The present invention relates generally to the modification of an atrial appendage and, more specifically, to devices, systems and methods for occluding or otherwise structurally altering such appendages.
The atrial appendage is a feature of all human hearts. The upper chambers of the heart, the atria, have this appendage attached to each of them. The physiologic function of such appendages is not completely understood, but they do act as a filling reservoir during the normal pumping of the heart. The appendages typically protrude from the atria and cover an external portion of the atria. Atrial appendages differ substantially from one to another in size, shape and specific location with respect to the atria. For example, one atrial appendage may be configured as a tapered protrusion while another atrial appendage may be configured as a re-entrant, sock-like hole. The inner surface of an appendage is conventionally trabeculated with cords of muscular cardiac tissue traversing its surface with one or more lobes.
The atrial appendages are inert while blood is being pumped through them during normal heart function. In other words, the appendages don't have a noticeable effect on blood pumped through them during normal heart function. However, in cases of atrial fibrillation, when the atria go into arrhythmia, blood may pool and thrombose inside of the appendages. Among other things, this can pose a stroke risk when it occurs in the left appendage since the thrombus may be pumped out of the heart and into the cranial circulation. Such can also lead to ischemic damage of other organs of the body.
Historically, atrial appendages have sometimes been modified surgically to reduce the risk imposed by atrial fibrillation. In more recent years, devices which may be delivered percutaneously into the left atrial appendage have been introduced. The basic function of these devices is to exclude the volume within the appendage with an implant which then allows blood within the appendage to safely thrombose and then to be gradually incorporated into cardiac tissue. This can leave a smooth, endothelialized surface where the appendage used to be.
In comparison to surgical procedures, devices implanted percutaneously are clearly a less invasive means for addressing the problems associated with the left atrial appendage. However, due to the wide variability of the size of the ostium and the volume of an atrial appendage, implant devices that are currently used typically include structure that cannot meet such variability, resulting in inadequate devices for many left atrial appendages. Further, such implant devices are substantially limited by the orientation by which they can successfully be deployed. Thus, successful placement and deployment of such devices becomes limited.
As such, it would be advantageous to provide percutaneous systems, methods and devices that, among other things, address one or more issues such as implant orientation and the variability in sizes of the left atrial appendage in order to provide high success in left atrial appendage modification.
The present invention includes various embodiments of medical devices, systems and methods for modifying an atrial appendage. In accordance with one embodiment of the present invention, a medical device is provided for modifying an atrial appendage. The medical device includes a plurality of discrete frame segments coupled with at least one ring member to form a frame structure. Each discrete frame segment includes an expanding leg, a collapsing leg and a hub extension. A tissue growth member is coupled with the plurality of discrete frame segments to define a substantially convex surface and a substantially concave surface.
In one embodiment, the tissue growth member includes a porous foam material. The tissue growth member may further comprise expanded polytetrafluoroethylene. In one embodiment, the discrete frame segments are formed of a nickel-titanium alloy. The discrete frame segments may be formed such that each expanding leg is coplanar with its associated collapsing leg and its associated hub extension. Various other features and configurations may be associated with the medical device.
In accordance with another embodiment of the present invention, a medical device system is provided. The system includes a medical device having a plurality of discrete frame segments coupled with at least one ring member to form a frame structure. Each discrete frame segment includes an expanding leg, a collapsing leg, and a hub extension. A tissue growth member is coupled with the plurality of discrete frame segments to define a substantially convex surface and a substantially concave surface. The system further includes a catheter and a pusher member configured to displace the medical device relative to the catheter.
In accordance with another embodiment of the present invention, a method of forming a medical device is provided. The method includes forming a plurality of discrete frame segments, wherein each discrete frame segment includes an expanding leg, a collapsing leg, and a hub extension. The hub extension of each of the plurality of discrete frame segments is coupled with at least one ring member and a tissue growth member is coupled with the plurality of discrete frame segments.
The foregoing and other advantages of various embodiments of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
Referring to
The medical device system 10 may also include a capturing member 28, a pusher member 30 and a loading member 32 (which, in one example, as shown, may be configured as a funnel structure or device) may be for loading a tissue growth member 40 into the handle 12. As will be discussed in further detail below, the tissue growth member 40 may be displaced through the handle 12 and over the tether 26 to a distal portion 34 of the catheter 18 for deployment during a desired procedure to modify an atrial appendage. As depicted in
According to one aspect of the present invention, the tissue growth member 40 may be a self expanding porous member, such as a polymer based foam or a polyurethane foam. Other materials with desired porosity may also be used, such as, for example, felt, fabric, a polyester fiber such as polyethylene terephthalate (PET, also known commercially as Dacron®), Nitinol braded wire, or Nitinol felt. In the case of foam, such foam may be a reticulated foam, typically undergoing a chemical or heating process to open the pours within the foam as known in the art. The foam may also be a non-reticulated foam. The foam may also include graded density and graded porosity, as desired, and manipulated to expand in a desired geometry when the support structure 42 is moved to the expanded configuration. The tissue growth member 40 is configured to induce tissue in-growth therethrough to, thereby, close the LAA opening. Further, the tether 26 may be formed from a metal or polymer based material or any other material suitable for maintaining access to the LAA with the anchor and to facilitate interconnection for one or more tissue growth members.
Referring still to
As shown in
Referring now to
As depicted in
It should be noted that the medical device system of the present invention may include differently sized or shaped tissue growth members 40 so that a physician can utilize the size and shape necessary and best suited to create a surface that will substantially prevent thrombus from migrating from the left atrial appendage 15. In this manner, the physician can obtain imaging information while conducting the procedure and determine if proper occlusion of the LAA has been obtained and, if not, continue to determine and selectively choose appropriately sized additional tissue growth members to slide into the left atrial appendage to, thereby, occlude virtually any size or other variation that may be encountered when conducting such a procedure. Furthermore, it is noted that once the anchor 24 is lodged within the LAA for sliding one or more of the tissue growth members 40 over the tether 26 and into the LAA 15, any potential issues of device orientation are substantially eliminated as the tether provides a guide into the LAA 15 for placement of the tissue growth members 40.
Referring now to
For example, as depicted in
As will be readily understood by one of ordinary skill in the art, instead of the catheter 18 employed in the embodiments disclosed with respect to
It is noted that a variety of other configurations may be employed for the anchoring member 24. For example, a variety of anchoring structures are disclosed in U.S. patent application Ser. No. 12/253,831 entitled MEDICAL DEVICE FOR MODIFICATION OF LEFT ATRIAL APPENDAGE AND RELATED SYSTEMS AND METHODS, filed on Oct. 17, 2008, the disclosure of which is incorporated by reference herein in its entirety. Such anchoring systems or structures may be incorporated into embodiments of the present invention in conjunction with an associated tether and tissue growth member.
Referring now to
For example each frame member 81A and 81B may include one or more anchor legs 82 (in the present depicted embodiment, each frame member includes two anchor legs) with various features. The anchor legs 82 may include an arcuate distal end 83 having increased mass compared to the rest of the leg 82, the arcuate distal end 83 curving radially inwardly. Such arcuate distal ends act as atraumatic tips to help prevent potential puncture of the walls of the LAA when deploying the anchor 80. The inward curvature of the anchor legs distal ends are configured so that if the ends 83 are pushed against tissue within the LAA, the ends of the anchor legs 83 will roll radially inward. The anchor legs 82 may also include tissue engaging features 84 that are configured to press against and engage the trabeculated tissue wall of the LAA. The engaging features 84 may include, for example, proximally extending nubs, which may also be tapered. The engaging features 84 (as well as various tissue engaging features of other anchors and structures described herein) are configured to be atraumatic. For example, the engaging features 84 may engage with the tissue of an LAA by nestling amongst the trabeculations along the tissue wall.
The anchor legs 82 may further include a flare 85 or projection that extends or deviates radially outwardly relative to the remaining path of the anchor legs 82. The flare 85 assists in loading the anchor 80 into a catheter or other delivery mechanism such that when the flare engages the periphery of a catheter lumen, it causes the anchor legs 82 to deflect radially inwardly a sufficient distance to avoid the interference of the engaging features 84 with the inner wall of the catheter's lumen. It is also noted that the anchor legs 82 may exhibit different lengths than one another to further help facilitate placement of the anchor 80 within a catheter or other delivery mechanism. Thus, in one embodiment, each anchor leg 82 of a give anchor 80 may exhibit a different length than every other anchor leg.
The frame members 81A and 81B also include hub members 86A and 86B, respectively, that are cooperatively configured to effect mating or assembly of the frame members 81A and 81B to form the anchor 80. For example, referring specifically to
The anchor members 81A and 81B may also include a plurality of through holes 93A, 93B and 93C and/or slots 94 or notches. These through holes 93A through 93C may be used for coupling of the tether 26 to the assembled anchor 80. For example, as shown in
In one embodiment, each frame member 81A and 81B may be formed as an integral, unitary and seamless component. For example, the frame members 81A and 81B may be formed by laser cutting from a sheet of material such as a nickel-titanium alloy. Thus, the anchor legs 82 of a given frame member 81A or 81B would lie in a common plane.
It is noted that the anchor 80, as well as other anchors described herein, are configured to be deployed deep within an atrial appendage. The ability to vary the relative position of an anchor with an associated tissue growth member (e.g., by varying the position of the two components along an associated tether) provides substantial flexibility in modifying an atrial appendage, particularly in light of the extreme variability from one atrial appendage to another.
With respect to
The presently considered embodiment of the occluder member 350 may be employed with the medical device system depicted in
The frame 354 or support structure of the occluder member 350 is configured to assist in expanding the tissue growth member 352 and to assist in collapsing the tissue growth member 352 for delivery through an associated catheter or other medical device. Such frame 354 may include an expander portion 366, a collapser portion 368 and a hub portion 370. The expander portion 366 may extend from the hub portion 370 with multiple expanding legs 372. In one embodiment, the legs 372 may extend along the inner surface 358 of the tissue growth member 352. The collapser portion 368 also may extend from the hub portion 370 with multiple collapsing legs 374. In one embodiment, the collapsing legs 374 may extend along the proximal surface portion 362 of the tissue growth member 352. With this arrangement, the collapser portion 368 of the frame 354 assists in collapsing the tissue growth member 352 (such as during a loading procedure) to a size wherein the occluder member 350 fits within the lumen of a catheter and may be displaced therethrough without damaging the tissue growth member 352. Further, when deploying the collapsed tissue growth member 352 from a catheter, the expander portion 366 of the frame 354 is configured to self expand to assist in opening the tissue growth member 352 so that much (if not all) of the distal surface portion 360 of the tissue growth member 352 is in direct contact with the tissue of the LAA.
Referring now to
The frame 354 may include multiple discrete frame segments 364 that may be assembled with the hub portion 370 to collectively provide the frame 354. Each frame segment 364 includes a hub extension 376 with an expanding leg 372 and a collapsing leg 374 extending from a proximal end 376 of the hub extension 376.
Further, each frame segment 364 is configured to be substantially flat. Otherwise said, the hub extension 376, expanding leg 372 and collapsing leg 374 of a given frame segment 364 are substantially coplanar with respect to each other. In one embodiment, the frame segments 364 may each be laser cut or otherwise formed from a flat sheet of Nitinol, thereby, providing a substantially flat configuration to each of the frame segments 364. In this manner, the frame 354 (when assembled from the plurality of frame segments 364) may be configured to collapse within a catheter as well as self expand when deployed from a catheter with the frame segments 364 being deflected and displaced in the process.
Each frame segment 364 may be positioned radially and substantially symmetrical with respect to each other about a longitudinal axis 375 that extends through the hub portion 370. The frame segments 364 may be coupled with one or more rings 378 having notches on a radial inner surface, a radial outer surface or both to correspond with notches formed within the hub extension 376 of the frame segment. Due to each frame segment 364 being discrete with respect to the other frame segments 364, the expanding leg 372 and collapsing leg 374 may collapse or expand substantially independent from the other expanding and collapsing legs of the other frame segments 364. With this arrangement, when the tissue growth member 352 is deployed from a catheter, each of the frame segments 364 self expand, independent of each other, to facilitate the tissue growth member 352 to be in direct contact with the tissue of the LAA in a non-rigid and conformable manner. Further, the frame segments 364 each independently self expand so as to adapt to the varying anatomy that is encountered within the LAA.
Each of the collapsing legs 374 and the expanding legs 372 may include one or more clips 380 formed therewith.
Referring now to
Additional detail regarding the function and structure of a hub portion 370 of the occluder member 350, as facilitated with the tether filament 402 and the pusher member 404, is now set forth in accordance with one embodiment of the invention. The hub portion 370 may define a hole 406 extending centrally therethrough and may further include a threaded portion 408 that at least partially defines the hole 406. As previously set forth, the hub portion 370 is defined via the assembled multiple hub extensions 376 radially oriented and positioned with the one or more rings 378. The hub portion of the frame 354 enables the occluder member 350 to slide over the tether filament 402, such as previously depicted in the embodiments described in
The pusher member 404 includes a distal end 410 and a proximal end (not shown) with a lumen 412 extending longitudinally through at least a portion of the pusher member 404. The pusher member 404 includes a coupling member 414 at or proximate the distal end 410 of the pusher member 404 and a cutter 416 disposed within the lumen 412, a distal end of the cutter 416 being proximal or adjacent to an outlet 422 defined in a wall of the pusher member 404. The coupling member 414 may include a threaded portion 418 and a non-threaded distal extension 420, the extension 420 extending distal of the threaded portion 418.
As depicted in
With respect to
The pusher member 404 can then be fully removed from the hub portion 370 of the occluder member 350 and, if the physician is satisfied with the position of the occluder member, the cutter element 416 can be moved distally to slice the tether filament 402. Alternatively, depending on the anatomy of the LAA, another occluder member may be loaded in a catheter and slid over the tether filament 402 to position within the LAA.
With reference to
It is also contemplated that the pusher member 404 may include a coil (not shown) that is positioned proximal to the coupling member 414 and over the pusher member 404 such that the coil and the lumen 412 of the pusher member 404 have a common axis. Further, it is also contemplated that the occluder 350, the pusher member 404 and the tether filament 402 may include radiopaque characteristics or markers so that the relevant portions of the medical device system 400 can be viewed with imaging techniques known in the art.
Referring now to
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
This application is a continuation application of U.S. patent application Ser. No. 12/684,783, filed Jan. 8, 2010, which claims the benefit of U.S. Provisional Patent Application No. 61/143,360, filed Jan. 8, 2009, entitled MEDICAL DEVICE FOR MODIFICATION OF LEFT ATRIAL APPENDAGE AND RELATED SYSTEMS AND METHODS, and of U.S. Provisional Patent Application No. 61/160,247, filed Mar. 13, 2009, entitled MEDICAL DEVICE FOR MODIFICATION OF LEFT ATRIAL APPENDAGE AND RELATED SYSTEMS AND METHODS, and of U.S. Provisional Patent Application No. 61/164,313, filed Mar. 27, 2009, entitled MEDICAL DEVICE FOR MODIFICATION OF LEFT ATRIAL APPENDAGE AND RELATED SYSTEMS AND METHODS, the disclosure of each of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3095877 | Rowan | Jul 1963 | A |
3874388 | King et al. | Apr 1975 | A |
5171259 | Inoue | Dec 1992 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5284488 | Sideris | Feb 1994 | A |
5334217 | Das | Aug 1994 | A |
5425733 | Schmieding | Jun 1995 | A |
5425740 | Hutchinson, Jr. | Jun 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5861003 | Latson et al. | Jan 1999 | A |
5904703 | Gilson | May 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5992158 | Goddard et al. | Nov 1999 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6174322 | Schneidt | Jan 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6238403 | Greene et al. | May 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6355051 | Sisskind et al. | Mar 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6398760 | Danby | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6436088 | Frazier et al. | Aug 2002 | B2 |
6458100 | Roue et al. | Oct 2002 | B2 |
6488689 | Kaplan et al. | Dec 2002 | B1 |
6530934 | Jacobsen et al. | Mar 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6561969 | Frazier et al. | May 2003 | B2 |
6641557 | Frazier et al. | Nov 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6652555 | VanTassel et al. | Nov 2003 | B1 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6666861 | Grabek | Dec 2003 | B1 |
6689150 | VanTassel et al. | Feb 2004 | B1 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6712804 | Roue et al. | Mar 2004 | B2 |
6730108 | Van Tassel et al. | May 2004 | B2 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6949113 | Van Tassel et al. | Sep 2005 | B2 |
6979344 | Jones et al. | Dec 2005 | B2 |
6994092 | van der Burg et al. | Feb 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7014645 | Greene, Jr. et al. | Mar 2006 | B2 |
7025756 | Frazier et al. | Apr 2006 | B2 |
7044134 | Khairkhahan et al. | May 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7115110 | Frazier et al. | Oct 2006 | B2 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7169164 | Borillo et al. | Jan 2007 | B2 |
7192439 | Khairkhahan et al. | Mar 2007 | B2 |
7226458 | Kaplan et al. | Jun 2007 | B2 |
7293562 | Malecki et al. | Nov 2007 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7717937 | Wahr et al. | May 2010 | B2 |
7727189 | Van Tassel et al. | Jun 2010 | B2 |
7780645 | Jones | Aug 2010 | B2 |
7842054 | Greene, Jr. et al. | Nov 2010 | B2 |
8142470 | Quinn et al. | Mar 2012 | B2 |
8740934 | McGuckin, Jr. | Jun 2014 | B2 |
20010003161 | Vardi et al. | Jun 2001 | A1 |
20010037141 | Yee et al. | Nov 2001 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020026094 | Roth | Feb 2002 | A1 |
20020026217 | Baker et al. | Feb 2002 | A1 |
20020062130 | Jugenheimer et al. | May 2002 | A1 |
20020177855 | Greene, Jr. et al. | Nov 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030014075 | Rosenbluth et al. | Jan 2003 | A1 |
20030055455 | Yang et al. | Mar 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030125790 | Fastovsky et al. | Jul 2003 | A1 |
20030171739 | Murphy et al. | Sep 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030187474 | Keegan et al. | Oct 2003 | A1 |
20030191526 | Van Tassel et al. | Oct 2003 | A1 |
20030195555 | Khairkhahan et al. | Oct 2003 | A1 |
20030199923 | Khairkhahan et al. | Oct 2003 | A1 |
20030204203 | Khairkhahan et al. | Oct 2003 | A1 |
20030212432 | Khairkhahan et al. | Nov 2003 | A1 |
20030220667 | Van Der Burg et al. | Nov 2003 | A1 |
20040034366 | Van Der Burg et al. | Feb 2004 | A1 |
20040049224 | Buehlmann et al. | Mar 2004 | A1 |
20040098028 | Martinez | May 2004 | A1 |
20040122467 | VanTassel et al. | Jun 2004 | A1 |
20040127935 | VanTassel et al. | Jul 2004 | A1 |
20040153120 | Seifert et al. | Aug 2004 | A1 |
20040215230 | Frazier et al. | Oct 2004 | A1 |
20040254594 | Alfaro | Dec 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040267191 | Gifford, III et al. | Dec 2004 | A1 |
20050004652 | van der Burg et al. | Jan 2005 | A1 |
20050033409 | Burke et al. | Feb 2005 | A1 |
20050038470 | Van Der Burg et al. | Feb 2005 | A1 |
20050043759 | Chanduszko | Feb 2005 | A1 |
20050049573 | Van Tassel et al. | Mar 2005 | A1 |
20050049681 | Greenhalgh et al. | Mar 2005 | A1 |
20050060017 | Fischell et al. | Mar 2005 | A1 |
20050065589 | Schneider et al. | Mar 2005 | A1 |
20050075665 | Brenzel et al. | Apr 2005 | A1 |
20050090860 | Paprocki | Apr 2005 | A1 |
20050113861 | Corcoran et al. | May 2005 | A1 |
20050149173 | Hunter et al. | Jul 2005 | A1 |
20050177182 | van der Burg et al. | Aug 2005 | A1 |
20050192616 | Callister et al. | Sep 2005 | A1 |
20050192627 | Whisenant et al. | Sep 2005 | A1 |
20050222533 | Chanduszko et al. | Oct 2005 | A1 |
20050234540 | Peavey et al. | Oct 2005 | A1 |
20050234543 | Glaser et al. | Oct 2005 | A1 |
20050251144 | Wilson et al. | Nov 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050267524 | Chanduszko | Dec 2005 | A1 |
20060000443 | Kado et al. | Jan 2006 | A1 |
20060004433 | Greenberg et al. | Jan 2006 | A1 |
20060009798 | Callister | Jan 2006 | A1 |
20060009800 | Christianson et al. | Jan 2006 | A1 |
20060036282 | Wahr et al. | Feb 2006 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060122646 | Corcoran et al. | Jun 2006 | A1 |
20060149299 | Greene et al. | Jul 2006 | A1 |
20060149307 | Durgin | Jul 2006 | A1 |
20060149314 | Borillo et al. | Jul 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060206148 | Khairkhahan et al. | Sep 2006 | A1 |
20060217761 | Opolski | Sep 2006 | A1 |
20060229668 | Prestezog et al. | Oct 2006 | A1 |
20060276839 | McGuckin, Jr. | Dec 2006 | A1 |
20070027456 | Gartner et al. | Feb 2007 | A1 |
20070066993 | Kreidler | Mar 2007 | A1 |
20070073247 | Ewaschuk | Mar 2007 | A1 |
20070083230 | Javois | Apr 2007 | A1 |
20070083232 | Lee | Apr 2007 | A1 |
20070088388 | Opolski et al. | Apr 2007 | A1 |
20070112382 | Thill et al. | May 2007 | A1 |
20070123934 | Whisenant et al. | May 2007 | A1 |
20070129753 | Quinn et al. | Jun 2007 | A1 |
20070129757 | Armstrong | Jun 2007 | A1 |
20070135826 | Zaver et al. | Jun 2007 | A1 |
20070149995 | Quinn et al. | Jun 2007 | A1 |
20070167981 | Opolski et al. | Jul 2007 | A1 |
20070173885 | Cartier et al. | Jul 2007 | A1 |
20070179527 | Eskuri et al. | Aug 2007 | A1 |
20070179583 | Goetzinger et al. | Aug 2007 | A1 |
20070191884 | Eskridge et al. | Aug 2007 | A1 |
20070198059 | Patel et al. | Aug 2007 | A1 |
20070213766 | Ravikumar | Sep 2007 | A1 |
20070237720 | Padilla et al. | Oct 2007 | A1 |
20070270891 | McGuckin | Nov 2007 | A1 |
20070276415 | Kladakis et al. | Nov 2007 | A1 |
20080039929 | Davis et al. | Feb 2008 | A1 |
20080119891 | Miles et al. | May 2008 | A1 |
20080215086 | Olsen et al. | Sep 2008 | A1 |
20090025820 | Adams | Jan 2009 | A1 |
20090069840 | Hallisey | Mar 2009 | A1 |
20090099596 | McGuckin, Jr. et al. | Apr 2009 | A1 |
20090105747 | Chanduszko et al. | Apr 2009 | A1 |
20090112249 | Miles et al. | Apr 2009 | A1 |
20090171386 | Amplatz et al. | Jul 2009 | A1 |
20090192518 | Golden et al. | Jul 2009 | A1 |
20090299338 | di Palma | Dec 2009 | A1 |
20090318948 | Linder et al. | Dec 2009 | A1 |
20100191279 | Kassab et al. | Jul 2010 | A1 |
20100228279 | Miles et al. | Sep 2010 | A1 |
20100228285 | Miles et al. | Sep 2010 | A1 |
20100234878 | Hruska et al. | Sep 2010 | A1 |
20100324585 | Miles et al. | Dec 2010 | A1 |
20100324586 | Miles et al. | Dec 2010 | A1 |
20100324587 | Miles et al. | Dec 2010 | A1 |
20100324588 | Miles et al. | Dec 2010 | A1 |
20110022079 | Miles et al. | Jan 2011 | A1 |
20110046658 | Connor et al. | Feb 2011 | A1 |
20110054515 | Bridgeman et al. | Mar 2011 | A1 |
20110208233 | McGuckin, Jr. et al. | Aug 2011 | A1 |
20120316584 | Miles et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
2627408 | May 2008 | CA |
102006056283 | Jun 2008 | DE |
1266630 | Dec 2002 | EP |
1358850 | Nov 2003 | EP |
1523957 | Apr 2005 | EP |
1741393 | Jan 2007 | EP |
2008536620 | Sep 2008 | JP |
2010500917 | Jan 2010 | JP |
9933402 | Jul 1999 | WO |
0027292 | May 2000 | WO |
0193920 | Dec 2001 | WO |
02071977 | Sep 2002 | WO |
03028802 | Apr 2003 | WO |
2004045393 | Jun 2004 | WO |
2004100803 | Nov 2004 | WO |
2005053547 | Jun 2005 | WO |
2005099365 | Oct 2005 | WO |
2006033641 | Mar 2006 | WO |
2006047748 | May 2006 | WO |
2007054116 | May 2007 | WO |
2007147145 | Dec 2007 | WO |
WO 2008150346 | Dec 2008 | WO |
2010081033 | Jul 2010 | WO |
2010148246 | Dec 2010 | WO |
Entry |
---|
International Search Report dated Feb. 7, 2013 for International Application No. PCT/US2012/063074 (5 pages). |
International Search Report dated Apr. 26, 2010 for International Application No. PCT/US2010/020549 (7 pages). |
International Search Report dated May 7, 2010 for International Application No. PCT/US2010/020547 (4 pages). |
International Search Report dated May 6, 2010 for International Application No. PCT/US2010/020539 (5 pages). |
International Search Report dated Jun. 15, 2009 for International Application No. PCT/US2008/080374 (7 pages). |
English Abstract and English machine translation of the Specification and Claims of DE102006056283. Jun. 5, 2008. |
Office Action and English Translation issued in JP2012-516313 on Mar. 25, 2014. |
Number | Date | Country | |
---|---|---|---|
20140343594 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61143360 | Jan 2009 | US | |
61160247 | Mar 2009 | US | |
61164313 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12684783 | Jan 2010 | US |
Child | 14287103 | US |