Medical device lead including a flared conductive coil

Information

  • Patent Grant
  • 8335572
  • Patent Number
    8,335,572
  • Date Filed
    Monday, July 26, 2010
    14 years ago
  • Date Issued
    Tuesday, December 18, 2012
    12 years ago
Abstract
An implantable medical device lead includes an insulative lead body, an outer conductive coil extending through the lead body, and an inner conductive coil extending coaxially with the outer conductive coil. The outer conductive coil, which is coupled to a proximal electrode at a distal end of the outer conductive coil, has a first outer conductive coil diameter. The inner conductive coil is coupled to a distal electrode at a distal end of the inner conductive coil. The inner conductive coil includes a filar having a filar diameter and a coil pitch that is about one to one and a half times the filar diameter. The inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode.
Description
TECHNICAL FIELD

The present invention relates to implantable medical devices. More particularly, the present invention relates to medical device lead constructions including a flared conductive coil.


BACKGROUND

Magnetic resonance imaging (MRI) is a non-invasive imaging procedure that utilizes nuclear magnetic resonance techniques to render images within a patient's body. Typically, MRI systems employ the use of a magnetic coil having a magnetic field strength of between about 0.2 to 3 Teslas. During the procedure, the body tissue is briefly exposed to RF pulses of electromagnetic energy in a plane perpendicular to the magnetic field. The resultant electromagnetic energy from these pulses can be used to image the body tissue by measuring the relaxation properties of the excited atomic nuclei in the tissue.


During imaging, the electromagnetic radiation produced by the MRI system may be picked up by implantable device leads used in implantable medical devices such as pacemakers or cardiac defibrillators. This energy may be transferred through the lead to the electrode in contact with the tissue, which may lead to elevated temperatures at the point of contact. The degree of tissue heating is typically related to factors such as the length of the lead, the conductivity or impedance of the lead, and the surface area of the lead electrodes. Exposure to a magnetic field may also induce an undesired voltage on the lead.


SUMMARY

The present invention relates to an implantable medical device lead including an insulative lead body and an outer conductive coil extending through the lead body. The outer conductive coil, which is coupled to a proximal electrode at a distal end of the outer conductive coil, has an outer conductive coil diameter. An inner conductive coil, which extends coaxially with the outer conductive coil, is coupled to a distal electrode at a distal end of the inner conductive coil. The inner conductive coil includes a filar having a filar diameter and a coil pitch that is less than about 1.5 times the filar diameter. The inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode.


In another aspect, the present invention relates to an implantable medical device lead including an insulative lead body, an outer conductive coil extending through the lead body, and an inner conductive coil extending coaxially with the outer conductive coil. The outer conductive coil has an outer conductive coil diameter and is coupled to a proximal electrode at a distal end of the outer conductive coil. The inner conductive coil is coupled to a distal electrode at a distal end of the inner conductive coil. The inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode. The inner conductive coil extends through the insulative lead body between the proximal and distal electrodes.


In a further aspect, the present invention relates to a medical device including a pulse generator, a lead including a lead body, an outer conductive coil extending through the lead body, and an inner conductive coil extending coaxially with the outer conductive coil. The outer conductive coil, which has an outer conductive coil diameter, includes a proximal end and a distal end and is configured to connect to the pulse generator at the proximal end and is coupled to a proximal electrode at the distal end. The inner conductive coil, which includes a proximal end and a distal end, is configured to connect to the pulse generator at the proximal end and is coupled to a distal electrode at the distal end. The inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode. The inner conductive coil extends through the insulative lead body between the proximal and distal electrodes.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a cardiac rhythm management system including a pulse generator coupled to a lead deployed in a patient's heart.



FIG. 2 is a schematic view showing a simplified equivalence circuit for the lead of FIG. 1.



FIG. 3 is a cross-sectional view of a distal end of a lead according to an embodiment of the present invention including an inner conductive coil with a flared diameter between ring and tip electrodes at the distal end.



FIG. 4 is a plan view of a portion of a conductive coil having a variable pitch according to an embodiment of the present invention.





While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION


FIG. 1 is a schematic view of an illustrative medical device 12 having with a lead implanted within the body of a patient. In the illustrative embodiment depicted, the medical device 12 comprises a pulse generator implanted within the body. The pulse generator 12 is coupled to a lead 14 inserted into the patient's heart 16. The heart 16 includes a right atrium 18, a right ventricle 20, a left atrium 22, and a left ventricle 24. The pulse generator 12 can be implanted subcutaneously within the body, typically at a location such as in the patient's chest or abdomen, although other implantation locations are possible.


A proximal section 26 of the lead 14 can be coupled to or formed integrally with the pulse generator 12. A distal section 28 of the lead 14, in turn, can be implanted at a desired location in or near the heart 16 such as in the right ventricle 20, as shown. In use, electrodes 30 and 31 on the distal section 28 of the lead 14 may provide therapy to the patient in the form of an electrical current to the heart 16. In certain embodiments, for example, electrodes 30 and 31 may be provided as part of a cardiac lead 14 used to treat bradycardia, tachycardia, or other cardiac arrhythmias.


Although the illustrative embodiment depicts only a single lead 14 inserted into the patient's heart 16, in other embodiments multiple leads can be utilized so as to electrically stimulate other areas of the heart 16. In some embodiments, for example, the distal section of a second lead (not shown) may be implanted in the right atrium 18. In addition, or in lieu, another lead may be implanted in or near the left side of the heart 16 (e.g., in the coronary veins) to stimulate the left side of the heart 16. Other types of leads such as epicardial leads may also be utilized in addition to, or in lieu of, the lead 14 depicted in FIG. 1.


During operation, the lead 14 can be configured to convey electrical signals between the pulse generator 12 and the heart 16. For example, in those embodiments where the pulse generator 12 is a pacemaker, the lead 14 can be utilized to deliver electrical therapeutic stimulus for pacing the heart 16. For example, in the treatment of bradycardia or tachycardia, the pulse generator 12 can be utilized to deliver electrical stimulus in the form of pacing pulses to the heart 16. In other embodiments in which the pulse generator 12 is an implantable cardiac defibrillator, the lead 14 can be utilized to deliver electric shocks to the heart 16 in response to an event such as a heart attack or arrhythmia. In some embodiments, the pulse generator 12 includes both pacing and defibrillation capabilities.


When the pulse generator 12 is subjected to a magnetic field from an MRI scanner or other external magnetic source, electromagnetic radiation is produced within the body that can be picked up by the lead 14 and transferred to the lead electrodes 30 and 31 in contact with the body tissue. This electromagnetic radiation can cause heating at the interface of the lead electrode 30 and 31 and body tissue, and can interfere with the therapeutic electrical currents transmitted by the pulse generator 12 through the lead 14.



FIG. 2 is a schematic view showing a simplified equivalence circuit 32 for the lead 14 of FIG. 1, representing the RF energy picked up on the lead 14 from RF electromagnetic energy produced by an MRI scanner. As shown in FIG. 2, Vi 34 in the circuit 32 represents an equivalent source of energy picked up by the lead 14 from the MRI scanner. During magnetic resonance imaging, the length of the lead 14 functions similar to an antenna, receiving the RF energy that is transmitted into the body from the MRI scanner. Voltage (Vi) 34 in FIG. 2 may represent, for example, the resultant voltage received by the lead 14 from the RF energy. The RF energy picked up by the lead 14 may result, for example, from the rotating RF magnetic field produced by an MRI scanner, which generates an electric field in the plane perpendicular to the rotating magnetic field vector in conductive tissues. The tangential components of these electric fields along the length of the lead 14 couple to the lead 14. The voltage (Vi) 34 is thus equal to the integration of the tangential electric field (i.e., the line integral of the electric field) along the length of the lead 14.


The Zl parameter 36 in the circuit 32 represents the equivalent impedance exhibited by the lead 14 at the RF frequency of the MRI scanner. The impedance value Zl 36 may represent, for example, the equivalent impedance resulting from the parallel inductance and the coil turn by turn capacitance exhibited by the lead 14 at an RF frequency of 64 MHz for a 1.5 Tesla MRI scanner, or at an RF frequency of 128 MHz for a 3 Tesla MRI scanner. The impedance Zl of the lead 14 is a complex quantity having a real part (i.e., resistance) and an imaginary part (i.e., reactance).


Zb 38 in the circuit 32 may represent the impedance of the body tissue at the point of lead contact. As indicated by Zb 38, there is an impedance at the point of contact of the lead electrodes 30 and 31 to the surrounding body tissue within the heart 16. The resulting voltage Vb delivered to the body tissue may be related by the following formula:

Vb=ViZb/(Zb+Zl).

The temperature at the tip of the lead 14 where contact is typically made to the surrounding tissue is related in part to the power dissipated at Zb 38, which, in turn, is related to the square of Vb. To minimize temperature rises resulting from the power dissipated at 38, it is thus desirable to minimize Vi 34 while also maximizing the impedance Zl 36 of the lead 14. In some embodiments, the impedance Zl 36 of the lead 14 can be increased at the RF frequency of the MRI scanner, which aids in reducing the energy dissipated into the surrounding body tissue at the point of contact.


In some embodiments, the impedance of the lead 14 can be increased by adding inductance to the lead 14 and/or by a suitable construction technique. For example, the inductance of the lead 14 can be increased by increasing the diameter of the conductor coil(s) and/or by decreasing the pitch of the conductor coil(s) used to supply electrical energy to the electrodes 30 and 31. Decreasing the coil pitch may result in increasing capacitance between successive turns of the coil (i.e., coil turn by turn capacitance). The parallel combination of inductance (from the helical shape of the coil) and the turn by turn capacitance constitutes a resonance circuit. For a helically coiled lead construction, if the resonance frequency of the lead is above the RF frequency of the MRI, then the helical coil acts as an inductor. For an inductor, increasing the cross section of the coil area and/or reducing the coil pitch increases the inductance and, as a result, increases the impedance of the lead 14.


Similar to an antenna, the energy pickup from a lead is related to its resonance length with respect to the wavelength of the frequency of interest. For example, for a dipole antenna, the antenna is considered tuned, or at resonance, when the antenna length is half the wavelength or an integer multiple of the wavelength. At resonance lengths, the energy pickup of the antenna is maximized. In a similar manner, and in some embodiments, the lead 14 can be detuned so as to prevent resonance within the lead 14, and thus minimize the voltage Vi. For the illustrative embodiment shown in FIG. 1, for example, the lead 14 functions as an antenna having a resonance frequency at length L=integer x λ/2. In some embodiments, the length of the lead 14 and/or the construction parameters of the lead 14 affecting the wavelength can be chosen so as to avoid resonance within the lead 14.



FIG. 3 is a cross-sectional view showing the interior construction of the distal end 28 of the lead 14 of FIG. 1 in accordance with an exemplary embodiment. In the embodiment of FIG. 3, the lead 14 includes an inner conductive coil 42, an outer conductive coil 44, and an insulation layer 46 disposed radially about the outer conductive coil 44.


In the illustrated embodiment of FIG. 3, the inner conductive coil 42 comprises a helically-shaped conductive coil including one or more filars 48 that are tightly wound together to form an inner conductor used to deliver electrical stimulus energy through the lead 14. In one embodiment, for example, the inner conductive coil 42 comprises a single filar 48. In other embodiments, the inner conductive coil 42 can include a greater number of filar strands 48. In some embodiments, each of the filar strands 48 forming the inner conductive coil 42 can comprise a silver-filled MP35N wire having a silver content of about 10% to 28% by cross-sectional area. In certain embodiments, the pitch of the inner conductive coil 42 is about one to one and a half times the filar diameter of the inner conductive coil 42.


In some embodiments, the inner conductive coil 42 has a hollowed configuration, including an interior lumen 50 extending through the inner conductive coil 42 and adapted to receive a stylet or guidewire that can be used to facilitate implantation of the lead 14 within the body. In certain embodiments, the inner conductive coil 42 can be fabricated by co-radially winding a number of wire filars about a mandrel having a diameter that is slightly greater than the diameter of the stylet or guidewire to be inserted into the lumen 50. To improve the torque characteristics of the wire 42, the wire filars 48 can be tightly wound together during fabrication of the wire 42 such that no gaps or spaces exist between the filar strands 48.


As further shown in FIG. 3, and in some embodiments, the outer conductive coil 44 is coaxially disposed about the inner conductive coil 42 and has a helically coiled configuration that extends along all or a portion of the length of the lead 14. The outer conductive coil 44 has an outer conductive coil diameter 60. In some embodiments, the outer conductive coil 44 has a single-filar construction formed from a single wound wire. In other embodiments, the outer conductor 44 has a multifilar construction formed from multiple, co-radially wound wire filars. In one embodiment, for example, the outer conductive coil 44 has a double-filar construction formed from two co-radially wound wire filars.


The outer conductive coil 44 can be spaced radially apart from the inner conductive coil 44, electrically isolating the outer conductive coil 44 from the inner conductive coil 42. In some embodiments, for example, the outer conductive coil 44 is electrically isolated from the inner conductive coil 42 so that the lead 14 can function as a multipolar lead. In certain embodiments, a second layer of insulation 52 interposed between the inner conductive coil 42 and the outer conductive coil 44 is further used to electrically isolate the conductive coils 42, 44 from each other. In some embodiments, for example, the second layer of insulation 52 may comprise a sheath made from silicon, polyurethane, or other suitable polymeric material.


In some embodiments, the outer conductive coil 44 is formed from a drawn-filled tube having an outer tubular layer of low-resistive metal or metal-alloy such as MP35N filled with an inner core of electrically conductive material such as silver. Once filled and drawn, the tube is then coiled into a helical shape and attached to the lead 14 using conventional techniques known in the art. In one embodiment, the outer conductive coil 44 comprises a silver-filled MP35N wire having a silver content of about 28% by cross-sectional area. In use, the relatively low resistance of the outer tubular metal or metal-alloy forming part of the outer conductive coil 44 can be used to offset the increased resistance imparted to the conductive coil 44 from using a smaller diameter wire, as discussed above. In some embodiments, the material or materials forming the outer conductive coil 44 can also be selected so as to impart greater flexibility to the conductive coil 44.


The outer conductive coil 44 may be formed from a material or materials different than the inner conductive coil 42 in order to impart greater resistance to the outer conductive coil 44 to aid in dissipating RF electromagnetic energy received during an MRI procedure. In one embodiment, for example, the wire filars forming the outer conductive coil 44 may comprise a silver-filled MP35N material having a silver content (by cross-sectional area) of about 28%, whereas the wire filars forming the inner conductive coil 42 may have a silver content (by cross-sectional area) lower than 28%.


The outer conductive coil 44 is coupled to proximal electrode 30 at a distal end of the outer conductive coil 44, and the inner conductive coil 42 is coupled to distal electrode 31 at a distal end of the inner conductive coil 42. In the embodiment shown, the electrode 30 is a ring electrode and the electrode 31 is an active fixation helix electrode that is coupled to the tissue of the heart 16 upon implantation. It will be appreciated, however, that the electrodes 30 and 31 can have other configurations. For example, the electrode 31 may be a tip electrode without a fixation mechanism. In other embodiments, the lead 14 can be configured with more or fewer electrodes.


As discussed above, the inductance of the lead 14 can be increased by increasing the diameter of the conductive coils 42 and 44. To increase the inductance of the outer conductive coil 44, the outer conductive coil diameter 60 can be maximized along the length of the lead 14 such that the outer conductive coil 44 is adjacent the outer insulation layer 46. The inner conductive coil 42 has a first inner conductive coil diameter 62 from the proximal end of the lead 14 to a distal end 64 of the proximal electrode 30. The inner conductive coil 42 then transitions or flares at transition section 65 to a second inner conductive coil diameter 66 on the distal end 64 of the proximal electrode 30. The transition section 65 is proximate to the distal end 64 of the electrode 30 to maximize the number of turns of the inner conductive coil 42 at the second conductive coil diameter 66.


To accommodate this transition, the layer of insulation 52 is terminated at the distal end 64 of the proximal electrode 30, thus opening the portion of the lead 14 between the electrodes 30 and 31 to the outer insulation layer 46. To maximize the diameter 66 of the inner conductive coil 42 between the electrodes 30 and 31, the inner conductive coil 42 may flare such that the inner conductive coil 42 is adjacent to the outer insulation layer 46. In some embodiments, the second inner conductive coil diameter 66 is substantially equal to the outer conductive coil diameter 60. In embodiments in which the electrode 31 is extendable and retractable, the second inner conductive coil diameter 66 may be slightly less than the outer conductive coil diameter 60 to accommodate the mechanism to effect extension and retraction of the electrode 31. In alternative embodiments, the inner conductive coil 42 flares from the first inner conductive coil diameter 62 to the second inner conductive coil diameter 66 more distal from the electrode 30 and more proximate to the electrode 31.


In some embodiments, the outer conductive coil diameter 60 is in the range of between about 0.050 to 0.075 inches. The overall diameter of the outer conductor coil 44 may be greater or lesser, however, depending on the type of lead employed, the configuration of the lead, as well as other factors. In some embodiments, the overall diameter of the lead 14 is in the range of between about 3 to 7 Fr, and more specifically, between about 5 to 6 Fr.


In some embodiments, the inner conductive coil 42 has a filar diameter of between about 0.001 to 0.006 inches. In certain embodiments, the first inner conductive coil diameter 62 is between about 0.015 to 0.030 inches. In some embodiments, the pitch of the inner conductive coil 42 is between about 0.001 to 0.018 inches. The dimensions of the inner conductor wire 42, including the filar diameter and the first inner conductive coil diameter 62 may vary, however.


Due to the increased diameter, the inner conductive coil 42 has an increased inductance between the electrodes 30 and 31. By increasing the inductance of the lead 14, and in particular the inductance of the inner conductive coil 42, the lead 14 is configured to block RF electromagnetic energy received during a magnetic resonance imaging procedure. This blocking of electromagnetic energy results in a reduction in heating of body tissue at the location of the electrode 31. The increase in inductance of the lead 14 also reduces the effects of the electromagnetic energy on the therapeutic electrical current delivered through the lead 14, and in some cases, may permit the lead 14 to continue to provide therapy during the MRI procedure. In some embodiments, for example, the increase in inductance of the lead 14 allows the lead 14 to function at normal device frequencies (e.g., 0.5 Hz to 500 Hz) while acting as a poor antenna at MRI frequencies.


While the illustrative lead 14 is described with respect to a cardiac lead for use in providing pacing to a patient's heart 16, the construction of the lead 14 may also be applicable to other medical devices that operate in the presence of electromagnetic fields. For example, the construction of the lead 14, including the inner and outer conductive coils 42, 44, may be used in neural leads adapted for use in neurological applications that utilize MRI imaging.


In addition, while the flaring has been described with respect to co-axial conductive coils 42, 44, lead conductors having other configurations may also be flared at the distal end to increase the impedance of the conductor. For example, in a tachy lead design, the lead conductors may not be co-axial in that the shocking cable/coil and pacing/sensing conductors may extend in parallel along the lead body. The shocking cable/coil may be coupled to a large diameter shocking coil at the distal end the lead. In some embodiments, the pacing/sensing conductors extend through the shocking coil and are flared within the shocking coil and connected to one or more pacing/sensing electrodes at a distal end.


Furthermore, while the conductive coils 42, 44 of the lead 14 have been shown and described as having a constant pitch, the conductive coils 42 and/or 44 may alternatively have a variable pitch along the length of the lead 14. FIG. 4 is a plan view of a portion of a conductive coil having a variable pitch according to some embodiments. The varying pitch creates high impedance frequency dependent points 70, 72, and 74 along the length of the lead 14, reducing the RF pickup energy of the conductive coils 42, 44. In some embodiments, the variance of pitch along portions of the conductive coils 42, 44 may follow a particular function. Also, in some embodiments, the pitch pattern is repeated several times along the length of the lead 14 such that the pitch pattern covers a lead length of less than ¼ of the wavelength of the highest frequency to be filtered. In the embodiment shown in FIG. 4, the pitch pattern includes a repeating pattern element 76, but patterns including other repeating patterns are also contemplated. During an MRI scan, this detuning of the lead 14 prevents the lead 14 from approaching the antenna resonance length, thus minimizing the RF energy picked up by the conductive coils 42 and 44. One exemplary approach to varying the pitch of the conductive coils 42 and 44 is described in U.S. Patent App. Pub. 2009/0149933, entitled “Implantable Lead Having a Variable Coil Conductor Pitch,” which is hereby incorporated by reference in its entirety.


In one example implementation, the MRI-induced signal response of a lead 14 including conductive coils 42 and 44 having a variable pitch and a flared inner conductive coil 42 was compared to a similar lead having a non-flared inner conductive coil. In each embodiment, the outer conductive coil diameter 60 was about 0.052 in (0.132 cm) and the first inner conductive coil diameter 62 was about 0.027 in (0.069 cm). The second inner conductive coil diameter 66 (i.e., the flared diameter) was about 0.052 in (0.027 cm). The pitch of the conductive coils 42, 44 were varied between about 0.005 in (0.013 cm) and about 0.015 in (0.038 cm), while the pitch of the inner conductive coil 42 after flaring was held constant at about 0.006 in (0.015 cm). The length of the repeating pattern element 76 was varied for each of the embodiments tested, as shown in Table 1 below. The leads tested were exposed to an MRI field for 50-80 seconds. The temperature increase resulting from this MRI field exposure, measured at the lead tip electrode, are set forth in Table 1 for a lead with a flared inner conductive coil 42 and a lead having a similar configuration with a non-flared inner conductive coil.









TABLE 1







Electrode Temperature Increase










Inner
Outer
Electrode
Electrode


Conductive Coil-
Conductive Coil-
Temperature
Temperature


Repeating
Repeating
Increase-
Increase-


Pattern
Pattern
Non-flared Inner
Flared Inner


Element Length
Element Length
Conductive Coil
Conductive Coil





 4.0 cm
 1.7 cm
6.69° C.
5.27° C.


2.75 cm
2.75 cm
4.84° C.
3.00° C.


1.77 cm
1.77 cm
20.7° C.
3.58° C.









In summary, the present invention relates to an implantable medical device lead including an insulative lead body and an outer conductive coil extending through the lead body. The outer conductive coil, which is coupled to a proximal electrode at a distal end of the outer conductive coil, has an outer conductive coil diameter. An inner conductive coil, which extends coaxially with the outer conductive coil, is coupled to a distal electrode at a distal end of the inner conductive coil. The inner conductive coil includes a filar having a filar diameter and a coil pitch that is about one to one and a half times the filar diameter. The inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode. In some embodiments, the second inner conductive coil diameter is substantially equal to the outer conductive coil diameter. The increased diameter of the inner conductive coil reduces the amount of energy that is transferred to the distal electrode during MRI procedures, thereby reducing the amount of electrode heating.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.

Claims
  • 1. An implantable medical device lead comprising: an insulative lead body;proximal and distal electrodes disposed on the insulative lead body;an outer conductive coil extending through the lead body, the outer conductive coil coupled to the proximal electrode at a distal end of the outer conductive coil, wherein the outer conductive coil has an outer conductive coil diameter;an inner conductive coil extending coaxially with the outer conductive coil, the inner conductive coil coupled to the distal electrode at a distal end of the inner conductive coil, the inner conductive coil comprising a filar having a filar diameter and a coil pitch that is about one to one and a half times the filar diameter, wherein the inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode; andan insulative layer disposed between the inner conductive coil and outer conductive coil, the insulative layer terminating at a distal side of the proximal electrode,wherein the inner conductive coil transitions from the first inner conductive coil diameter to the second inner conductive coil diameter adjacent the distal side of the proximal electrode.
  • 2. The implantable medical device lead of claim 1, wherein the second inner conductive coil diameter is substantially equal to the outer conductive coil diameter.
  • 3. The implantable medical device lead of claim 1, wherein the pitch of the inner conductive coil continuously varies along a length of the lead.
  • 4. The implantable medical device lead of claim 1, wherein the proximal electrode comprises a ring electrode and the distal electrode comprises a tip electrode.
  • 5. An implantable medical device lead comprising: an insulative lead body;proximal and distal electrodes disposed on the insulative lead body;an outer conductive coil extending through the lead body, the outer conductive coil coupled to the proximal electrode at a distal end of the outer conductive coil, wherein the outer conductive coil has an outer conductive coil diameter;an inner conductive coil extending coaxially with the outer conductive coil, the inner conductive coil coupled to the distal electrode at a distal end of the inner conductive coil, wherein the inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode, and wherein the inner conductive coil extends through the insulative lead body between the proximal and distal electrodes; andan insulative layer disposed between the inner conductive coil and outer conductive coil, the insulative layer terminating at a distal side of the proximal electrode,wherein the inner conductive coil transitions from the first inner conductive coil diameter to the second inner conductive coil diameter adjacent the distal side of the proximal electrode.
  • 6. The implantable medical device lead of claim 5, wherein the second inner conductive coil diameter is substantially equal to the outer conductive coil diameter.
  • 7. The implantable medical device lead of claim 5, wherein the inner conductive coil is adjacent the insulative lead body between the proximal and distal electrodes.
  • 8. The implantable medical device lead of claim 5, wherein the inner conductive coil comprising a filar having a filar diameter and a coil pitch that is about one to one and a half times the filar diameter.
  • 9. The implantable medical device lead of claim 8, wherein the pitch of the inner conductive coil continuously varies along a length of the lead.
  • 10. A medical device, comprising: a pulse generator; anda lead including a lead body, proximal and distal electrodes disposed on the insulative lead body, an outer conductive coil extending through the lead body, an inner conductive coil extending coaxially with the outer conductive coil, and an insulative layer disposed between the inner conductive coil and outer conductive coil, the insulative layer terminating at a distal side of the proximal electrode,the outer conductive coil including a proximal end and a distal end and configured to connect to the pulse generator at the proximal end and coupled to a proximal electrode at the distal end, wherein the outer conductive coil has an outer conductive coil diameter,the inner conductive coil including a proximal end and a distal end, the inner conductive coil configured to connect to the pulse generator at the proximal end and coupled to a distal electrode at the distal end, wherein the inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode, and wherein the inner conductive coil extends through the insulative lead body between the proximal and distal electrodeswherein the inner conductive coil transitions from the first inner conductive coil diameter to the second inner conductive coil diameter adjacent the distal side of the proximal electrode.
  • 11. The medical device of claim 10, wherein the second inner conductive coil diameter is substantially equal to the outer conductive coil diameter.
  • 12. The medical device of claim 10, wherein the inner conductive coil comprising a filar having a filar diameter and a coil pitch that is about one to one and a half times the filar diameter.
  • 13. The medical device of claim 12, wherein the pitch of the inner conductive coil continuously varies along a length of the lead.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to Provisional Application No. 61/249,738, filed Oct. 8, 2009, which is herein incorporated by reference in its entirety.

US Referenced Citations (167)
Number Name Date Kind
3614692 Rozelle et al. Oct 1971 A
4131759 Felkel Dec 1978 A
4135518 Dutcher Jan 1979 A
4404125 Abolins et al. Sep 1983 A
4484586 McMickle et al. Nov 1984 A
4493329 Crawford et al. Jan 1985 A
4643203 Labbe Feb 1987 A
4869970 Gulla et al. Sep 1989 A
5056516 Spehr Oct 1991 A
5217010 Tsitlik et al. Jun 1993 A
5222506 Patrick et al. Jun 1993 A
5231996 Bardy et al. Aug 1993 A
5243911 Dow et al. Sep 1993 A
5246014 Williams et al. Sep 1993 A
5330522 Kreyenhagen Jul 1994 A
5378234 Hammerslag et al. Jan 1995 A
5387199 Siman et al. Feb 1995 A
5425755 Doan Jun 1995 A
5456707 Giele Oct 1995 A
5483022 Mar Jan 1996 A
5522872 Hoff Jun 1996 A
5522875 Gates et al. Jun 1996 A
5554139 Okajima Sep 1996 A
5574249 Lindsay Nov 1996 A
5584873 Shoberg et al. Dec 1996 A
5599576 Opolski Feb 1997 A
5618208 Crouse et al. Apr 1997 A
5728149 Laske et al. Mar 1998 A
5760341 Laske et al. Jun 1998 A
5800496 Swoyer et al. Sep 1998 A
5810887 Accorti, Jr. et al. Sep 1998 A
5833715 Vachon et al. Nov 1998 A
5935159 Cross, Jr. et al. Aug 1999 A
5957970 Shoberg et al. Sep 1999 A
5968087 Hess et al. Oct 1999 A
6057031 Breme et al. May 2000 A
6078840 Stokes Jun 2000 A
6106522 Fleischman et al. Aug 2000 A
6143013 Samson et al. Nov 2000 A
6178355 Williams et al. Jan 2001 B1
6208881 Champeau Mar 2001 B1
6249708 Nelson et al. Jun 2001 B1
6256541 Heil et al. Jul 2001 B1
6289250 Tsuboi et al. Sep 2001 B1
6295476 Schaenzer Sep 2001 B1
6400992 Borgersen et al. Jun 2002 B1
6434430 Borgersen et al. Aug 2002 B2
6456888 Skinner et al. Sep 2002 B1
6493591 Stokes Dec 2002 B1
6501991 Honeck et al. Dec 2002 B1
6501994 Janke et al. Dec 2002 B1
6510345 Van Bentem Jan 2003 B1
6516230 Williams et al. Feb 2003 B2
6526321 Spehr Feb 2003 B1
6564107 Bodner et al. May 2003 B1
6671554 Gibson et al. Dec 2003 B2
6721604 Robinson et al. Apr 2004 B1
6813251 Garney et al. Nov 2004 B1
6850803 Jimenez et al. Feb 2005 B1
6854994 Stein et al. Feb 2005 B2
6920361 Williams Jul 2005 B2
6925334 Salys Aug 2005 B1
6949929 Gray et al. Sep 2005 B2
6978185 Osypka Dec 2005 B2
6993373 Vrijheid et al. Jan 2006 B2
6999821 Jenney et al. Feb 2006 B2
7013180 Dublin et al. Mar 2006 B2
7013182 Krishnan Mar 2006 B1
7123013 Gray Oct 2006 B2
7138582 Lessar et al. Nov 2006 B2
7174219 Wahlstrand et al. Feb 2007 B2
7174220 Chitre et al. Feb 2007 B1
7205768 Schulz et al. Apr 2007 B2
7363090 Halperin et al. Apr 2008 B2
7388378 Gray et al. Jun 2008 B2
7389148 Morgan Jun 2008 B1
7610101 Wedan et al. Oct 2009 B2
7765005 Stevenson Jul 2010 B2
7917213 Bulkes et al. Mar 2011 B2
8103360 Foster Jan 2012 B2
8170688 Wedan et al. May 2012 B2
20020072769 Silvian et al. Jun 2002 A1
20020111664 Bartig et al. Aug 2002 A1
20020128689 Connelly et al. Sep 2002 A1
20020144720 Zahorik et al. Oct 2002 A1
20030050680 Gibson et al. Mar 2003 A1
20030063946 Williams et al. Apr 2003 A1
20030083723 Wilkinson et al. May 2003 A1
20030083726 Zeijlemaker et al. May 2003 A1
20030092303 Osypka May 2003 A1
20030093138 Osypka et al. May 2003 A1
20030139794 Jenney et al. Jul 2003 A1
20030140931 Zeijlemaker et al. Jul 2003 A1
20030144705 Funke Jul 2003 A1
20030144716 Reinke et al. Jul 2003 A1
20030144718 Zeijlemaker Jul 2003 A1
20030144719 Zeijlemaker Jul 2003 A1
20030144720 Villaseca et al. Jul 2003 A1
20030144721 Villaseca et al. Jul 2003 A1
20030204217 Greatbatch Oct 2003 A1
20040014355 Osypka et al. Jan 2004 A1
20040064173 Hine et al. Apr 2004 A1
20040088033 Smits et al. May 2004 A1
20040122490 Reinke et al. Jun 2004 A1
20040162600 Williams Aug 2004 A1
20040193140 Griffin et al. Sep 2004 A1
20040243210 Morgan et al. Dec 2004 A1
20040267107 Lessar et al. Dec 2004 A1
20050030322 Gardos Feb 2005 A1
20050070972 Wahlstrand et al. Mar 2005 A1
20050090886 MacDonald et al. Apr 2005 A1
20050113676 Weiner et al. May 2005 A1
20050113873 Weiner et al. May 2005 A1
20050113876 Weiner et al. May 2005 A1
20050222642 Przybyszewski et al. Oct 2005 A1
20050222656 Wahlstrand et al. Oct 2005 A1
20050222657 Wahlstrand et al. Oct 2005 A1
20050222658 Hoegh et al. Oct 2005 A1
20050222659 Olsen et al. Oct 2005 A1
20050246007 Sommer et al. Nov 2005 A1
20050283167 Gray Dec 2005 A1
20060009819 Przybyszewski Jan 2006 A1
20060030774 Gray et al. Feb 2006 A1
20060041294 Gray Feb 2006 A1
20060089691 Kaplan et al. Apr 2006 A1
20060089695 Bolea et al. Apr 2006 A1
20060089696 Olsen et al. Apr 2006 A1
20060093685 Mower et al. May 2006 A1
20060105066 Teague et al. May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060167536 Nygren et al. Jul 2006 A1
20060200218 Wahlstrand Sep 2006 A1
20060229693 Bauer et al. Oct 2006 A1
20060247747 Olsen et al. Nov 2006 A1
20060247748 Wahlstrand et al. Nov 2006 A1
20060271138 MacDonald Nov 2006 A1
20060293737 Krishman Dec 2006 A1
20070106332 Denker et al. May 2007 A1
20070156205 Larson et al. Jul 2007 A1
20070179577 Marshall et al. Aug 2007 A1
20070179582 Marshall et al. Aug 2007 A1
20070191914 Stessman Aug 2007 A1
20070208383 Williams Sep 2007 A1
20080033497 Bulkes et al. Feb 2008 A1
20080039709 Karmarkar Feb 2008 A1
20080049376 Stevenson et al. Feb 2008 A1
20080058902 Gray et al. Mar 2008 A1
20080125754 Beer et al. May 2008 A1
20080129435 Gray Jun 2008 A1
20080132986 Gray et al. Jun 2008 A1
20080243218 Bottomley et al. Oct 2008 A1
20080262584 Bottomley et al. Oct 2008 A1
20090099440 Viohl Apr 2009 A1
20090099555 Viohl et al. Apr 2009 A1
20090118610 Karmarkar et al. May 2009 A1
20090149920 Li et al. Jun 2009 A1
20090149933 Ameri Jun 2009 A1
20090198314 Foster et al. Aug 2009 A1
20090281608 Foster Nov 2009 A1
20100010602 Wedan et al. Jan 2010 A1
20100234929 Scheuermann Sep 2010 A1
20100331936 Perrey et al. Dec 2010 A1
20110093054 Ameri et al. Apr 2011 A1
20110160828 Foster et al. Jun 2011 A1
20110238146 Wedan et al. Sep 2011 A1
20120022356 Olsen et al. Jan 2012 A1
20120109270 Foster May 2012 A1
Foreign Referenced Citations (13)
Number Date Country
1762510 Apr 2006 CN
101039619 Sep 2007 CN
0897997 Feb 2003 EP
2004141679 May 2004 JP
2005501673 Jan 2005 JP
2005515852 Jun 2005 JP
2005515854 Jun 2005 JP
WO03089045 Oct 2003 WO
WO2006105066 Mar 2006 WO
WO2006093685 Sep 2006 WO
WO2007047966 Apr 2007 WO
WO2007089986 Aug 2007 WO
WO2007118194 Oct 2007 WO
Related Publications (1)
Number Date Country
20110087299 A1 Apr 2011 US
Provisional Applications (1)
Number Date Country
61249738 Oct 2009 US