 also illustrates optional annular seal member 29 forming a larger diameter proximal region 33 for the delivery tube 22. Annular element 29 may be seen to form a slidable seal between delivery tube 22 and the surrounding guide catheter or microcatheter 62. FIG. 2 also illustrates that stent 26 can expand outward radially while within guide catheter 62. In particular, stent intermediate region 44, proximal region 48, and proximal end 50 may be seen to have expanded radially to the extent permitted by the surrounding guide catheter 62. The dimensions illustrated for the proximal region of stent delivery assembly 62 and FIG. 2 may vary depending on the embodiment and the intended use. FIG. 2 illustrates only one, non-limiting example of the inventions.


Microcatheters are well known devices, commonly used to deliver drugs to cerebral arteries. “Microcatheters”, as the term is used herein, is defined to be a tubular catheter having an outside diameter less than about 5 Fr. (1⅔ mm.). Microcatheters used with the present inventions preferably have an outside diameter between about 1.5 Fr. (½ mm.) and 4 Fr. (1⅓ mm), inclusive. Microcatheters preferably have a floppy distal region and tip, the distal region being more pliable and softer than the intermediate and proximal microcatheter regions.



FIG. 3 illustrates one use of assembly 60 in a body conduit or vessel 82 having a target region 80 at least partially occluded by a blockage 84. Blockage 84 can at least partially block vessel 82, thereby reducing the effective size of vessel lumen 86. Blockage 84 represents any of a number of blockages, including, but not limited to plaque, thrombus, and a stenosed vessel region generally.


In one method according to the present inventions, a guidewire is advanced distally through the vessel until the guidewire distal tip is across or proximally near vessel target region 80. Guide catheter or microcatheter 62 can then be advanced over the placed guidewire until microcatheter distal end 66 is disposed proximal of blockage 84. In some methods, the guidewire is now retracted proximally from microcatheter 62.


With microcatheter 62 in place, stent delivery device 20 may be advanced through microcatheter lumen 68 to a position within microcatheter 60 proximal of vessel target region 80. As may be seen from inspection of FIG. 3, stent 26 is everted over the distal end of delivery tube 22 and releasably secured to delivery tube 22 with elongate release member distal end 42. In the embodiment illustrated, stent 26 is a self-expanding stent, with proximal end 50 having a larger outside diameter than constrained distal end 47.


With release member 24, delivery tube 22, and everted stent 26 in position, the release member, the delivery tube, and the captured, constrained and everted stent 26 may be distally advanced across the target site 80 having blockage 84. In some methods, the advancing of release member, delivery tube, and everted stent is accomplished while leaving guide catheter or microcatheter 62 positioned proximal of the vessel target site. In other methods, guide catheter or microcatheter 62 is advanced across target vessel region 80. In one method, microcatheter 62, everted stent 26, delivery tube 22, and release member 24 are all advanced together across target region 80. In this method, after microcatheter 62 and constrained, everted stent 26 are across target vessel region 80, microcatheter 62 can be proximally retracted, exposing the stent.


As may be seen from inspection of FIG. 3, stent 26 is still releasably secured to delivery tube 22 and may be further advanced distally. In some uses of the inventions, a microcatheter such as microcatheter 62 may be used to advance the releasably secured stent and delivery tube only so far as the microcatheter can reach, followed by the distal exit of the everted stent from the microcatheter to attain even greater distal reach for the stent. FIG. 3 also illustrates that stent 26 can be axially elongated as the stent is pulled through narrow passages, which can reduce the stent profile while the stent is being pulled.


Once everted stent 26 is at the desired location, the stent can be released from delivery tube 22. In one example of the inventions, release member 24 is urged proximally, thereby pulling the release member distal end proximally until release member distal end 42 is disposed proximally of everted stent distal end 47. Stent 26 may then expand further radially to embrace the surrounding vessel target region 80. In another example of the inventions, elongate release member 24 can be distally urged, thereby forcing release member distal end 42 distally from delivery tube 22, thereby releasing stent 26 from delivery tube 22. In embodiments having optional collar 51, the collar can be used to help push out the stent after release. Both distal and proximal movement of release member 24 can be accomplished by manipulating the proximally accessible portion of the release member. Stent 26 is then free to radially expand and retain its previous, non-everted shape.


It may be seen from inspection of FIG. 3 that everted stent 26 has a smaller distal profile than proximal profile, allowing easier entry into narrow target sites. In some embodiments of the inventions, delivery tube 22 has a tapered distal tip, such that the profile of the distal end of delivery tube 22 is smaller than the profile of delivery tube 22 in an intermediate or proximal location. FIG. 3 also illustrates that the everted distal region 46 of stent 26 forms a rather atraumatic tip, relative to many other distal delivery devices and, in most embodiments, more benign than the delivery tube distal end 28. Due in part to the self-expanding nature of the stent illustrated in FIG. 3, distally urging the half released, half secured stent forms a proximally widening shape that can act to initially penetrate, then dilate a blocked vessel region, prior to totally releasing the stent.


The distance between release member 24 and delivery tube 22 is indicated at D3 in FIG. 3. In some embodiments, the proximal and intermediate regions of delivery tube 22 have a very tight fit between release member 24 and delivery tube 22. A close tolerance between the release member and the delivery tube can provide columnar support for advancing release member 24. Such close tolerance can also provide strength and stability when the elongate release member 24 is retracted proximally to release stent 26, in embodiments calling for such retraction.



FIG. 4 illustrates vessel target region 80 after stent 26 has been expanded to create and stabilize an expanded or dilated flow channel 87 through vessel 82. Stent proximal region 48 and distal region 46 may be seen to have expanded radially against blockage 84. Stent 26 is preferably radially expanded outwardly against the vessel walls and/or blockage once released by release member 24. In one method, stent 26 is biased to radially expand outwardly, once unconstrained. Some self-expanding stents useful with the present inventions are formed of Nitinol. Stents may be heat-set to radially expand and assume the heat-set diameter once released in some methods.


In one method according to the inventions, after stent 26 has been allowed to expand radially, this process may be assisted using parts of the device previously described. In embodiments where the release rod has sufficient strength in compression to be pushed, release member 24 may be advanced distally through deployed stent 26 to ensure that an initial clear flow passage exists through stent 26. Elongate release member 24 may be followed by distally advancing delivery tube 22 through deployed stent 26. In other methods, guide catheter or microcatheter 62 may be advanced through deployed stent 26, to further widen the already stented passage. These methods may also be employed to assist with eversion of the distal end of the released but incompletely deployed stent. In some methods, the delivery tube and release member may be retracted proximally, and an inflatable balloon catheter advanced to the now stented vessel site to further dilate the deployed stent by inflating the inflatable balloon disposed in the balloon catheter distal region.



FIG. 3 illustrates only one embodiment of the inventions, which is not necessarily drawn to scale. In particular, in some embodiments, the distal region of delivery tube 22 can be significantly smaller in profile. In one embodiment, release member 24 has distal end 42 being substantially smaller in profile than that illustrated in FIG. 3. In one embodiment, distal end 42 is tapered distally or proximally to facilitate the frictional fit between the stent and the delivery catheter. The inside of the delivery catheter distal region and/or outside of the release member distal end 42 can be coated with a compressible, tacky, flowable, or high friction material to augment the security of reversible stent engagement. In one device, release member distal end 42 is only slightly larger in profile than the intermediate portion of release member 24. In one embodiment, release member 24 has strength substantially only in tension rather than compression, and acts as a string. This string or wire can be very small in profile, and can be coupled to a very small release member distal element. In one embodiment, elongate release member 24 is a fine gauge wire, metallic or polymeric, coupled to a small distal plug. Delivery tube distal end 28 may also be much smaller and significantly distally tapered relative to that illustrated in FIG. 3. Delivery tube distal end 28 may also be reinforced against diametric enlargement by incorporation of a strong circular loop or band within or outside of the wall of the delivery tube distal end. Preferably the loop or band is metallic and more preferably radiopaque so as to facilitate visualization under fluoroscopy.


Inspection of FIG. 3 indicates that the lower limit on the transverse cross-sectional size or profile of the stent delivery assembly may be limited by the profile of the everted stent 26. In one embodiment of the inventions, elongate release member 24 is effectively a thin wire or string terminating distally in a plug or ball shape only slightly larger in profile than the wire or string. Delivery tube 22 may be, significantly distally tapered such that the inside diameter of the delivery tube distal end approaches the outer diameter of the release member distal end or plug 42. The stent may thus be everted and the stent distal region tightly bunched or gathered together between the small distal ball or plug and the surrounding, tapered, distal end of the delivery tube. While the release member and delivery tube occupy space, it may be seen that the absolute lower limit of the cross-sectional profile in some embodiments may be ultimately bounded by the lower size limit in releasably compressing the stent distal end.



FIG. 5A illustrates another embodiment of the inventions. The stent delivery assembly 100 illustrated in FIG. 5A can be similar to that of assembly 20 as illustrated in FIGS. 1 and 2. Delivery assembly 100 may be seen to have an everted stent 26 and an elongate release member 24 as previously discussed. Assembly 100 has a delivery shaft 122 rather than a delivery tube. Delivery shaft 122 has an intermediate region 132 extending to a distal region 124. Distal region 124 includes support struts 128 extending distally and radially outward to support a short tube section or annular ring 126. In some embodiments, annular tube or ring 126 may be significantly longer than that illustrated in FIG. 5A, which is not necessarily to scale. The distal region of delivery shaft 122 may thus form a delivery tube in the many respects previously discussed. Stent 26 may be seen to be everted over distal annular ring or hoop 126 and held in place by a tight, interference fit between release member distal element 43 and annular ring 126. As may be seen from inspection of FIG. 5A, everted stent 26 may be released from the assembly 100 by proximally retracting release member 24 or distally extending release member 24, depending on the embodiment and the properties of the release member shaft forming release member 24. FIG. 5B illustrates a transverse cross-sectional view of the assembly 100 of FIG. 5A, showing release end element 43 disposed within one layer of stent 26 which is in turn disposed within annular ring 126 which has a second layer of stent 26 disposed to the outside.



FIG. 5C illustrates another stent delivery assembly 160, somewhat similar to that of delivery assembly 100 of FIG. 5A and having the same reference numerals for similar elements. Assembly 160 includes elongate release member 24 and stent 26 as previously discussed. The delivery device includes a distal tube 166 coupled to a proximal elongate member or shaft 162. Tube 166 includes a proximal end 174, a distal region 170, a distal end 172, and a lumen 168 extending through the tube. Proximal shaft 162 can be coupled to tube 160 at a shaft distal region 164. Proximal shaft 162 can extend distally along or within tube 166 in some embodiments. Tube 166 may be slit to accommodate proximal shaft 162.


Stents that may be used with the present inventions include self-expanding and balloon expandable stents, well known to those in the cardiovascular arts. Stents may be formed from many of the well known stent materials, including Nitinol, stainless steel, and polymers. The stents may be braided, knit, meshed, formed of non-woven wires, helically wound and helically counterwound. Stents according to the present inventions are preferably porous, wire, braided stents, with various embodiments having an average pore or inter-wire opening size of at least about 20 microns in one embodiment, and at least 50 microns in another embodiment. In a preferred embodiment the stent ends are coated with flexible adherent material to prevent unraveling of, for example, braided stents. Alternatively, the stent strands can be welded or otherwise fastened to one another to prevent unraveling during eversion.


In one use of the inventions, the everted stent may be used to stabilize a blockage such as a thrombus, while providing a perfusing path through the dilated thrombus. In another use, the stent may be positioned across a stenosed blood vessel region, and the region treated with a restenosis inhibiting agent. The restenosis inhibiting agent can be infused through the porous stent wall or reside on the stent itself and release into the vessel wall. FIGS. 3 and 4 may be used to visualize blockage 84 being formed primarily of thrombus, with stent 26 being put in place to primarily stabilize the thrombus and to provide oxygenating blood flow to downstream brain regions, preventing brain cell death. Small distal profile catheters as previously discussed and as illustrated in FIG. 3 may thus be used to advance an everted stent across a thrombus and deploy the stent. The stent, which can be either self-expanding or expandable from within using a stent placement device, can then expand against the vessel walls and/or blockage. In some methods, an infusion catheter is advanced to within vessel site 80, and thrombolytic agents infused through the porous stent wall. Various therapeutic agents may be applied in this way. A non-limiting list of such therapeutic agents includes thrombolytic agents, anticoagulants, anti-platelet agents, and tissue plasminogen activator. In a similar way, stents according to the present inventions can be used to treat an area stenosed because of arteriosclerosis.


The present inventions can be used to accurately position the stent proximal end. The stent proximal end may be positioned accurately relative to a vessel ostium. The stent can be positioned near the proximal end of a stenosis located near or at an ostium. The everted stent can be advanced as previously discussed, until the proximal end is positioned at the desired location. The stent proximal end can be allowed to radially expand against the vessel walls. In some methods, the stent can be advanced further distally until the expanded proximal end is at the desired position. The stent placement may be followed using fluoroscopy. This desired position may be exactly at the ostium beginning, slightly within the ostium, or extending slightly from the ostium. The stent distal region can be released and allowed to expand. In this way, the stent proximal end can be positioned accurately relative to the ostium.


In one embodiment of the inventions, the elongate release member has a length of between about 100 cm. and 200 cm. In one embodiment, the outer diameter of the release member distal element is less than 2 mm. In various embodiments, the release member may be formed from stainless steel, Nitinol, polyimide, reinforced polymer, or PEEK and the like.


The delivery tube or shaft in some embodiments has a length of between about 75 cm. and 175 cm. The delivery tube can have an outside diameter of between about 6 Fr. and 1 Fr. In various embodiments of the inventions, the distal region of the delivery tube may be distally tapered. In some embodiments, the cross-sectional outer diameter of the delivery tube distal end is less than about 6 Fr. Delivery tubes can be made from flexible polymers such as PEBAX, nylon, polyester, polyurethane, polyethylene, FEP, Teflon, silicone, and the like, with or without reinforcement by metallic or polymeric elements. Microcatheters are well known to those skilled in the art and any suitably sized guide catheter or microcatheter may be used in combination with the present inventions, preferably about 3 Fr. or 4 Fr. in outer diameter. Some exemplary sized catheters that can be used with the present inventions are between about 75 cm. and 175 cm. in length. Guide or microcatheters useful in conjunction with the present inventions may be formed from Nylon, PEBAX, polyurethane, and the like. Guide catheters can be reinforced with metallic braids, with microcatheters preferably having very flexible distal end regions. The catheters can have a distal outer diameter of less than about 8 Fr. for guides and 4 Fr. for microcatheters.

Claims
  • 1. A method of advancing an everted tubular braid to a target region, the method comprising the steps of: providing a medical device comprising a delivery member and a braided tubular member coupled to the delivery member, the tubular member having a first portion and a second portion;while maintaining the tubular member in a first configuration in which the first portion is positioned proximal of the second portion and the second portion is everted into the first portion, advancing the tubular member through a lumen of a catheter toward the target region, the catheter having a distal end, the catheter constraining the tubular member from radially expanding;advancing the tubular member, in the first configuration, beyond the catheter distal end; andpermitting the tubular member to move to a second configuration in which the tubular member second portion is in a non-everted position, distal to the first portion.
  • 2. The method of claim 1, wherein the permitting the tubular member to move to a second configuration comprises permitting the second portion to move to a non-everted position.
  • 3. The method of claim 1, wherein the tubular member moves to a non-everted position upon being released from the delivery member.
  • 4. The method of claim 1, wherein the delivery member comprises a tube having a lumen.
  • 5. The method of claim 1, wherein the tubular member is coupled to a distal end of the delivery member.
  • 6. The method of claim 1, wherein the medical device comprises a release member having an engagement member extending within a lumen of the delivery member, the engagement member engaging the tubular member second portion and cooperating with the delivery member to grip the tubular member.
  • 7. The method of claim 1, further comprising radially expanding the tubular member after the tubular member moves to the second configuration.
  • 8. The method of claim 7, wherein the radially expanding comprises allowing the tubular member second portion to radially expand upon release from the delivery member.
  • 9. The method of claim 1, wherein the tubular member comprises a self-expanding stent.
  • 10. The method of claim 1, wherein the permitting the tubular member to move to a second configuration comprises permitting the first and second portions of the tubular member to move only away from each other.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/614,035, filed Sep. 13, 2012, now U.S. Pat. No. 8,579,958, which is a continuation of U.S. application Ser. No. 12/477,613, filed Jun. 3, 2009, now U.S. Pat. No. 8,317,850, which is a divisional of U.S. application Ser. No. 11/035,671, filed Jan. 14, 2005, now abandoned, which is a continuation of U.S. application Ser. No. 10/096,628, filed Mar. 12, 2002, now U.S. Pat. No. 6,866,679. The entire contents of each of the foregoing applications and patents are incorporated herein by reference in their entirety.

US Referenced Citations (213)
Number Name Date Kind
4655771 Wallsten Apr 1987 A
4723936 Buchbinder et al. Feb 1988 A
4877031 Conway et al. Oct 1989 A
4990151 Wallsten Feb 1991 A
5026377 Burton et al. Jun 1991 A
5318529 Kontos Jun 1994 A
5445646 Euteneuer et al. Aug 1995 A
5474563 Myler et al. Dec 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5545209 Roberts et al. Aug 1996 A
5571135 Fraser et al. Nov 1996 A
5636641 Fariabi Jun 1997 A
5695499 Helgerson et al. Dec 1997 A
5702418 Ravenscroft Dec 1997 A
5725571 Imbert et al. Mar 1998 A
5776141 Klein et al. Jul 1998 A
5824041 Lenker et al. Oct 1998 A
5935161 Robinson et al. Aug 1999 A
5968053 Revelas Oct 1999 A
6077295 Limon et al. Jun 2000 A
6077297 Robinson et al. Jun 2000 A
6123723 Konya et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6149680 Shelso et al. Nov 2000 A
6152944 Holman et al. Nov 2000 A
6193739 Chevillon et al. Feb 2001 B1
6251132 Ravenscroft et al. Jun 2001 B1
6264683 Stack et al. Jul 2001 B1
6350278 Lenker et al. Feb 2002 B1
6371953 Beyar et al. Apr 2002 B1
6383171 Gifford et al. May 2002 B1
6387118 Hanson May 2002 B1
6395008 Ellis et al. May 2002 B1
6395017 Dwyer et al. May 2002 B1
6419693 Fariabi Jul 2002 B1
6425898 Wilson et al. Jul 2002 B1
6428552 Sparks Aug 2002 B1
6443971 Boylan et al. Sep 2002 B1
6468298 Pelton Oct 2002 B1
6517547 Feeser et al. Feb 2003 B1
6562063 Euteneuer et al. May 2003 B1
6576006 Limon et al. Jun 2003 B2
6582460 Cryer Jun 2003 B1
6602271 Adams et al. Aug 2003 B2
6607551 Sullivan et al. Aug 2003 B1
6669719 Wallace et al. Dec 2003 B2
6699274 Stinson Mar 2004 B2
6706055 Douk et al. Mar 2004 B2
6764504 Wang et al. Jul 2004 B2
6808529 Fulkerson Oct 2004 B2
6815325 Ishii Nov 2004 B2
6830575 Stenzel et al. Dec 2004 B2
6843802 Villalobos et al. Jan 2005 B1
6866679 Kusleika Mar 2005 B2
6932837 Amplatz et al. Aug 2005 B2
6960227 Jones et al. Nov 2005 B2
6989024 Hebert et al. Jan 2006 B2
7011675 Hemerick et al. Mar 2006 B2
7074236 Rabkin et al. Jul 2006 B2
7147656 Andreas et al. Dec 2006 B2
7306624 Yodfat et al. Dec 2007 B2
7357812 Andreas et al. Apr 2008 B2
7371248 Dapolito et al. May 2008 B2
7427288 Sater Sep 2008 B2
7473271 Gunderson Jan 2009 B2
7473272 Pryor Jan 2009 B2
7572290 Yodfat et al. Aug 2009 B2
7651520 Fischell et al. Jan 2010 B2
7655031 Tenne et al. Feb 2010 B2
7691138 Stenzel et al. Apr 2010 B2
7717953 Kaplan et al. May 2010 B2
7758624 Dorn et al. Jul 2010 B2
7867267 Sullivan et al. Jan 2011 B2
7942925 Yodfat et al. May 2011 B2
7955370 Gunderson Jun 2011 B2
7981148 Aguilar et al. Jul 2011 B2
7993385 Levine et al. Aug 2011 B2
8025692 Feeser Sep 2011 B2
8034095 Randolph et al. Oct 2011 B2
8042720 Shifrin et al. Oct 2011 B2
8066754 Malewicz Nov 2011 B2
8083791 Kaplan et al. Dec 2011 B2
8092508 Leynov et al. Jan 2012 B2
8097015 Devellian Jan 2012 B2
8109987 Kaplan et al. Feb 2012 B2
8133266 Thomas et al. Mar 2012 B2
8147534 Berez et al. Apr 2012 B2
8187314 Davis et al. May 2012 B2
8257432 Kaplan et al. Sep 2012 B2
8298276 Ozawa et al. Oct 2012 B2
8317850 Kusleika Nov 2012 B2
8366763 Davis et al. Feb 2013 B2
8382818 Davis et al. Feb 2013 B2
8579958 Kusleika Nov 2013 B2
8591566 Newell et al. Nov 2013 B2
8790387 Nguyen et al. Jul 2014 B2
9072624 Brown et al. Jul 2015 B2
20020029046 Lorentzen Cornelius et al. Mar 2002 A1
20020049412 Madrid et al. Apr 2002 A1
20020072789 Hackett et al. Jun 2002 A1
20020138128 Stiger et al. Sep 2002 A1
20030004539 Linder et al. Jan 2003 A1
20030009208 Snyder et al. Jan 2003 A1
20030050600 Ressemann et al. Mar 2003 A1
20030135258 Andreas Jul 2003 A1
20030208223 Kleiner Nov 2003 A1
20030212410 Stenzel et al. Nov 2003 A1
20040024416 Yodfat et al. Feb 2004 A1
20040215331 Chew Oct 2004 A1
20040220585 Nikolchev Nov 2004 A1
20040230285 Gifford, III Nov 2004 A1
20050096724 Stenzel et al. May 2005 A1
20050119719 Wallace et al. Jun 2005 A1
20050125051 Eidenschink et al. Jun 2005 A1
20050143773 Abrams et al. Jun 2005 A1
20050240254 Austin Oct 2005 A1
20060036309 Hebert et al. Feb 2006 A1
20060058865 Case et al. Mar 2006 A1
20060074477 Berthiaume et al. Apr 2006 A1
20060116750 Hebert et al. Jun 2006 A1
20060184226 Austin Aug 2006 A1
20060212042 Lamport et al. Sep 2006 A1
20070027520 Sherburne Feb 2007 A1
20070043430 Stinson Feb 2007 A1
20070078504 Mialhe Apr 2007 A1
20070088323 Campbell et al. Apr 2007 A1
20070117645 Nakashima May 2007 A1
20070203563 Hebert et al. Aug 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070239261 Bose et al. Oct 2007 A1
20070255388 Rudakov et al. Nov 2007 A1
20070299500 Hebert et al. Dec 2007 A1
20070299501 Hebert et al. Dec 2007 A1
20070299502 Hebert et al. Dec 2007 A1
20080015678 Kaplan et al. Jan 2008 A1
20080027528 Jagger et al. Jan 2008 A1
20080033528 Satasiya et al. Feb 2008 A1
20080051705 Von Oepen et al. Feb 2008 A1
20080071301 Matsuura et al. Mar 2008 A1
20080077229 Andreas et al. Mar 2008 A1
20080140180 Dolan et al. Jun 2008 A1
20080147162 Andreas et al. Jun 2008 A1
20080188865 Miller et al. Aug 2008 A1
20080234795 Snow et al. Sep 2008 A1
20080243225 Satasiya et al. Oct 2008 A1
20080255653 Schkolnik Oct 2008 A1
20080300667 Hebert et al. Dec 2008 A1
20090082609 Condado Mar 2009 A1
20090105802 Henry et al. Apr 2009 A1
20090132019 Duffy et al. May 2009 A1
20090138066 Leopold et al. May 2009 A1
20090143849 Ozawa et al. Jun 2009 A1
20090157048 Sutermeister et al. Jun 2009 A1
20090204196 Weber Aug 2009 A1
20090264985 Bruszewski Oct 2009 A1
20090287292 Becking et al. Nov 2009 A1
20090299449 Styrc Dec 2009 A1
20090318947 Garcia et al. Dec 2009 A1
20100049293 Zukowski et al. Feb 2010 A1
20100049297 Dorn Feb 2010 A1
20100057184 Randolph et al. Mar 2010 A1
20100057185 Melsheimer et al. Mar 2010 A1
20100069852 Kelley Mar 2010 A1
20100087913 Rabkin et al. Apr 2010 A1
20100094394 Beach et al. Apr 2010 A1
20100198334 Yodfat et al. Aug 2010 A1
20100204770 Mas et al. Aug 2010 A1
20100262157 Silver et al. Oct 2010 A1
20100268328 Stiger Oct 2010 A1
20100274270 Patel et al. Oct 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100331951 Bei et al. Dec 2010 A1
20110009943 Paul et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110029065 Wood et al. Feb 2011 A1
20110034987 Kennedy Feb 2011 A1
20110054586 Mayberry et al. Mar 2011 A1
20110093055 Kujawski Apr 2011 A1
20110098804 Yeung et al. Apr 2011 A1
20110106235 Haverkost et al. May 2011 A1
20110112623 Schatz May 2011 A1
20110152760 Parker Jun 2011 A1
20110178588 Haselby Jul 2011 A1
20110190862 Bashiri et al. Aug 2011 A1
20110190865 McHugo et al. Aug 2011 A1
20110208292 Von Oepen et al. Aug 2011 A1
20110288626 Straubinger et al. Nov 2011 A1
20110319904 Hollett et al. Dec 2011 A1
20120029607 McHugo et al. Feb 2012 A1
20120035700 Leanna et al. Feb 2012 A1
20120053681 Alkhatib et al. Mar 2012 A1
20120059449 Dorn et al. Mar 2012 A1
20120065660 Ferrera et al. Mar 2012 A1
20120116494 Leynov et al. May 2012 A1
20120123511 Brown May 2012 A1
20120253447 Hayasaka et al. Oct 2012 A1
20120316638 Grad et al. Dec 2012 A1
20130085562 Rincon et al. Apr 2013 A1
20130131775 Hadley et al. May 2013 A1
20130172925 Garcia et al. Jul 2013 A1
20130226276 Newell et al. Aug 2013 A1
20130226278 Newell et al. Aug 2013 A1
20130261730 Bose et al. Oct 2013 A1
20130274859 Argentine Oct 2013 A1
20130282099 Huynh Oct 2013 A1
20130304185 Newell et al. Nov 2013 A1
20140025150 Lim Jan 2014 A1
20140031918 Newell et al. Jan 2014 A1
20140148893 Kusleika May 2014 A1
20140200648 Newell et al. Jul 2014 A1
20150066129 Nageswaran et al. Mar 2015 A1
20150066130 Haggstrom et al. Mar 2015 A1
20150066131 Luong et al. Mar 2015 A1
Foreign Referenced Citations (21)
Number Date Country
102159157 Aug 2011 CN
775470 May 1997 EP
1637176 Mar 2006 EP
1656963 May 2006 EP
2 078 512 Jul 2009 EP
2179258 Mar 1987 GB
WO-9601591 Jan 1996 WO
WO-0149212 Jul 2001 WO
WO-0189619 Nov 2001 WO
WO-2007095031 Aug 2007 WO
WO-2007117645 Oct 2007 WO
WO-2010027485 Mar 2010 WO
WO-2010086320 Aug 2010 WO
WO-2010123831 Oct 2010 WO
WO-2010127838 Nov 2010 WO
WO-2011014814 Feb 2011 WO
WO-2011076408 Jun 2011 WO
WO-2011095966 Aug 2011 WO
WO-2011144351 Nov 2011 WO
WO-2012040240 Mar 2012 WO
WO-2012158152 Nov 2012 WO
Non-Patent Literature Citations (9)
Entry
U.S. Appl. No. 13/553,855, filed Jul. 20, 2012.
U.S. Appl. No. 13/664,547, filed Oct. 31, 2012.
U.S. Appl. No. 13/950,950, filed Jul. 25, 2013.
U.S. Appl. No. 14/040,510, filed Sep. 27, 2013.
U.S. Appl. No. 14/040,501, filed Sep. 27, 2013.
U.S. Appl. No. 14/040,489, filed Sep. 27, 2013.
U.S. Appl. No. 14/040,516, filed Sep. 27, 2013.
U.S. Appl. No. 14/042,423, filed Sep. 30, 2013.
Covidien's Pipeline Embolization Device and Delivery System Product Description and Instructions for Use, Jun. 2010.
Related Publications (1)
Number Date Country
20140148893 A1 May 2014 US
Divisions (1)
Number Date Country
Parent 11035671 Jan 2005 US
Child 12477613 US
Continuations (3)
Number Date Country
Parent 13614035 Sep 2012 US
Child 14076448 US
Parent 12477613 Jun 2009 US
Child 13614035 US
Parent 10096628 Mar 2002 US
Child 11035671 US