Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are incorporated by reference under 37 CFR 1.57 and made a part of this specification.
Medical device manufacturers are continually increasing the processing capabilities of physiological monitors that process signals based upon the attenuation of light by a tissue site. In general, such physiological monitoring systems include one or more optical sensors that irradiate a tissue site and one or more photodetectors that detect the optical radiation after attenuation by the tissue site. The sensor communicates the detected signal to a physiological monitor, which removes noise and preprocesses the signal. Advanced signal processors then perform time domain and/or frequency domain processing to determine blood constituents and other physiological parameters.
Manufacturers have advanced basic pulse oximeters from devices that determine measurements for blood oxygen saturation (SpO2), pulse rate (PR) and plethysmographic information to read-through-motion oximeters and to cooximeters that determine measurements of many constituents of circulating blood. For example, Masimo Corporation of Irvine Calif. (“Masimo”) manufactures pulse oximetry systems including Masimo SET® low noise optical sensors and read through motion pulse oximetry monitors for measuring SpO2, PR and perfusion index (PI). Masimo optical sensors include any of Masimo LNOp®, LNCS®, SofTouch™ and Blue™ adhesive or reusable sensors. Masimo pulse oximetry monitors include any of Masimo Rad-8®, Rad-5®, Rad®-5v or SatShare® monitors. Such advanced pulse oximeters and low noise sensors have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios.
Many innovations improving the measurement of blood constituents are described in at least U.S. Pat. Nos. 6,770,028; 6,658,276; 6,157,850; 6,002,952; 5,769,785 and 5,758,644, which are assigned to Masimo and are incorporated by reference herein. Corresponding low noise optical sensors are disclosed in at least U.S. Pat. Nos. 6,985,764; 6,088,607; 5,782,757 and 5,638,818, assigned to Masimo and hereby incorporated in their entirety by reference herein.
Advanced blood parameter measurement systems include Masimo Rainbow® SET, which provides measurements in addition to SpO2, such as total hemoglobin (SpHb™), oxygen content (SpOC™), methemoglobin (SpMet®), carboxyhemoglobin (SpCO®) and PVI®. Advanced blood parameter sensors include Masimo Rainbow® adhesive, ReSposable™ and reusable sensors. Advanced blood parameter monitors include Masimo Radical-7™, Rad87™ and Rad57™ monitors, all available from Masimo. Advanced parameter measurement systems mayaiso include acoustic monitoring such as acoustic respiration rate (RRa™) using a Rainbow Acoustic Sensor™ and Rad87™ monitor, available from Masimo. Such advanced pulse oximeters, low noise sensors and advanced parameter systems have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios. An advanced parameter measurement system that includes acoustic monitoring is described in U.S. Pat. Pub. No. 2010/0274099, filed Dec. 21, 2009, titled Acoustic Sensor Assembly, assigned to Masimo and incorporated in its entirety by reference herein.
Innovations relating to other advanced blood parameter measurement systems are described in at least U.S. Pat. No. 7,647,083, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Equalization; U.S. Pat. No. 7,729,733, filed Mar. 1, 2006, titled Configurable Physiological Measurement System; U.S. Pat. Pub. No. 2006/0211925, filed Mar. 1, 2006, titled Physiological Parameter Confidence Measure and U.S. Pat. Pub. No. 2006/0238358, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, all assigned to Cercacor Laboratories, Inc., Irvine, Calif. (Cercacor) and all incorporated in their entirety by reference herein.
In some embodiments the present disclosure provides a method for processing physiological measurements. The method including receiving, by a medical device management system, physiological measurement data from a portable medical device. The physiological measurement data includes identification information associated with a user of the portable medical device. The method also includes identifying a user account of the medical device management system based on identification data, processing the physiological measurement data to determine at least one physiological parameter associated with the physiological measurement data, transmitting the determined at least one physiological parameter to the portable medical device for display, and storing the physiological measurement data and the determined at least one physiological parameter in the identified user account.
In some embodiments the present disclosure provides a method for calibrating a portable medical device. The method includes receiving a request for calibration from a portable medical device. The request includes identification information associated with the medical device. The method further includes identifying an account associated with the medical device based on the identification information, determining that the device needs calibration based on the information stored in the account, sending a signal to the medical device to initiate a calibration mode on the medical device, receiving calibration data from the medical device, processing the calibration data to determine a calibration of the device, transmitting an updated calibration to medical device, and storing the updated calibration in the account associated with the medical device.
In some embodiments the present disclosure provides a medical device management system including a data store and a computing device. The data store can be configured to store user account information associated with a plurality of user accounts. The computing device is in communication with the data store and can be configured to receive a measurement request from a portable medical device. The measurement request can include physiological measurement data. The computing device can be further configured to identify a user account of the plurality of user accounts associated with the measurement request, process the physiological measurement data to determine at least one physiological parameter associated with the physiological measurement data, transmit the determined at least one physiological parameter to the portable medical device for display and storing the physiological measurement data and the determined at least one physiological parameter in the identified user account.
For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention.
The foregoing aspects and many of the attendant advantages will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings:
Those skilled in the art will appreciate that the communication network 102 may be any wired network, wireless network or combination thereof. In addition, the communication network 102 may be a personal area network, local area network, wide area network, cable network, satellite network, cellular telephone network, or combination thereof. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art of computer communications and thus, need not be described in more detail herein.
In this embodiment, the medical device management system 110 includes an account management module 112, an algorithm processing module 114, an interface module 116, and a data collection module 118. The medical device management system 110 is in communication with a data store 120. The data store 120 can store data received from the medical devices 130 and 140.
In general, the word module, as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions stored on a non-transitory, tangible computer-readable medium, possibly having entry and exit points, written in a programming language, such as, for example, C, C++, C#, or Java. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules may be stored in any type of computer-readable medium, such as a memory device (e.g., random access, flash memory, and the like), an optical medium (e.g., a CD, DVD, BluRay, and the like), firmware (e.g., an EPROM), or any other storage medium. The software modules may be configured for execution by one or more CPUs in order to cause the medical device management system 110 to perform particular operations.
It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.
The medical devices 130 and 140 can be configured to measure and record physiological signals from a user. The physiological signals including, but not limited to, blood pressure (diastolic), blood pressure (systolic), PR, glucose, total hemoglobin (SpHb), SpO2, PI, venous oxygen saturation (SpVO2), pleth variability index (PVI), SpCHOL, SpBUN, SpHDL, and/or other physiological parameters.
The medical devices 130 and 140 can have an associated sensor, such as an optical sensor, to monitor physiological parameters. One example of an optical sensor is described in detail with respect to U.S. patent application Ser. No. 13/646,659 titled Noninvasive Blood Analysis System, filed Oct. 5, 2012, assigned to Cercacor and incorporated in its entirety by reference herein. A blood glucose monitor is described in detail with respect to U.S. patent application Ser. No. 13/308,461 titled Handheld Processing Device Including Medical Applications for Minimally and Noninvasive Glucose Measurements, filed Nov. 30, 2011, assigned to Cercacor and incorporated in its entirety by reference herein. A blood glucose monitor and sensor are described in detail with respect to U.S. patent application Ser. No. 13/473,477 titled Personal Health Device, filed May 16, 2012, assigned to Cercacor and incorporated in its entirety by reference herein. A blood glucose calibration system is described in detail with respect to U.S. patent application Ser. No. 13/726,539 titled Blood Glucose Calibration System, filed Dec. 24, 2012, assigned to Cercacor and incorporated in its entirety by reference herein.
The medical devices 130 and 140 can communicate with the medical device management system 110 via the network 102. In some embodiments, a medical device can be a network-capable device, such as medical device 130. The medical device 130 can be configured to communicate directly with the medical device management system 110. The medical device 130 can have an interface module 160 configured to manage communication between the medical device management system 110 and the medical device 130. The interface module 160 can be specific to the medical device 130 and each type of medical device can have a different interface module 160. Some medical devices, such as medical device 140, communicate with the medical device management system 110 via a host computing device 150.
The computing device 150 can correspond to a wide variety of devices or components that are capable of initiating, receiving or facilitating communications over the communication network 102 including, but not limited to, personal computing devices, hand held computing devices, integrated components for inclusion in computing devices, smart phones, modems, personal digital assistants, laptop computers, media devices, and the like.
The computing device 150 can have an interface module 160 that can be configured to interface with the medical device management system 110. The interface module 160 can be configured to provide a user with access to the medical device management system 110. The interface module 160 can be an application that operates on the computing device 150. The application can be configured to recognize the medical device 140 when the device is in communication with the computing device 150. The interface module 160 can be used when the medical device 140 is not capable of communicating directly with the medical device management system 110 over the network. The medical device 140 can communicate with the interface module 160 via a physical connection to a computing device 150 (e.g., a USB connection) or using wireless communication protocols (e.g., WiFi, Bluetooth, etc.).
The interface module 160 can be configured to communicate with the medical device management system and provide and receive information from the medical device. The information provided by the medical device to the medical device management system 110 can include information such as device serial number, calibration information, synchronization information, biometric data, and other types of data or information. For simplicity, reference will generally be made to the medical device 130 when describing interactions between a medical device and the medical device management system 110. The functionality described with relation to medical device 130 can be implemented on medical device 140, either directly or through another computing device. Depending on the specific type of medical device, none, some or all of the features and functionality discussed herein may be implemented locally on the medical device.
The medical device management system 110 can include a user portal and a back end infrastructure. The medical device management system 110 can store, organize and present medical data collected by the medical device to the user. The account management module 112 can manage the user accounts in the medical device management system 110. The algorithm processing module 114 can be configured to utilize algorithms to dynamically and quickly determine blood constituent values that would not be calculable locally on a portable medical device. The interface module 116 can be configured to interface with the medical devices 130 and 140 via the respective device-side interface modules 160. The interface module 116 can also be configured to manage a web-based interface. Further, the interface module 116 can be responsible for synchronization of the medical with the medical device management system 110. The interface module 116 can also be responsible for uploading data to the medical device management system 110. The data collection module 118 can store, organize and present medical data collected by the devices to the users and interface with the data store 120.
The medical device management system 110 can utilize an account-based management system. Each user can set up a user account that can be associated with one or more medical devices. The user can provide information during an account registration process, such as demographic information, age, gender, date of birth, height, weight, credit card information, and/or other user information.
Users can interact with the medical device management system 110 to initialize, configure, synchronize and manage their medical devices. The medical device management system 110 can perform data processing of the medical data collected from the medical devices. When a user has registered their medical device(s) to their user account on the medical device management system 110, the user can have access to medical data collected by their medical device. Each user can use the medical device management system 110 as a portal through which they can monitor and manage their medical data over time. The medical device management system 110 can sort through the user's data and present it in relevant views (such as monthly trends, yearly trends, after meal trends, etc.). In some embodiments, the user can personalize the medical device, such as creating a name for the device, selecting the language of the device, privacy settings, alarms, thresholds, and other options. The privacy settings can allow the user to choose whether to share their data with others. For example, the user can choose not to share the data, or the user can share the data with others, such as with their family, their doctor, and/or everyone.
Prior to use, the interface module 160 communicate with the medical device management system to initialize and configure the medical device 130 and synchronize the medical device 130 with a user's personal account within the medical device management system 110. After configuration, the medical device can be registered and synced to the user's medical device management system account and data collected on medical device can be synchronized and uploaded to the user's medical device management system account. In some embodiments, a user can access the medical device and make configuration settings for the medical device via a web interface by logging in to the medical device management system. Changes made to the configuration settings in the web interface can be pushed to the medical device during a synchronization procedure. For example, if there is a change detected, the interface module 160 can retrieve the configuration table from medical device management system 110 and apply the configuration to the connected device. Identification information associated with a user account and/or user device can be used to associate the physiological measurement data received from a device with a user account. The identification information can include information such as a user ID, device ID (e.g., serial number), user credentials, tokens, or other types of information that can be used by the medical device management system. For example, when the medical device management system receives physiological data, the data could include identification information that can be used to identify the user account and/or device associated with the physiological measurement data.
In one embodiment of the initialization process, the interface module 160 can retrieve identification information or data such as, user credentials, device ID (e.g., serial number), and/or other required and/or relevant information from the device. The information can be sent to the medical device management system 110. The receipt of information by the medical device management system 110 from the medical device 130 can trigger the medical device management system 110 to provide an authentication token to the medical device 130. The authentication token can be provided to the medical device 130 via the interface module 160, which can be stored on the device for authentication and identification purposes.
The medical device management system 110 can be configured to allow multiple users to use the same medical device. One user can be designated as the device administrator within the medical device management system 110. After the medical device is registered and initialized for use by a device administrator, additional users can be associated with the medical device. The additional users can use the medical device and have their personal medical data managed on a separate user account with the medical device management system 110. In some embodiments, an administrator can grant additional users access by sending an invitation via their medical device management system account. An unregistered user (e.g., guest user) may still be able to use the medical device, however, the medical device management system may not store and track the unregistered user's data.
A medical device that has been registered can synchronize the data stored on the medical device with the medical device management system 110. The interface module 160 can retrieve the physiological data from the medical device and send it to the medical device management system 110. The medical device management system can store the physiological data in the data store 120. The stored data can be retrieved and sorted by the user.
Data sent from the medical device to the medical device management system 110 can trigger creation of a file with information associated with the physiological data. In one embodiment the file can include, a timestamp, a location of a binary file (raw physiological data), and location that an output file should be stored.
Online Data Processing
The medical device management system 110 can provide massive computing capability in the cloud for many users and devices. The increased computing power can be used to run increasingly more complex algorithms as well as supporting multiple devices simultaneously. The algorithms running on the medical device management system 110 can be updated. The version and specifics of the algorithm can also be traceable and there can be a log of each update.
When the medical device management system 110 receives new physiological data from a medical device, it can store the data in the data store 120. The medical device management system 110 can create a reference file, such as an XML file, referencing the new physiological data and invoking the algorithm processing module 114. The reference file can provide the information necessary to access the physiological information, run the required algorithm, calculate the results (or return an error code if unable to generate a result), and then create the desired output file. The output file can include information such as measured parameters, processing time, errors that may have occurred, algorithm version, and timestamp. The medical device management system can send the results back to the device to be displayed for the user. The medical device management system can save the output results in the database for future use.
Since the medical device management system 110 can have a virtually unlimited storage capacity, more complex algorithms can be implemented which utilize a patient's historical data in order to improve future measurements. For example, a patient-unique calibration may utilize historical measurements and calibration points to reach a better accuracy. The medical device management system can store and retrieve data and filter results by device ID, User ID, date etc., so that the algorithm knows which files are relevant for each particular subject and should be used in generating a calibration.
The medical device 130 can determine whether the medical device management system 110 is ready to begin processing data. If medical device management system is not ready, the medical device can return an error after a timeout period. If the medical device management system 110 is ready, the system can begin caching resources in preparation for data processing. The device can begin collecting and streaming physiological data associated with the user to the medical device management system 110. The medical device management system 110 can process the collected data and determine one or more physiological measurements based on the physiological data. The medical device can be configured to provide the raw data to the medical device management system 110 for processing. The raw data may undergo some processing (e.g., filtering) prior to being transferred to the medical device management system. In some embodiments, the medical device 130 can be configured to determine whether there is a connection to the medical device management system 110 prior to processing the data. For example, if there is no connection, the device may process the physiological data locally. Whereas, if there is a connect to the medical device management system 110, the device can send the data to the system 110 for processing. The system can also calibrate the medical device, which will be further discussed with relation to
With reference now to
The handheld glucometer 200 can be utilized for invasive and/or non-invasive blood glucose monitoring or non-invasive partial blood panel monitoring by home users in a non-clinical setting or trained individuals in a clinical setting. The handheld glucometer 200 can perform one or more of the following physiological measurements: invasive glucose testing, non-invasive blood glucose testing, Oxygen Saturation (SpO2), Total Hemoglobin (SpHb), Alkaline Phosphatase (SpALP), Total Cholesterol (SpChol), High-Density Lipoprotein (SpHDL), Total Cholesterol Divided by High Density Lipoprotein (SpChol/SpHDL).
The handheld glucometer 200 can perform invasive blood glucose measurements when the user lancets their finger for a capillary blood sample and places it onto a glucose test strip that is inserted into the handheld glucometer 200. The invasive blood glucose measurements can be used for at least two functions. First, the invasive measurements can be used by the handheld glucometer 200 during calibration. The handheld glucometer 200 can request that invasive calibration measurements be taken from time to time, such as during the initial use of the device in order to set a standard of calibration for the patient and the non-invasive sensor. Second, the user can take invasive measurements to test the accuracy of the non-invasive blood glucose measurements or when the user prefers to have an invasive measurement taken. The handheld glucometer 200 can help to reduce the frequency of pain associated with typical home blood glucose meters that require invasive blood draws approximately 4-7 times per day. Advantageously, with the handheld glucometer 200 a user may be able to reduce the number of invasive blood draws to 1-2 per week if they can be replaced with 4-7 non-invasive measurements per day, which can reduce the pain associated with frequent lancing and reduce the likelihood of tissue damage.
The handheld glucometer 200 can be used in conjunction with the medical device management system 110. The handheld glucometer 200 can communicate with the medical device management system 110 via a computing device 150. In some embodiments, the handheld glucometer 200 can be physically connected to the computing device 150, such as a USB connection, or a wireless connection, such as a Bluetooth connection. The computing device can be a mobile computing device such as a smart phone, or another computing device such as a desktop computer. The medical device management system 110 can allow the user to review trends and user logged variables that can contribute to highs and lows in their glucose values. The results can be shared with family, friends, and care givers.
The display 220 can display text and graphics. In one embodiment, the display 220 can be an OLED display. In one embodiment, the display 220 can have a resolution of 128×96 pixels. The display can have a viewing angle that is greater than or equal to about 45 degrees on all axes. The display 220 can have a user interface. The user interface can be configured to show a wireless connectivity state, such as a Bluetooth connection state. The user interface can be configured to show battery capacity icon with states of charge remaining and/or charge state. The user interface can display a real-time clock that can be accurate to within 10 minutes per year, which the handheld glucometer 200 can use to time stamp each test. The handheld glucometer 200 can provide the user with the option to select from available regional time zones. The user interface can track and display an average on a preconfigured number of days and can display a total number of glucose results. In some embodiments, the handheld glucometer 200 can prevent users from omitting non-invasive or invasive glucose test results.
The handheld glucometer 200 can have various operating states, such as an off mode where the processor is powered off; a low-power operating mode where the processor power is minimized, the display 220 is off, and wireless connections can be maintained; and a normal operating mode where the display 220 is on and the processor is fully operating. The handheld glucometer 200 can transition from low power mode to normal operating mode by a user press of a hard button, a user inserting an invasive strip, or a user attaching a non-invasive sensor.
The handheld glucometer 200 can have various test configurations, such as on-demand where the handheld glucometer 200 ready for an invasive glucose test when a user inserts an invasive strip in the device, or ready for a non-invasive glucose test when a user connects the non-invasive sensor. The handheld glucometer 200 can perform non-invasive measurements in less than 180 seconds (e.g., three 60 second measurements if/when necessary). The handheld glucometer 200 can perform invasive measurements in less than 10 seconds.
The handheld glucometer 200 can have a plurality of control buttons, including a “Start/Stop” button, “Plus/Minus” buttons, a “Trend Button” configured to show previous tests, a volume button configured to adjust the volume, and a wireless connectivity button. The handheld glucometer 200 can have a Micro USB connector to facilitate battery charging, data transfer of measurement data, and software upgrades.
The handheld glucometer 200 can have a glucose reader 250 comprising a shell 252 and a slot 254 for the invasive strip glucose reader. The glucose strip reader 250 can be on different side of device from sensor connector 260. The glucose strip reader 250 can facilitate invasive testing and calibration testing. The slot 254 can be illuminated to facilitate the insertion of the test strip into the slot by the user.
The handheld glucometer 200 can automatically recognize when a test strip is inserted into the slot 254. The handheld glucometer 200 can instruct a user on how to operate the device during a testing procedure. The display 220 can show a percentage complete or seconds remaining count-down during an invasive glucose measurement. The display 220 can distinguish between invasive glucose values and other measured parameters.
For non-invasive measurements, the display 220 can show a percentage complete or count-down during a measurement. The handheld glucometer 200 can have a non-invasive glucose calibration capability that has a frequency that can be automatically controlled by device and/or manually run by a user at any time. The handheld glucometer 200 can have a lock out mechanism to prevent non-invasive glucose tests if the system has not been successfully calibrated. The display 220 can distinguish between non-invasive glucose values and other measured parameters on device.
The handheld glucometer 200 can have a quality control test mode to help verify that the system is operating within specifications. In the quality control test mode, the handheld glucometer 200 tests the measurement values associated with control test strips that utilize control solutions. The control test strips have known associated test values. The handheld glucometer 200 can also have a non-invasive quality control method that permits a user or manufacturing personnel to check the validity of the non-invasive system with a rainbow parameter sensor.
The handheld glucometer 200 can have a radio interface to communicate via radio communication, such as Bluetooth 2.0-4.0 and Bluetooth low energy (BLE), in order to facilitate data transfer (measurements and physiological data), connection to a computing device, such as a mobile device. The handheld glucometer 200 has non-volatile memory, such as a non-removable MicroSD card, to maintain system software and user measurements.
The handheld glucometer 200 can have a rechargeable battery, such as a 1600 mAH Li+ battery. The handheld glucometer 220 can perform a minimum of 20 consecutive non-invasive test measurements from full charge. The handheld glucometer 200 can perform measurements while charging and charge at full rate when in low power mode. At full rate, the handheld glucometer 200 can charge the battery in less than 6 hours. The handheld glucometer 200 can operate in a standby mode for a minimum of 18 hours per full charge.
The sensor interface 260 can connect to a non-invasive sensor such as an optical sensor, such as one of the sensors described above that be connected to the medical devices 130 and 140. Some measurement values generated by a non-invasive sensor can include oxygen saturation (SpO2), pulse rate (PR), perfusion index (PI), total hemoglobin (SpHb), alkaline phosphatase (SpALP), total cholesterol (SpChol) (3406), high-density lipoprotein (SpHDL), total cholesterol divided by high density lipoprotein (SpChol/SpHDL), and non-invasive glucose (SpGlu). Other parameters can be viewable through the host device or a web application.
The handheld glucometer 200 can be user configurable by a host device (e.g., a computing device in communication with the handheld glucometer) or a website to make changes to the user interface. The user can determine a priority for non-invasive measurement and determine the display characteristics of the measurement values. The user can determine which measurement value is the default measurement after a non-invasive test is performed. The handheld glucometer 200 can have user set parameters for upper and lower limit notification control settings. The parameters can be set from the host device or a web-based interface with the medical device management system 110. The user can set restrictions on the access and notification of the previous test results stored in the medical device management system. The handheld glucometer 200 can have measurement alerts that can have a visual and/or an audio alert to notify the user when measurement levels, invasive or non-invasive, exceed a specified measurement range. The medical device management system can have a diabetes management system to display historical data and trends.
With reference now to
At block 602, the medical device management system 110 can receive a request for calibration from the medical device 202. The medical device 130 can query the medical device management system 110 to determine whether calibration is required. The medical device 130 can query the medical device management system 110 each time measurement data is collected, after a defined number of measurements, after a determined time period, or other criteria.
At block 604, the medical device management system 110 can determine calibration of the medical device is required. The medical device management system 110 can determine that calibration is required based on the information contained in the request received from the medical device 130. In some embodiments, the medical device management system 110 determines if and when calibration is required based on previously stored data. In such cases, the medical device management system 110 may actively initiate calibration of the medical device 130 without previously receiving a request from the medical device 130. If the medical device management system 110 determines that no calibration required, data acquisition can occur as normal.
If calibration is required, at block 606, the calibration mode can be initiated on the medical device. The calibration mode can be a separate function on the device that handles communication with the medical device management system 110 independently of the data collection. The calibration mode on the medical device can be configured to lock the medical device from further use until calibration is completed. In calibration mode the medical device can send calibration data, such as measurement values, error codes, timestamps, device ID, sensor ID, and other information to the medical device management system 110. The specific calibration information required by the medical device management system 110 is dependent on the type of the device, type of calibration, and/or other device or system specific information.
In one embodiment for a non-invasive glucose calibration, the device can perform a manual entry calibration and a calibration using a built in strip reader. For manual entry calibration, the user can have the option of manually entering their glucose value into the medical device. Manual entry gives the flexibility to use a reference device other than the internal strip reader to help with calibration. For a strip reader calibration, the user can immediately measure their glucose value with a built in strip reader based on an invasive test. The device can also measure the glucose value using a non-invasive test and the values can be sent to the medical device management system 110 to calculate the results of the calibration.
At block 608, the medical device management system 110 calculates a calibration for the medical device based on the calibration data received from the medical device 130. The medical device management system 110 can determine the calibration based on the specific calibration information stored in the system. For example, a lookup table may be used to determine the calibration for the device. More advanced algorithms and patient specific calibrations may be used based on the information provided by the medical device.
The medical device management system 110 can store all of the data associated with a specific patient and a specific device, thereby allowing the system to tailor the calibration to the specific patient and the specific device. For example, a patient-unique calibration may utilize historical measurements and calibration points to reach a better accuracy. The medical device management system can store and retrieve data and filter results by device ID, User ID, date etc., so that the algorithm knows which files are relevant for each particular subject and should be used in generating the patient unique calibration. The calibration information can be stored in the data store 120, so that it can be referenced at a later time.
After the calculation of the calibration is complete, at block 610, the calibration can be updated on the medical device. The medical device management system 110 can provide the updated calibration data to the medical device 130. After updating the calibration, the medical device can transition from the calibration mode to measurement mode, which can allow the user to perform measurements as required. The calibration routine ends at block 612.
In addition to those processes described above, other processes and combination of processes will be apparent to those of skill in the art from the present disclosure. Those of skill will further appreciate that the various illustrative logical blocks, modules, and steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The various illustrative logical blocks, modules, and steps described in connection with the embodiments disclosed herein can be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, conventional processor, controller, microcontroller, state machine, etc. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In addition, the term “processing” is a broad term meant to encompass several meanings including, for example, implementing program code, executing instructions, manipulating signals, filtering, performing arithmetic operations, and the like.
The modules can include, but are not limited to, any of the following: software or hardware components such as software, object-oriented software components, class components and task components, processes, methods, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, or variables.
The steps of a method or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, a DVD, or any other form of storage medium known in the art. A storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.
Although the foregoing invention has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. It is contemplated that various aspects and features of the invention described can be practiced separately, combined together, or substituted for one another, and that a variety of combinations and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Furthermore, the systems described above need not include all of the modules and functions described in the preferred embodiments. Accordingly, the present invention is not intended to be limited by the reaction of the preferred embodiments, but is to be defined by reference to the appended claims.
Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5041187 | Hink et al. | Aug 1991 | A |
5069213 | Polczynski | Dec 1991 | A |
5163438 | Gordon et al. | Nov 1992 | A |
5319355 | Russek | Jun 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
D353195 | Savage et al. | Dec 1994 | S |
D353196 | Savage et al. | Dec 1994 | S |
5377676 | Vari et al. | Jan 1995 | A |
D359546 | Savage et al. | Jun 1995 | S |
5431170 | Mathews | Jul 1995 | A |
5436499 | Namavar et al. | Jul 1995 | A |
D361840 | Savage et al. | Aug 1995 | S |
D362063 | Savage et al. | Sep 1995 | S |
5452717 | Branigan et al. | Sep 1995 | A |
D363120 | Savage et al. | Oct 1995 | S |
5456252 | Vari et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5490505 | Diab et al. | Feb 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5534851 | Russek | Jul 1996 | A |
5561275 | Savage et al. | Oct 1996 | A |
5562002 | Lalin | Oct 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5671914 | Kalkhoran et al. | Sep 1997 | A |
5685299 | Diab et al. | Nov 1997 | A |
5726440 | Kalkhoran et al. | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5747806 | Khalil et al. | May 1998 | A |
5750994 | Schlager | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5769785 | Diab et al. | Jun 1998 | A |
5782757 | Diab et al. | Jul 1998 | A |
5785659 | Caro et al. | Jul 1998 | A |
5791347 | Flaherty et al. | Aug 1998 | A |
5810734 | Caro et al. | Sep 1998 | A |
5823950 | Diab et al. | Oct 1998 | A |
5830131 | Caro et al. | Nov 1998 | A |
5833618 | Caro et al. | Nov 1998 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5890929 | Mills et al. | Apr 1999 | A |
5904654 | Wohltmann et al. | May 1999 | A |
5919134 | Diab | Jul 1999 | A |
5934925 | Tobler et al. | Aug 1999 | A |
5940182 | Lepper, Jr. et al. | Aug 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6010937 | Karam et al. | Jan 2000 | A |
6011986 | Diab et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6036642 | Diab et al. | Mar 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6045509 | Caro et al. | Apr 2000 | A |
6066204 | Haven | May 2000 | A |
6067462 | Diab et al. | May 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6110522 | Lepper, Jr. et al. | Aug 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6124597 | Shehada et al. | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6151516 | Kiani-Azarbayjany et al. | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6165005 | Mills et al. | Dec 2000 | A |
6184521 | Coffin et al. | Feb 2001 | B1 |
6206830 | Diab et al. | Mar 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6255708 | Sudharsanan et al. | Jul 2001 | B1 |
6256523 | Diab et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6278522 | Lepper, Jr. et al. | Aug 2001 | B1 |
6280213 | Tobler et al. | Aug 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6301493 | Marro et al. | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6325761 | Jay | Dec 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6343224 | Parker | Jan 2002 | B1 |
6349228 | Kiani et al. | Feb 2002 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6371921 | Caro et al. | Apr 2002 | B1 |
6377829 | Al-Ali | Apr 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6397091 | Diab et al. | May 2002 | B2 |
6411373 | Garside et al. | Jun 2002 | B1 |
6415167 | Blank et al. | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6487429 | Hockersmith et al. | Nov 2002 | B2 |
6501975 | Diab et al. | Dec 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6515273 | Al-Ali | Feb 2003 | B2 |
6519487 | Parker | Feb 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6534012 | Hazen et al. | Mar 2003 | B1 |
6541756 | Schulz et al. | Apr 2003 | B2 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587196 | Stippick et al. | Jul 2003 | B1 |
6587199 | Luu | Jul 2003 | B1 |
6595316 | Cybulski et al. | Jul 2003 | B2 |
6597932 | Tian et al. | Jul 2003 | B2 |
6597933 | Kiani et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6632181 | Flaherty et al. | Oct 2003 | B2 |
6635559 | Greenwald et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6640117 | Makarewicz et al. | Oct 2003 | B2 |
6643530 | Diab et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Diab et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6671531 | Al-Ali et al. | Dec 2003 | B2 |
6678543 | Diab et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6684091 | Parker | Jan 2004 | B2 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697657 | Shehada et al. | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699194 | Diab et al. | Mar 2004 | B1 |
6714804 | Al-Ali et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6721585 | Parker | Apr 2004 | B1 |
6725075 | Al-Ali | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6735459 | Parker | May 2004 | B2 |
6738652 | Mattu et al. | May 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6770028 | Ali et al. | Aug 2004 | B1 |
6771994 | Kiani et al. | Aug 2004 | B2 |
6788965 | Ruchti et al. | Sep 2004 | B2 |
6792300 | Diab et al. | Sep 2004 | B1 |
6813511 | Diab et al. | Nov 2004 | B2 |
6816241 | Grubisic | Nov 2004 | B2 |
6816741 | Diab | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6826419 | Diab et al. | Nov 2004 | B2 |
6830711 | Mills et al. | Dec 2004 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6852083 | Caro et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6876931 | Lorenz et al. | Apr 2005 | B2 |
6898452 | Al-Ali et al. | May 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6931268 | Kiani-Azarbayjany et al. | Aug 2005 | B1 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6939305 | Flaherty et al. | Sep 2005 | B2 |
6943348 | Coffin IV | Sep 2005 | B1 |
6950687 | Al-Ali | Sep 2005 | B2 |
6956649 | Acosta et al. | Oct 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6979812 | Al-Ali | Dec 2005 | B2 |
6985764 | Mason et al. | Jan 2006 | B2 |
6990364 | Ruchti et al. | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999904 | Weber et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7003339 | Diab et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7024233 | Ali et al. | Apr 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
7030749 | Al-Ali | Apr 2006 | B2 |
7039449 | Al-Ali | May 2006 | B2 |
7041060 | Flaherty et al. | May 2006 | B2 |
7044918 | Diab | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7067893 | Mills et al. | Jun 2006 | B2 |
D526719 | Richie, Jr. et al. | Aug 2006 | S |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
D529616 | Deros et al. | Oct 2006 | S |
7132641 | Schulz et al. | Nov 2006 | B2 |
7133710 | Acosta et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7149561 | Diab | Dec 2006 | B2 |
7186966 | Al-Ali | Mar 2007 | B2 |
7190261 | Al-Ali | Mar 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7215986 | Diab et al. | May 2007 | B2 |
7221971 | Diab et al. | May 2007 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
7225007 | Al-Ali et al. | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7239905 | Kiani-Azarbayjany et al. | Jul 2007 | B2 |
7245953 | Parker | Jul 2007 | B1 |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali et al. | Aug 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7272425 | Al-Ali | Sep 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
7292883 | De Felice et al. | Nov 2007 | B2 |
7295866 | Al-Ali | Nov 2007 | B2 |
7328053 | Diab et al. | Feb 2008 | B1 |
7332784 | Mills et al. | Feb 2008 | B2 |
7340287 | Mason et al. | Mar 2008 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7355512 | Al-Ali | Apr 2008 | B1 |
7356365 | Schurman | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7373194 | Weber et al. | May 2008 | B2 |
7376453 | Diab et al. | May 2008 | B1 |
7377794 | Al-Ali et al. | May 2008 | B2 |
7377899 | Weber et al. | May 2008 | B2 |
7383070 | Diab et al. | Jun 2008 | B2 |
7395158 | Monfre et al. | Jul 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7428432 | Ali et al. | Sep 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7440787 | Diab | Oct 2008 | B2 |
7454240 | Diab et al. | Nov 2008 | B2 |
7467002 | Weber et al. | Dec 2008 | B2 |
7469157 | Diab et al. | Dec 2008 | B2 |
7471969 | Diab et al. | Dec 2008 | B2 |
7471971 | Diab et al. | Dec 2008 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
7483730 | Diab et al. | Jan 2009 | B2 |
7489958 | Diab et al. | Feb 2009 | B2 |
7496391 | Diab et al. | Feb 2009 | B2 |
7496393 | Diab et al. | Feb 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7499741 | Diab et al. | Mar 2009 | B2 |
7499835 | Weber et al. | Mar 2009 | B2 |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509154 | Diab et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7514725 | Wojtczuk et al. | Apr 2009 | B2 |
7519406 | Blank et al. | Apr 2009 | B2 |
7526328 | Diab et al. | Apr 2009 | B2 |
D592507 | Wachman et al. | May 2009 | S |
7530942 | Diab | May 2009 | B1 |
7530949 | Al Ali et al. | May 2009 | B2 |
7530955 | Diab et al. | May 2009 | B2 |
7563110 | Al-Ali et al. | Jul 2009 | B2 |
7593230 | Abul-Haj et al. | Sep 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
7606608 | Blank et al. | Oct 2009 | B2 |
7618375 | Flaherty et al. | Nov 2009 | B2 |
7620674 | Ruchti et al. | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7629039 | Eckerbom et al. | Dec 2009 | B2 |
7640140 | Ruchti et al. | Dec 2009 | B2 |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
D614305 | Al-Ali et al. | Apr 2010 | S |
7697966 | Monfre et al. | Apr 2010 | B2 |
7698105 | Ruchti et al. | Apr 2010 | B2 |
RE41317 | Parker | May 2010 | E |
RE41333 | Blank et al. | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7734320 | Al-Ali | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7761128 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7791155 | Diab | Sep 2010 | B2 |
7801581 | Diab | Sep 2010 | B2 |
7822452 | Schurman et al. | Oct 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7844313 | Kiani et al. | Nov 2010 | B2 |
7844314 | Al-Ali | Nov 2010 | B2 |
7844315 | Al-Ali | Nov 2010 | B2 |
7865222 | Weber et al. | Jan 2011 | B2 |
7873497 | Weber et al. | Jan 2011 | B2 |
7880606 | Al-Ali | Feb 2011 | B2 |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7891355 | Al-Ali et al. | Feb 2011 | B2 |
7894868 | Al-Ali et al. | Feb 2011 | B2 |
7899507 | Al-Ali et al. | Mar 2011 | B2 |
7899518 | Trepagnier et al. | Mar 2011 | B2 |
7904132 | Weber et al. | Mar 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7910875 | Al-Ali | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7937130 | Diab et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7951086 | Flaherty et al. | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7962190 | Diab et al. | Jun 2011 | B1 |
7976472 | Kiani | Jul 2011 | B2 |
7988637 | Diab | Aug 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
7991446 | Al-Ali et al. | Aug 2011 | B2 |
8000761 | Al-Ali | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8019400 | Diab et al. | Sep 2011 | B2 |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8029765 | Bellott et al. | Oct 2011 | B2 |
8036727 | Schurman et al. | Oct 2011 | B2 |
8036728 | Diab et al. | Oct 2011 | B2 |
8046040 | Ali et al. | Oct 2011 | B2 |
8046041 | Diab et al. | Oct 2011 | B2 |
8046042 | Diab et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8126528 | Diab et al. | Feb 2012 | B2 |
8128572 | Diab et al. | Mar 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8145287 | Diab et al. | Mar 2012 | B2 |
8150487 | Diab et al. | Apr 2012 | B2 |
8175672 | Parker | May 2012 | B2 |
8180420 | Diab et al. | May 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8185180 | Diab et al. | May 2012 | B2 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8190227 | Diab et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8204566 | Schurman et al. | Jun 2012 | B2 |
8219172 | Schurman et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8228181 | Al-Ali | Jul 2012 | B2 |
8229532 | Davis | Jul 2012 | B2 |
8229533 | Diab et al. | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
8244325 | Al-Ali et al. | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8255027 | Al-Ali et al. | Aug 2012 | B2 |
8255028 | Al-Ali et al. | Aug 2012 | B2 |
8260577 | Weber et al. | Sep 2012 | B2 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8280473 | Al-Ali | Oct 2012 | B2 |
8301217 | Al-Ali et al. | Oct 2012 | B2 |
8306596 | Schurman et al. | Nov 2012 | B2 |
8310336 | Muhsin et al. | Nov 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8337403 | Al-Ali et al. | Dec 2012 | B2 |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8359080 | Diab et al. | Jan 2013 | B2 |
8364223 | Al-Ali et al. | Jan 2013 | B2 |
8364226 | Diab et al. | Jan 2013 | B2 |
8374665 | Lamego | Feb 2013 | B2 |
8385995 | Al-Ali et al. | Feb 2013 | B2 |
8385996 | Dalke et al. | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8399822 | Al-Ali | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8405608 | Al-Ali et al. | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8423106 | Lamego et al. | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457703 | Al-Ali | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8463349 | Diab et al. | Jun 2013 | B2 |
8466286 | Bellott et al. | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8483787 | Al-Ali et al. | Jul 2013 | B2 |
8489364 | Weber et al. | Jul 2013 | B2 |
8498684 | Weber et al. | Jul 2013 | B2 |
8504128 | Blank et al. | Aug 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
8529301 | Al-Ali et al. | Sep 2013 | B2 |
8532727 | Al-Ali et al. | Sep 2013 | B2 |
8532728 | Diab et al. | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8547209 | Kiani et al. | Oct 2013 | B2 |
8548548 | Al-Ali | Oct 2013 | B2 |
8548549 | Schurman et al. | Oct 2013 | B2 |
8548550 | Al-Ali et al. | Oct 2013 | B2 |
8560032 | Al-Ali et al. | Oct 2013 | B2 |
8560034 | Diab et al. | Oct 2013 | B1 |
8570167 | Al-Ali | Oct 2013 | B2 |
8570503 | Vo et al. | Oct 2013 | B2 |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8584345 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8581732 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8600467 | Al-Ali et al. | Dec 2013 | B2 |
8606342 | Diab | Dec 2013 | B2 |
8626255 | Al-Ali et al. | Jan 2014 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8634889 | Al-Ali et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8663107 | Kiani | Mar 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8667967 | Al-Ali et al. | Mar 2014 | B2 |
8670811 | O'Reilly | Mar 2014 | B2 |
8670814 | Diab et al. | Mar 2014 | B2 |
8676286 | Weber et al. | Mar 2014 | B2 |
8682407 | Al-Ali | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8688183 | Bruinsma et al. | Apr 2014 | B2 |
8690799 | Telfort et al. | Apr 2014 | B2 |
8700112 | Kiani | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8706179 | Parker | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8718735 | Lamego et al. | May 2014 | B2 |
8718737 | Diab et al. | May 2014 | B2 |
8718738 | Blank et al. | May 2014 | B2 |
8720249 | Al-Ali | May 2014 | B2 |
8721541 | Al-Ali et al. | May 2014 | B2 |
8721542 | Al-Ali et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8754776 | Poeze et al. | Jun 2014 | B2 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755856 | Diab et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8761850 | Lamego | Jun 2014 | B2 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8777634 | Kiani et al. | Jul 2014 | B2 |
8781543 | Diab et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8781549 | Al-Ali et al. | Jul 2014 | B2 |
8788003 | Schurman et al. | Jul 2014 | B2 |
8790268 | Al-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8831700 | Schurman et al. | Sep 2014 | B2 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
9131881 | Diab et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9153112 | Kiani et al. | Oct 2015 | B1 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9351673 | Diab et al. | May 2016 | B2 |
9351675 | Al-Ali et al. | May 2016 | B2 |
9364181 | Kiani et al. | Jun 2016 | B2 |
9368671 | Wojtczuk et al. | Jun 2016 | B2 |
9370325 | Al-Ali et al. | Jun 2016 | B2 |
9370326 | McHale et al. | Jun 2016 | B2 |
9370335 | Al-ali et al. | Jun 2016 | B2 |
9375185 | Ali et al. | Jun 2016 | B2 |
9386953 | Al-Ali | Jul 2016 | B2 |
9386961 | Al-Ali et al. | Jul 2016 | B2 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9397448 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego | Sep 2016 | B1 |
9466919 | Kiani et al. | Oct 2016 | B2 |
9474474 | Lamego et al. | Oct 2016 | B2 |
9480422 | Al-Ali | Nov 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9492110 | Al-Ali et al. | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9538949 | Al-Ali et al. | Jan 2017 | B2 |
9538980 | Telfort et al. | Jan 2017 | B2 |
9549696 | Lamego et al. | Jan 2017 | B2 |
9554737 | Schurman et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9560998 | Al-Ali et al. | Feb 2017 | B2 |
9566019 | Al-Ali et al. | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9591975 | Dalvi et al. | Mar 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
9622693 | Diab | Apr 2017 | B2 |
D788312 | Al-Ali et al. | May 2017 | S |
9636055 | Al-Ali et al. | May 2017 | B2 |
9636056 | Al-All | May 2017 | B2 |
9649054 | Lamego et al. | May 2017 | B2 |
9662052 | Al-Ali et al. | May 2017 | B2 |
9668679 | Schurman et al. | Jun 2017 | B2 |
9668680 | Bruinsma et al. | Jun 2017 | B2 |
9668703 | Al-Ali | Jun 2017 | B2 |
9675286 | Diab | Jun 2017 | B2 |
9687160 | Kiani | Jun 2017 | B2 |
9693719 | Al-Ali et al. | Jul 2017 | B2 |
9693737 | Al-Ali | Jul 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
9717425 | Kiani et al. | Aug 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9730640 | Diab et al. | Aug 2017 | B2 |
9743887 | Al-Ali et al. | Aug 2017 | B2 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750443 | Smith et al. | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9775546 | Diab et al. | Oct 2017 | B2 |
9775570 | Al-All | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9782110 | Kiani | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9788735 | Al-Ali | Oct 2017 | B2 |
9788768 | Al-Ali et al. | Oct 2017 | B2 |
9795300 | Al-All | Oct 2017 | B2 |
9795310 | Al-All | Oct 2017 | B2 |
9795358 | Telfort et al. | Oct 2017 | B2 |
9795739 | Al-Ali et al. | Oct 2017 | B2 |
9801556 | Kiani | Oct 2017 | B2 |
9801588 | Weber et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9814418 | Weber et al. | Nov 2017 | B2 |
9820691 | Kiani | Nov 2017 | B2 |
9833152 | Kiani et al. | Dec 2017 | B2 |
9833180 | Shakespeare et al. | Dec 2017 | B2 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847002 | Kiani et al. | Dec 2017 | B2 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9848806 | Al-Ali et al. | Dec 2017 | B2 |
9848807 | Lamego | Dec 2017 | B2 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861304 | Al-Ali et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
9867578 | Al-Ali et al. | Jan 2018 | B2 |
9872623 | Al-All | Jan 2018 | B2 |
9876320 | Coverston et al. | Jan 2018 | B2 |
9877650 | Muhsin et al. | Jan 2018 | B2 |
9877686 | Al-Ali et al. | Jan 2018 | B2 |
9891079 | Dalvi | Feb 2018 | B2 |
9895107 | Al-Ali et al. | Feb 2018 | B2 |
9913617 | Al-Ali et al. | Mar 2018 | B2 |
9924893 | Schurman et al. | Mar 2018 | B2 |
9924897 | Abdul-Hafiz | Mar 2018 | B1 |
9936917 | Poeze et al. | Apr 2018 | B2 |
9943269 | Muhsin et al. | Apr 2018 | B2 |
9949676 | Al-Ali | Apr 2018 | B2 |
9955937 | Telfort | May 2018 | B2 |
9965946 | Al-Ali | May 2018 | B2 |
9980667 | Kiani et al. | May 2018 | B2 |
D820865 | Muhsin et al. | Jun 2018 | S |
9986919 | Lamego et al. | Jun 2018 | B2 |
9986952 | Dalvi et al. | Jun 2018 | B2 |
9989560 | Poeze et al. | Jun 2018 | B2 |
9993207 | Al-Ali et al. | Jun 2018 | B2 |
10007758 | Al-Ali et al. | Jun 2018 | B2 |
D822215 | Al-Ali et al. | Jul 2018 | S |
D822216 | Barker et al. | Jul 2018 | S |
10010276 | Al-Ali et al. | Jul 2018 | B2 |
10032002 | Kiani et al. | Jul 2018 | B2 |
10039482 | Al-Ali et al. | Aug 2018 | B2 |
10052037 | Kinast et al. | Aug 2018 | B2 |
10058275 | Al-Ali et al. | Aug 2018 | B2 |
10064562 | Al-Ali | Sep 2018 | B2 |
10086138 | Novak, Jr. | Oct 2018 | B1 |
10092200 | Al-Ali et al. | Oct 2018 | B2 |
10092249 | Kiani et al. | Oct 2018 | B2 |
10098550 | Al-Ali et al. | Oct 2018 | B2 |
10098591 | Al-Ali et al. | Oct 2018 | B2 |
10098610 | Al-Ali et al. | Oct 2018 | B2 |
10111591 | Dyell et al. | Oct 2018 | B2 |
D833624 | DeJong et al. | Nov 2018 | S |
10123726 | Al-Ali et al. | Nov 2018 | B2 |
10123729 | Dyell et al. | Nov 2018 | B2 |
10130289 | Al-Ali et al. | Nov 2018 | B2 |
10130291 | Schurman et al. | Nov 2018 | B2 |
D835282 | Barker et al. | Dec 2018 | S |
D835283 | Barker et al. | Dec 2018 | S |
D835284 | Barker et al. | Dec 2018 | S |
D835285 | Barker et al. | Dec 2018 | S |
10149616 | Al-Ali et al. | Dec 2018 | B2 |
10154815 | Al-Ali et al. | Dec 2018 | B2 |
10159412 | Lamego et al. | Dec 2018 | B2 |
10188296 | Al-Ali et al. | Jan 2019 | B2 |
10188331 | Al-Ali et al. | Jan 2019 | B1 |
10188348 | Kiani et al. | Jan 2019 | B2 |
RE47218 | Ali-Ali | Feb 2019 | E |
RE47244 | Kiani et al. | Feb 2019 | E |
RE47249 | Kiani et al. | Feb 2019 | E |
10194847 | Al-Ali | Feb 2019 | B2 |
10194848 | Kiani et al. | Feb 2019 | B1 |
10201298 | Al-Ali et al. | Feb 2019 | B2 |
10205272 | Kiani et al. | Feb 2019 | B2 |
10205291 | Scruggs et al. | Feb 2019 | B2 |
10213108 | Al-Ali | Feb 2019 | B2 |
10219706 | Al-Ali | Mar 2019 | B2 |
10219746 | McHale et al. | Mar 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10226576 | Kiani | Mar 2019 | B2 |
10231657 | Al-Ali et al. | Mar 2019 | B2 |
10231670 | Blank et al. | Mar 2019 | B2 |
10231676 | Al-Ali et al. | Mar 2019 | B2 |
RE47353 | Kiani et al. | Apr 2019 | E |
10251585 | Al-Ali et al. | Apr 2019 | B2 |
10251586 | Lamego | Apr 2019 | B2 |
10255994 | Sampath et al. | Apr 2019 | B2 |
10258265 | Poeze et al. | Apr 2019 | B1 |
10258266 | Poeze et al. | Apr 2019 | B1 |
10271748 | Al-Ali | Apr 2019 | B2 |
10278626 | Schurman et al. | May 2019 | B2 |
10278648 | Al-Ali et al. | May 2019 | B2 |
10279247 | Kiani | May 2019 | B2 |
10292628 | Poeze et al. | May 2019 | B1 |
10292657 | Abdul-Hafiz et al. | May 2019 | B2 |
10292664 | Al-Ali | May 2019 | B2 |
10299708 | Poeze et al. | May 2019 | B1 |
10299709 | Perea et al. | May 2019 | B2 |
10299720 | Brown et al. | May 2019 | B2 |
10305775 | Lamego et al. | May 2019 | B2 |
10307111 | Muhsin et al. | Jun 2019 | B2 |
10325681 | Sampath et al. | Jun 2019 | B2 |
10327337 | Triman et al. | Jun 2019 | B2 |
10327713 | Barker et al. | Jun 2019 | B2 |
10332630 | Al-Ali | Jun 2019 | B2 |
10383520 | Wojtczuk et al. | Aug 2019 | B2 |
10383527 | Al-Ali | Aug 2019 | B2 |
10388120 | Muhsin et al. | Aug 2019 | B2 |
D864120 | Forrest et al. | Oct 2019 | S |
10441181 | Telfort et al. | Oct 2019 | B1 |
10441196 | Eckerbom et al. | Oct 2019 | B2 |
10448844 | Al-Ali et al. | Oct 2019 | B2 |
10448871 | Al-Ali et al. | Oct 2019 | B2 |
10456038 | Lamego et al. | Oct 2019 | B2 |
10463340 | Telfort et al. | Nov 2019 | B2 |
10471159 | Lapotko et al. | Nov 2019 | B1 |
10505311 | Al-Ali et al. | Dec 2019 | B2 |
10524738 | Olsen | Jan 2020 | B2 |
10532174 | Al-Ali | Jan 2020 | B2 |
10537285 | Shreim et al. | Jan 2020 | B2 |
10542903 | Al-Ali et al. | Jan 2020 | B2 |
10555678 | Dalvi et al. | Feb 2020 | B2 |
10568553 | O'Neil et al. | Feb 2020 | B2 |
RE47882 | Al-Ali | Mar 2020 | E |
10608817 | Haider et al. | Mar 2020 | B2 |
D880477 | Forrest et al. | Apr 2020 | S |
10617302 | Al-Ali et al. | Apr 2020 | B2 |
10617335 | Al-Ali et al. | Apr 2020 | B2 |
10637181 | Al-Ali et al. | Apr 2020 | B2 |
D887548 | Abdul-Hafiz et al. | Jun 2020 | S |
D887549 | Abdul-Hafiz et al. | Jun 2020 | S |
10667764 | Ahmed et al. | Jun 2020 | B2 |
D890708 | Forrest et al. | Jul 2020 | S |
10721785 | Al-Ali | Jul 2020 | B2 |
10736518 | Al-Ali et al. | Aug 2020 | B2 |
10750984 | Pauley et al. | Aug 2020 | B2 |
D897098 | Al-Ali | Sep 2020 | S |
10779098 | Iswanto et al. | Sep 2020 | B2 |
10827961 | Iyengar et al. | Nov 2020 | B1 |
10828007 | Telfort et al. | Nov 2020 | B1 |
10832818 | Muhsin et al. | Nov 2020 | B2 |
10849554 | Shreim et al. | Dec 2020 | B2 |
10856750 | Indorf | Dec 2020 | B2 |
D906970 | Forrest et al. | Jan 2021 | S |
10918281 | Al-Ali et al. | Feb 2021 | B2 |
10932705 | Muhsin et al. | Mar 2021 | B2 |
10932729 | Kiani et al. | Mar 2021 | B2 |
10939878 | Kiani et al. | Mar 2021 | B2 |
10956950 | Al-Ali et al. | Mar 2021 | B2 |
D916135 | Indorf et al. | Apr 2021 | S |
D917550 | Indorf et al. | Apr 2021 | S |
D917564 | Indorf et al. | Apr 2021 | S |
D917704 | Al-Ali et al. | Apr 2021 | S |
10987066 | Chandran et al. | Apr 2021 | B2 |
10991135 | Al-Ali et al. | Apr 2021 | B2 |
D919094 | Al-Ali et al. | May 2021 | S |
D919100 | Al-Ali et al. | May 2021 | S |
11006867 | Al-Ali | May 2021 | B2 |
D921202 | Al-Ali et al. | Jun 2021 | S |
11024064 | Muhsin et al. | Jun 2021 | B2 |
11026604 | Chen et al. | Jun 2021 | B2 |
D925597 | Chandran et al. | Jul 2021 | S |
D927699 | Al-Ali et al. | Aug 2021 | S |
11076777 | Lee et al. | Aug 2021 | B2 |
11114188 | Poeze et al. | Sep 2021 | B2 |
D933232 | Al-Ali et al. | Oct 2021 | S |
11145408 | Sampath et al. | Oct 2021 | B2 |
11147518 | Al-Ali et al. | Oct 2021 | B1 |
11185262 | Al-Ali et al. | Nov 2021 | B2 |
11191484 | Kiani et al. | Dec 2021 | B2 |
D946596 | Ahmed | Mar 2022 | S |
D946597 | Ahmed | Mar 2022 | S |
D946598 | Ahmed | Mar 2022 | S |
D946617 | Ahmed | Mar 2022 | S |
11272839 | Al-Ali et al. | Mar 2022 | B2 |
11289199 | Al-Ali | Mar 2022 | B2 |
RE49034 | Al-Ali | Apr 2022 | E |
11298021 | Muhsin et al. | Apr 2022 | B2 |
D950580 | Ahmed | May 2022 | S |
D950599 | Ahmed | May 2022 | S |
20010034477 | Mansfield et al. | Oct 2001 | A1 |
20010039483 | Brand et al. | Nov 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020019707 | Cohen | Feb 2002 | A1 |
20020058864 | Mansfield et al. | May 2002 | A1 |
20020133080 | Apruzzese et al. | Sep 2002 | A1 |
20020178126 | Beck | Nov 2002 | A1 |
20030013975 | Kiani | Jan 2003 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030156288 | Barnum et al. | Aug 2003 | A1 |
20030212312 | Coffin, IV et al. | Nov 2003 | A1 |
20040106163 | Workman, Jr. et al. | Jun 2004 | A1 |
20050055276 | Kiani et al. | Mar 2005 | A1 |
20050234317 | Kiani | Oct 2005 | A1 |
20060073719 | Kiani | Apr 2006 | A1 |
20060161054 | Reuss et al. | Jul 2006 | A1 |
20060189871 | Al-Ali et al. | Aug 2006 | A1 |
20070027382 | Berman | Feb 2007 | A1 |
20070073116 | Kiani et al. | Mar 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070244377 | Cozad et al. | Oct 2007 | A1 |
20070265514 | Kiani | Nov 2007 | A1 |
20070282478 | Al-Ali et al. | Dec 2007 | A1 |
20080064965 | Jay et al. | Mar 2008 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080221418 | Al-Ali et al. | Sep 2008 | A1 |
20080288180 | Hayter | Nov 2008 | A1 |
20090036759 | Ault et al. | Feb 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090095926 | MacNeish, III | Apr 2009 | A1 |
20090247924 | Lamego et al. | Oct 2009 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20090275813 | Davis | Nov 2009 | A1 |
20090275844 | Al-Ali | Nov 2009 | A1 |
20090299157 | Telfort et al. | Dec 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20100069725 | Al-Ali | Mar 2010 | A1 |
20100099964 | O'Reilly et al. | Apr 2010 | A1 |
20100223020 | Goetz | Sep 2010 | A1 |
20100234718 | Sampath et al. | Sep 2010 | A1 |
20100261979 | Kiani | Oct 2010 | A1 |
20100270257 | Wachman et al. | Oct 2010 | A1 |
20100317936 | Al-Ali et al. | Dec 2010 | A1 |
20110001605 | Kiani et al. | Jan 2011 | A1 |
20110028806 | Merritt et al. | Feb 2011 | A1 |
20110028809 | Goodman | Feb 2011 | A1 |
20110040197 | Welch et al. | Feb 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110087081 | Kiani et al. | Apr 2011 | A1 |
20110105854 | Kiani et al. | May 2011 | A1 |
20110118561 | Tari et al. | May 2011 | A1 |
20110125060 | Telfort et al. | May 2011 | A1 |
20110137297 | Kiani et al. | Jun 2011 | A1 |
20110172498 | Olsen et al. | Jul 2011 | A1 |
20110172967 | Al-Ali et al. | Jul 2011 | A1 |
20110208015 | Welch et al. | Aug 2011 | A1 |
20110209915 | Telfort et al. | Sep 2011 | A1 |
20110213212 | Al-Ali | Sep 2011 | A1 |
20110230733 | Al-Ali | Sep 2011 | A1 |
20110237911 | Lamego et al. | Sep 2011 | A1 |
20120059267 | Lamego et al. | Mar 2012 | A1 |
20120116175 | Al-Ali et al. | May 2012 | A1 |
20120123231 | O'Reilly | May 2012 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120179006 | Jansen et al. | Jul 2012 | A1 |
20120209082 | Al-Ali | Aug 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120226117 | Lamego et al. | Sep 2012 | A1 |
20120227739 | Kiani | Sep 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20120286955 | Welch et al. | Nov 2012 | A1 |
20120302894 | Diab et al. | Nov 2012 | A1 |
20120319816 | Al-Ali | Dec 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130041591 | Lamego | Feb 2013 | A1 |
20130045685 | Kiani | Feb 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130296713 | Al-Ali et al. | Nov 2013 | A1 |
20130331660 | Al-Ali et al. | Dec 2013 | A1 |
20130345921 | Al-Ali et al. | Dec 2013 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140276115 | Dalvi et al. | Sep 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20140357966 | Al-Ali et al. | Dec 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150012231 | Poeze et al. | Jan 2015 | A1 |
20150032029 | Al-Ali et al. | Jan 2015 | A1 |
20150038859 | Dalvi et al. | Feb 2015 | A1 |
20150073241 | Lamego | Mar 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150087936 | Al-Ali et al. | Mar 2015 | A1 |
20150094546 | Al-All | Apr 2015 | A1 |
20150097701 | Al-Ali et al. | Apr 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20150099955 | Al-Ali et al. | Apr 2015 | A1 |
20150101844 | Al-Ali et al. | Apr 2015 | A1 |
20150106121 | Muhsin et al. | Apr 2015 | A1 |
20150112151 | Muhsin et al. | Apr 2015 | A1 |
20150116076 | Al-Ali et al. | Apr 2015 | A1 |
20150165312 | Kiani | Jun 2015 | A1 |
20150196249 | Brown et al. | Jul 2015 | A1 |
20150216459 | Al-Ali et al. | Aug 2015 | A1 |
20150238722 | Al-All | Aug 2015 | A1 |
20150245773 | Lamego et al. | Sep 2015 | A1 |
20150245794 | Al-Ali | Sep 2015 | A1 |
20150257689 | Al-Ali et al. | Sep 2015 | A1 |
20150272514 | Kiani et al. | Oct 2015 | A1 |
20150351697 | Weber et al. | Dec 2015 | A1 |
20150359429 | Al-Ali et al. | Dec 2015 | A1 |
20150366507 | Blank | Dec 2015 | A1 |
20160029932 | Al-Ali | Feb 2016 | A1 |
20160058347 | Reichgott et al. | Mar 2016 | A1 |
20160066824 | Al-Ali et al. | Mar 2016 | A1 |
20160081552 | Wojtczuk et al. | Mar 2016 | A1 |
20160095543 | Telfort et al. | Apr 2016 | A1 |
20160095548 | Al-Ali et al. | Apr 2016 | A1 |
20160103598 | Al-Ali et al. | Apr 2016 | A1 |
20160143548 | Al-All | May 2016 | A1 |
20160166182 | Al-Ali et al. | Jun 2016 | A1 |
20160166183 | Poeze et al. | Jun 2016 | A1 |
20160192869 | Kiani et al. | Jul 2016 | A1 |
20160197436 | Barker et al. | Jul 2016 | A1 |
20160213281 | Eckerbom et al. | Jul 2016 | A1 |
20160228043 | O'Neil et al. | Aug 2016 | A1 |
20160233632 | Scruggs et al. | Aug 2016 | A1 |
20160234944 | Schmidt et al. | Aug 2016 | A1 |
20160270735 | Diab et al. | Sep 2016 | A1 |
20160283665 | Sampath et al. | Sep 2016 | A1 |
20160287090 | Al-Ali et al. | Oct 2016 | A1 |
20160287786 | Kiani | Oct 2016 | A1 |
20160296169 | McHale et al. | Oct 2016 | A1 |
20160310052 | Al-Ali et al. | Oct 2016 | A1 |
20160314260 | Kiani | Oct 2016 | A1 |
20160324486 | Al-Ali et al. | Nov 2016 | A1 |
20160324488 | Olsen | Nov 2016 | A1 |
20160327984 | Al-Ali et al. | Nov 2016 | A1 |
20160328528 | Al-Ali et al. | Nov 2016 | A1 |
20160331332 | Al-Ali | Nov 2016 | A1 |
20160367173 | Dalvi et al. | Dec 2016 | A1 |
20170000394 | Al-Ali et al. | Jan 2017 | A1 |
20170007134 | Al-Ali et al. | Jan 2017 | A1 |
20170007198 | Al-Ali et al. | Jan 2017 | A1 |
20170014083 | Diab et al. | Jan 2017 | A1 |
20170014084 | Al-Ali et al. | Jan 2017 | A1 |
20170024748 | Haider | Jan 2017 | A1 |
20170027456 | Kinast et al. | Feb 2017 | A1 |
20170042488 | Muhsin | Feb 2017 | A1 |
20170055851 | Al-Ali | Mar 2017 | A1 |
20170055882 | Al-Ali et al. | Mar 2017 | A1 |
20170055887 | Al-All | Mar 2017 | A1 |
20170055896 | Al-Ali et al. | Mar 2017 | A1 |
20170079594 | Telfort et al. | Mar 2017 | A1 |
20170086723 | Al-Ali et al. | Mar 2017 | A1 |
20170143281 | Olsen | May 2017 | A1 |
20170147774 | Kiani | May 2017 | A1 |
20170156620 | Al-Ali et al. | Jun 2017 | A1 |
20170173632 | Al-Ali | Jun 2017 | A1 |
20170187146 | Kiani et al. | Jun 2017 | A1 |
20170188919 | Al-Ali et al. | Jul 2017 | A1 |
20170196464 | Jansen et al. | Jul 2017 | A1 |
20170196470 | Lamego et al. | Jul 2017 | A1 |
20170202490 | Al-Ali et al. | Jul 2017 | A1 |
20170224262 | Al-Ali | Aug 2017 | A1 |
20170228516 | Sampath et al. | Aug 2017 | A1 |
20170245790 | Al-Ali et al. | Aug 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20170251975 | Shreim et al. | Sep 2017 | A1 |
20170258403 | Abdul-Hafiz et al. | Sep 2017 | A1 |
20170311851 | Schurman et al. | Nov 2017 | A1 |
20170311891 | Kiani et al. | Nov 2017 | A1 |
20170325728 | Al-Ali et al. | Nov 2017 | A1 |
20170332976 | Al-Ali et al. | Nov 2017 | A1 |
20170340293 | Al-Ali et al. | Nov 2017 | A1 |
20170360310 | Kiani et al. | Dec 2017 | A1 |
20170367632 | Al-Ali et al. | Dec 2017 | A1 |
20180008146 | Al-Ali et al. | Jan 2018 | A1 |
20180013562 | Haider et al. | Jan 2018 | A1 |
20180014752 | Al-Ali et al. | Jan 2018 | A1 |
20180028124 | Al-Ali et al. | Feb 2018 | A1 |
20180055385 | Al-Ali | Mar 2018 | A1 |
20180055390 | Kiani et al. | Mar 2018 | A1 |
20180055430 | Diab et al. | Mar 2018 | A1 |
20180064381 | Shakespeare et al. | Mar 2018 | A1 |
20180069776 | Lamego et al. | Mar 2018 | A1 |
20180070867 | Smith et al. | Mar 2018 | A1 |
20180082767 | Al-Ali et al. | Mar 2018 | A1 |
20180085068 | Telfort | Mar 2018 | A1 |
20180087937 | Al-Ali et al. | Mar 2018 | A1 |
20180103874 | Lee et al. | Apr 2018 | A1 |
20180103905 | Kiani | Apr 2018 | A1 |
20180110478 | Al-Ali | Apr 2018 | A1 |
20180116575 | Perea et al. | May 2018 | A1 |
20180125368 | Lamego et al. | May 2018 | A1 |
20180125430 | Al-Ali et al. | May 2018 | A1 |
20180125445 | Telfort et al. | May 2018 | A1 |
20180130325 | Kiani et al. | May 2018 | A1 |
20180132769 | Weber et al. | May 2018 | A1 |
20180132770 | Lamego | May 2018 | A1 |
20180146901 | Al-Ali et al. | May 2018 | A1 |
20180146902 | Kiani et al. | May 2018 | A1 |
20180153442 | Eckerbom et al. | Jun 2018 | A1 |
20180153446 | Kiani | Jun 2018 | A1 |
20180153447 | Al-Ali et al. | Jun 2018 | A1 |
20180153448 | Weber et al. | Jun 2018 | A1 |
20180161499 | Al-Ali et al. | Jun 2018 | A1 |
20180168491 | Al-Ali et al. | Jun 2018 | A1 |
20180174679 | Sampath et al. | Jun 2018 | A1 |
20180174680 | Sampath et al. | Jun 2018 | A1 |
20180182484 | Sampath et al. | Jun 2018 | A1 |
20180184917 | Kiani | Jul 2018 | A1 |
20180192924 | Al-Ali | Jul 2018 | A1 |
20180192953 | Shreim et al. | Jul 2018 | A1 |
20180192955 | Al-Ali et al. | Jul 2018 | A1 |
20180199871 | Pauley et al. | Jul 2018 | A1 |
20180206795 | Al-Ali | Jul 2018 | A1 |
20180206815 | Telfort | Jul 2018 | A1 |
20180213583 | Al-Ali | Jul 2018 | A1 |
20180214031 | Kiani et al. | Aug 2018 | A1 |
20180214090 | Al-Ali et al. | Aug 2018 | A1 |
20180218792 | Muhsin et al. | Aug 2018 | A1 |
20180225960 | Al-Ali et al. | Aug 2018 | A1 |
20180238718 | Dalvi | Aug 2018 | A1 |
20180242853 | Al-Ali | Aug 2018 | A1 |
20180242921 | Muhsin et al. | Aug 2018 | A1 |
20180242923 | Al-Ali et al. | Aug 2018 | A1 |
20180242924 | Barker et al. | Aug 2018 | A1 |
20180242926 | Muhsin et al. | Aug 2018 | A1 |
20180247353 | Al-Ali et al. | Aug 2018 | A1 |
20180247712 | Muhsin et al. | Aug 2018 | A1 |
20180249933 | Schurman et al. | Sep 2018 | A1 |
20180253947 | Muhsin et al. | Sep 2018 | A1 |
20180256087 | Al-Ali et al. | Sep 2018 | A1 |
20180256113 | Weber et al. | Sep 2018 | A1 |
20180285094 | Housel et al. | Oct 2018 | A1 |
20180289325 | Poeze et al. | Oct 2018 | A1 |
20180289337 | Al-Ali et al. | Oct 2018 | A1 |
20180296161 | Shreim et al. | Oct 2018 | A1 |
20180300919 | Muhsin et al. | Oct 2018 | A1 |
20180310822 | Indorf et al. | Nov 2018 | A1 |
20180310823 | Al-Ali et al. | Nov 2018 | A1 |
20180317826 | Muhsin | Nov 2018 | A1 |
20180317841 | Novak, Jr. | Nov 2018 | A1 |
20180333055 | Lamego et al. | Nov 2018 | A1 |
20180333087 | Al-Ali | Nov 2018 | A1 |
20190000317 | Muhsin et al. | Jan 2019 | A1 |
20190000362 | Kiani et al. | Jan 2019 | A1 |
20190015023 | Monfre | Jan 2019 | A1 |
20190021638 | Al-Ali et al. | Jan 2019 | A1 |
20190029574 | Schurman et al. | Jan 2019 | A1 |
20190029578 | Al-Ali et al. | Jan 2019 | A1 |
20190058280 | Al-Ali et al. | Feb 2019 | A1 |
20190058281 | Al-Ali et al. | Feb 2019 | A1 |
20190069813 | Al-Ali | Mar 2019 | A1 |
20190069814 | Al-Ali | Mar 2019 | A1 |
20190076028 | Al-Ali et al. | Mar 2019 | A1 |
20190082979 | Al-Ali et al. | Mar 2019 | A1 |
20190090748 | Al-Ali | Mar 2019 | A1 |
20190090760 | Kinast et al. | Mar 2019 | A1 |
20190090764 | Al-Ali | Mar 2019 | A1 |
20190117070 | Muhsin et al. | Apr 2019 | A1 |
20190117139 | Al-Ali et al. | Apr 2019 | A1 |
20190117140 | Al-Ali et al. | Apr 2019 | A1 |
20190117141 | Al-Ali | Apr 2019 | A1 |
20190117930 | Al-Ali | Apr 2019 | A1 |
20190122763 | Sampath et al. | Apr 2019 | A1 |
20190133525 | Al-Ali et al. | May 2019 | A1 |
20190142283 | Lamego et al. | May 2019 | A1 |
20190142344 | Telfort et al. | May 2019 | A1 |
20190150856 | Kiani et al. | May 2019 | A1 |
20190167161 | Al-Ali et al. | Jun 2019 | A1 |
20190175019 | Al-Ali et al. | Jun 2019 | A1 |
20190192076 | McHale et al. | Jun 2019 | A1 |
20190200941 | Chandran et al. | Jul 2019 | A1 |
20190239787 | Pauley et al. | Aug 2019 | A1 |
20190320906 | Olsen | Oct 2019 | A1 |
20190374139 | Kiani et al. | Dec 2019 | A1 |
20190374173 | Kiani et al. | Dec 2019 | A1 |
20190374713 | Kiani et al. | Dec 2019 | A1 |
20200060869 | Telfort et al. | Feb 2020 | A1 |
20200111552 | Ahmed | Apr 2020 | A1 |
20200113435 | Muhsin | Apr 2020 | A1 |
20200113488 | Al-Ali et al. | Apr 2020 | A1 |
20200113496 | Scruggs et al. | Apr 2020 | A1 |
20200113497 | Triman et al. | Apr 2020 | A1 |
20200113520 | Abdul-Hafiz et al. | Apr 2020 | A1 |
20200138288 | Al-Ali et al. | May 2020 | A1 |
20200138368 | Kiani et al. | May 2020 | A1 |
20200163597 | Dalvi et al. | May 2020 | A1 |
20200196877 | Vo et al. | Jun 2020 | A1 |
20200253474 | Muhsin et al. | Aug 2020 | A1 |
20200253544 | Belur Nagaraj et al. | Aug 2020 | A1 |
20200275841 | Telfort et al. | Sep 2020 | A1 |
20200288983 | Telfort et al. | Sep 2020 | A1 |
20200321793 | Al-Ali et al. | Oct 2020 | A1 |
20200329983 | Al-Ali et al. | Oct 2020 | A1 |
20200329984 | Al-Ali et al. | Oct 2020 | A1 |
20200329993 | Al-Ali et al. | Oct 2020 | A1 |
20200330037 | Al-Ali et al. | Oct 2020 | A1 |
20210022628 | Telfort et al. | Jan 2021 | A1 |
20210104173 | Pauley et al. | Apr 2021 | A1 |
20210113121 | Diab et al. | Apr 2021 | A1 |
20210117525 | Kiani et al. | Apr 2021 | A1 |
20210118581 | Kiani et al. | Apr 2021 | A1 |
20210121582 | Krishnamani et al. | Apr 2021 | A1 |
20210161465 | Barker et al. | Jun 2021 | A1 |
20210236729 | Kiani et al. | Aug 2021 | A1 |
20210256267 | Ranasinghe et al. | Aug 2021 | A1 |
20210256835 | Ranasinghe et al. | Aug 2021 | A1 |
20210275101 | Vo et al. | Sep 2021 | A1 |
20210290060 | Ahmed | Sep 2021 | A1 |
20210290072 | Forrest | Sep 2021 | A1 |
20210290080 | Ahmed | Sep 2021 | A1 |
20210290120 | Al-Ali | Sep 2021 | A1 |
20210290177 | Novak, Jr. | Sep 2021 | A1 |
20210290184 | Ahmed | Sep 2021 | A1 |
20210296008 | Novak, Jr. | Sep 2021 | A1 |
20210330228 | Olsen et al. | Oct 2021 | A1 |
20210386382 | Olsen et al. | Dec 2021 | A1 |
20210402110 | Pauley et al. | Dec 2021 | A1 |
20220026355 | Normand et al. | Jan 2022 | A1 |
20220039707 | Sharma et al. | Feb 2022 | A1 |
20220053892 | Al-Ali et al. | Feb 2022 | A1 |
20220071562 | Kiani | Mar 2022 | A1 |
20220096603 | Kiani et al. | Mar 2022 | A1 |
20220151521 | Krishnamani et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
WO 2015038683 | Mar 2015 | WO |
Entry |
---|
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn) |
Sandeep Kumar Vashist, Non-invasive glucose monitoring technology in diabetes management: A review, Analytica Chimica Acta 750 (2012) 16-27 (Year: 2012). |
Wikipedia, XML, Jan. 22, 2003, pp. 1-3 (Year: 2003). |
International Search Report for International Application No. PCT/US2014/055042, dated Mar. 31, 2015. |
Invitation to Pay Additional dated Dec. 3, 2014, International Application No. PCT/US2014/055042, filed Sep. 10, 2014. |
Number | Date | Country | |
---|---|---|---|
20160196388 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
61877181 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2014/055042 | Sep 2014 | US |
Child | 15067061 | US |