The disclosure relates to medical devices and, more particularly, to programming for implantable medical devices (IMDs).
Some types of IMDs provide therapeutic electrical stimulation to tissue of a patient via electrodes of one or more implantable leads. Examples of such IMDs include implantable cardiac pacemakers, cardioverter-defibrillators, and implantable pulse generators used to deliver neurostimulation therapies. In some examples, an IMD may deliver electrical stimulation to the tissue via electrodes of implantable leads in the form of pacing stimulation, cardioversion stimulation, defibrillation stimulation, or cardiac resynchronization stimulation. In some cases, electrodes carried by the implantable leads may be used to sense one or more physiological signals to monitor the condition of a patient and/or to control delivery of therapeutic electrical stimulation based on the sensed signals.
Typically, a clinician uses a programming device, e.g., a clinician programmer, to program aspects of the operation of an IMD after it has been implanted within a patient. Programming devices are computing devices capable of communicating with IMDs through patient body tissue via device telemetry. To facilitate communication with an IMD, a programming device may be coupled to a telemetry head that is placed on the surface of the patient at a position proximate to location of the IMD within the patient.
IMDs may provide a variety of therapy delivery and/or patient monitoring modes, which may be selected and configured by the clinician during a programming session or by a patient during therapy sessions, i.e., the time periods in-between programming sessions. During a programming session, the clinician may select values for a variety of programmable parameters, threshold values, or the like, that control aspects the delivery of therapy. The clinician may also specify patient-selectable therapy and or sensing parameters for therapy sessions.
This disclosure includes techniques providing a medical device programmer including an adjustable kickstand. In one example, the kickstand is configured to combine with the base to support the programmer in an upright position when the kickstand is fully-collapsed and to support the programmer in a reclined position when the kickstand is fully-extended. Further, the programmer housing may include a fan grate that allows airflow from a cooling fan to pass through the programmer housing. The fan grate is positioned behind the kickstand when the kickstand is in the fully-collapsed position. The kickstand includes an aperture adjacent the fan grate when the kickstand is in the fully-collapsed position, the aperture allowing airflow from the cooling fan to pass through the fan grate when the kickstand is in the fully-collapsed position.
The computer module may include a user interface with a touchscreen, and the patient programming module includes telemetry and/or electrodcardiography (ECG) functions of the programmer. The computer module may be configured to store therapy delivery and sensing parameters and history as well as other patient data. The computer module and the medical device module may mate to form a congruent external surface of the programmer.
In one example, a medical device programmer comprises a telemetry module that wirelessly communicates with an implantable medical device (IMD) that delivers therapy to a patient, a processor that communicates with the IMD via the telemetry module, a user interface including a display that displays data received from the IMD and receives input from a user, a memory that stores selectable patient therapy parameters for the IMD, a programmer housing with a base below the display, and an adjustable kickstand on a side of the programmer housing that opposes the display. The kickstand is configured to combine with the base to support the programmer in an upright position when the kickstand is fully-collapsed. The kickstand is configured to combine with the base to support the programmer in a reclined position when the kickstand is fully-extended. In a further example, the programmer is included in a system further comprising the IMD.
In another example, a medical device programmer comprises a telemetry module that wirelessly communicates with an implantable medical device (IMD) that delivers therapy to a patient, a processor that communicates with the IMD via the telemetry module, a user interface including a display that displays data received from the IMD and receives input from a user, a memory that stores selectable patient therapy parameters for the IMD, a programmer housing with a base below the display, an adjustable kickstand on a side of the programmer housing that opposes the display, and a cooling fan to cool electronic components of the programmer. The programmer housing includes a fan grate that allows airflow from the cooling fan to pass through the programmer housing. The fan grate is positioned behind the kickstand when the kickstand is in the fully-collapsed position. The kickstand includes an aperture adjacent the fan grate when the kickstand is in the fully-collapsed position, the aperture allowing airflow from the cooling fan to pass through the fan grate when the kickstand is in the fully-collapsed position. In a further example, the programmer is included in a system further comprising the IMD.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
In one example, IMD 16 may be an implantable cardiac stimulator that provides electrical signals to heart 12 via electrodes coupled to one or more of leads 18, 20, and 22. IMD 16 is one example of an electrical stimulation generator, and is configured attach to the proximal end of medical leads 18, 20, and 22. In other examples, in addition to or alternatively to pacing therapy, IMD 16 may deliver neurostimulation signals. In some examples, IMD 16 may also include cardioversion and/or defibrillation functionalities. In another example, IMD 16 may include an infusion device such as an implantable drug pump that delivers a therapy fluid to a patient. In other examples, IMD 16 may not provide any therapy delivery functionalities and, instead, may be a dedicated monitoring device. Patient 14 is ordinarily, but not necessarily, a human patient.
Medical leads 18, 20, 22 extend into the heart 12 of patient 14 to sense electrical activity of heart 12 and/or deliver electrical stimulation to heart 12. In the example shown in
In some examples, system 10 may additionally or alternatively include one or more leads or lead segments (not shown in
IMD 16 may sense electrical signals attendant to the depolarization and repolarization of heart 12 via electrodes (described in further detail with respect to
IMD 16 may also provide neurostimulation therapy, defibrillation therapy and/or cardioversion therapy via electrodes located on at least one of the leads 18, 20, 22. For example, IMD 16 may deliver defibrillation therapy to heart 12 in the form of electrical pulses upon detecting ventricular fibrillation of ventricles 28 and 32. In some examples, IMD 16 may be programmed to deliver a progression of therapies, e.g., pulses with increasing energy levels, until a fibrillation of heart 12 is stopped. As another example, IMD 16 may deliver cardioversion or anti-tachycardia pacing (ATP) in response to detecting ventricular tachycardia, such as tachycardia of ventricles 28 and 32.
Leads 18, 20, 22 may be electrically coupled to a signal generator and a sensing module of IMD 16 via connector block 34. In some examples, proximal ends of leads 18, 20, 22 may include electrical contacts that electrically couple to respective electrical contacts within connector block 34 of IMD 16. In some examples, a single connector, e.g., an IS-4 or DF-4 connector, may connect multiple electrical contacts to connector block 34. In addition, in some examples, leads 18, 20, 22 may be mechanically coupled to connector block 34 with the aid of set screws, connection pins, snap connectors, or another suitable mechanical coupling mechanism.
A user, such as a physician, technician, surgeon, electrophysiologist, other clinician, or patient, interacts with programmer 24 to communicate with IMD 16. For example, the user may interact with programmer 24 to retrieve physiological or diagnostic information from IMD 16. A user may also interact with programmer 24 to program IMD 16, e.g., select values for operational parameters of the IMD 16. For example, the user may use programmer 24 to retrieve information from IMD 16 regarding the rhythm of heart 12, trends therein over time, or arrhythmic episodes.
As an example, the user may use programmer 24 to retrieve information from IMD 16 regarding other sensed physiological parameters of patient 14 or information derived from sensed physiological parameters, such as intracardiac or intravascular pressure, activity, posture, tissue oxygen levels, blood oxygen levels, respiration, tissue perfusion, heart sounds, cardiac electrogram (EGM), intracardiac impedance, or thoracic impedance. In some examples, the user may use programmer 24 to retrieve information from IMD 16 regarding the performance or integrity of IMD 16 or other components of system 10A, or a power source of IMD 16. As another example, the user may interact with programmer 24 to program, e.g., select parameters for, therapies provided by IMD 16, such as pacing and, optionally, neurostimulation.
IMD 16 and programmer 24 may communicate via wireless communication using any techniques known in the art. Examples of communication techniques may include, for example, low frequency or radiofrequency (RF) telemetry, but other techniques are also contemplated. In some examples, programmer 24 may include a telemetry head that may be placed proximate to the patient's body near the IMD 16 implant site in order to improve the quality or security of communication between IMD 16 and programmer 24.
Programmer 24, shown and described in more detail below with respect to
Distributing the functions of a programmer into a computer module and a medical device module may provide one or more advantages. As one example, the life cycle of a programmer may be significantly greater than the life cycle of computer components used in the manufacture of the programmer. For example, a programmer may include many different computer components such as memory, hard drive, processor, peripheral device interface and other interfaces, battery. By separating the computer module functions from a medical device module that directly interacts with the IMD, the design of the programmer can be more easily changed to include new computer hardware components than if the programmer is a single integrated device. This can reduce the cost of a programmer over the life cycle of a programmer design as well as provide for increased performance of programmers utilizing the same general design but including newly available computer hardware components. If computer components utilized in an initial design of programmer became unavailable, there can be a significant cost to modify the design; however, this cost is mitigated if only the computer module design is modified. For example, medical devices that directly communicate with IMDs may undergo an extensive regulatory approval process. In a programmer having a medical device module separate from a computer module that can only communicate with the IMD via the medical device module, computer hardware upgrades and design changes to computer module may undergo less regulatory scrutiny than computer hardware upgrades and design changes to a unitary programmer.
As another example, the computer module may have substantially similar hardware to that of a commercially available tablet computer. In such an example, the design costs of the tablet computer may be leveraged to reduce the design costs for the programmer. For example, the computer module may include a circuit board having a substantially similar layout to that of a commercially available tablet computer. In such an example, the computer module may include different software than the commercially available tablet computer to limit the functionality of the computer module. For example, the computer module may include a BIOS or other software or firmware, that only allows specific programs or processes to run on the computer module. This may prevent unneeded programs from utilizing system resources of the computer module and reduce the susceptibility of the computer module to system instability from untested software and viruses.
The configuration of system 10 illustrated in
In addition, in other examples, a system may include any suitable number of leads coupled to IMD 16, and each of the leads may extend to any location within or proximate to heart 12. For example, other examples of systems may include three transvenous leads located as illustrated in
As another example, programmer 16 may be used with other IMDs. For example, programmer 16 may be used in a system with leadless sensors or cardiac stimulators or in a system with an infusion device, such as an implantable drug pump that delivers a therapy fluid to a patient.
Only computer module 96 is visible in
Top 120, bottom 110 and recess 150 of computer module 96 are each shown in
Bottom 110 includes docking station connector 114 and feet 112. Feet 112 provide the base of programmer 24 and may also be formed from a molded elastomer to provide shock protection for programmer 24. In one example, feet 112 may be hollow to provide shock protection for programmer 24. As described in greater detail with respect to
Connector 159 and cooling fan 151 are located within recess 150. Cooling fan 151 operates to cool electronic components of computer module 96. Cooling fan 151 includes fan grate 152, which provides the airflow outlet of for cooling fan 151. As further shown in
Ground plane pads 156 are also located within recess 150 and are configured to mate with ground clips of medical device module 98 to provide electrical grounding of medical device module 98. As an example, ground clip 166 is shown in
Recess 150 is configured to receive medical device module housing 161 such that computer module housing 101 and medical device module housing 161 combine to form a congruent external surface of programmer 24. For example, as shown in
Recess 150 of computer module 96 includes features to align medical device module 98 with computer module 96 to provide a congruent external surface of programmer 24. For example, grooves 157 (
The interior surface of medical device module 98 is shown in
Medical device module 98 includes fan grate 162, which allows airflow from cooling fan 151 (
As shown in
As shown in
When kickstand 180 is in a fully-collapsed position, and programmer 24 is supported on substantially flat surface 200 in a reclined position, angle 202 (
Feet 112 form a convex outer surface 113 that provides an about consistent contact surface area to support programmer 24 at any angle between the upright position and the reclined position. The configuration of feet 112 and convex outer surface 113 in particular provides sufficient grip force for programmer 24 at any angle between the upright position and the reclined position.
Kickstand 180 is formed from metal insert 182, which is covered by upper molded plastic cover 184, and lower molded plastic cover 185. Metal insert 182 extends substantially the entire length of kickstand 180. Kickstand 180 further includes molded elastomer foot 186, which may have a lower durometer than upper molded plastic cover 184, and lower molded plastic cover 185 to increase friction between kickstand 180 and a supporting surface. Metal insert 182, upper molded plastic cover 184, lower molded plastic cover 185 and molded elastomer foot 186 are held together with screws 187, and kickstand is attached to friction hinge 190 by screws 194.
Metal insert 182, upper molded plastic cover 184 and lower molded plastic cover 185 combine to form aperture 188, which allows airflow from cooling fan 151 (
Friction hinge 190 provides infinite adjustability for kickstand 180 between the upright and reclined positions. Further, friction hinge 190 provides sufficient opening resistance at every position between the upright position and the reclined position to allow a user to provide user inputs to programmer 24 by pressing on touch screen 102 without causing kickstand 180 to extend further when programmer 24 is supported by feet 112 and kickstand 180 on a flat surface. Molded elastomer foot 186 and feet 112 may have a durometer of about seventy Shore A to provide adequate friction to support programmer 24.
In some example, friction hinge 190 may provide a greater opening resistance than closing resistance. For example, friction hinge 190 may provide an opening resistance least 50 percent greater than the closing resistance of friction hinge 190. As another example, friction hinge 190 may provide an opening resistance of about twenty in-lbs and a closing resistance of about fourteen in-lbs.
Computer module 96 further includes power source 58, which may be a rechargeable power source. Both medical device module 98 and computer module 96 are powered by power source 58. In this manner, medical device module 98 is dependent on being connected to computer module 96 to operate.
Medical device module 98 includes ECG module 55 and telemetry module 56, which are controlled by medical device module processor 57. ECG module 55 includes an ECG cable interface connector adapted to be coupled with an ECG cable, such as ECG cable interface connector 179 (
Telemetry module 56 wirelessly communicates with 16. Medical device module processor 57 operates to forward communications between computer module processor 50 and IMD 16 via telemetry module 56 and connector 169. Programming commands or data are transmitted between an IPG telemetry antenna within IPG 12 and a telemetry head telemetry antenna within telemetry head 20 during a telemetry uplink transmission 28 or downlink transmission 30. In a telemetry uplink transmission 28, the telemetry head telemetry antenna operates as a telemetry receiver antenna, and the IPG telemetry antenna operates as a telemetry transmitter antenna. Conversely, in a telemetry downlink transmission 30, the telemetry head telemetry antenna operates as a telemetry transmitter antenna, and the IPG telemetry antenna operates as a telemetry receiver antenna.
Programmer 24 is typically employed during implantation of an IMD to program initial operating modes and parameter values and to obtain implant patient data for the patient's medical record. Programmer 24 is also employed from time to time during routine patient follow-up visits or when a clinical issue arises causing the patient to seek medical assistance in order to uplink telemeter patient data and IMD operating stored data to the programmer for analysis. In use, the attending medical care giver applies the ECG skin electrodes to the patient's body and/or holds telemetry head against the patient's skin and over the IMD 16 to align the transceiver antennas in each as close together and as still as possible to ensure reliable telemetry transmission.
A user may use programmer 24 to select therapy programs (e.g., sets of stimulation parameters), generate new therapy programs, or modify therapy programs for IMD 16. The clinician may interact with programmer 24 via user interface 54.
Processor 50 can take the form of one or more microprocessors, DSPs, ASICs, FPGAs, programmable logic circuitry, or the like, and the functions attributed to processor 50 in this disclosure may be embodied as hardware, firmware, software or any combination thereof. Memory 52 may store instructions and information that cause processor 50 to provide the functionality ascribed to programmer 24 in this disclosure. Memory 52 may include any fixed or removable magnetic, optical, or electrical media, such as RAM, ROM, CD-ROM, hard or floppy magnetic disks, EEPROM, or the like. Memory 52 may also include a removable memory portion that may be used to provide memory updates or increases in memory capacities. A removable memory may also allow patient data to be easily transferred to another computing device, or to be removed before programmer 24 is used to program therapy for another patient. Memory 52 may also store information that controls therapy delivery by IMD 16, such as stimulation parameter values.
Programmer 24 may communicate wirelessly with IMD 16, such as using RF communication or proximal inductive interaction. This wireless communication is possible through the use of telemetry module 56, which may be coupled to an internal antenna or an external antenna. An external antenna that is coupled to programmer 24 may correspond to the telemetry head that may be placed over heart 12.
Telemetry module 56 may also be configured to communicate with another computing device via wireless communication techniques, or direct communication through a wired connection. Examples of local wireless communication techniques that may be employed to facilitate communication between programmer 24 and another computing device include RF communication according to the 802.11 or Bluetooth® specification sets, infrared communication, e.g., according to the IrDA standard, or other standard or proprietary telemetry protocols. In this manner, other external devices may be capable of communicating with programmer 24 without needing to establish a secure wireless connection. An additional computing device in communication with programmer 24 may be a networked device such as a server capable of processing information retrieved from IMD 16.
In some examples, processor 50 of programmer 24 configured to perform any of the following techniques: analyze data from IMD 16, calibrate sensing and/or therapy delivery functions of IMD 16, present data to the user via the user interface 54 for review or analysis, provide instructions to the user via user interface 54, provide alarms to the user via user interface 54, store selectable therapy delivery and/or sensing parameters of the IMD memory 52, provide an indication of therapy delivery parameters selected by the user to IMD 16 via medical device module 98 and/or store a therapy delivery and/or sensing history of IMD 16 in memory 52.
Processor 80 may include any one or more of a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or equivalent discrete or integrated logic circuitry. In some examples, processor 80 may include multiple components, such as any combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, or one or more FPGAs, as well as other discrete or integrated logic circuitry. The functions attributed to processor 80 in this disclosure may be embodied as software, firmware, hardware or any combination thereof Processor 80 controls signal generator 84 to deliver stimulation therapy to heart 12 according to operational parameters or programs, which may be stored in memory 82. For example, processor 80 may control signal generator 84 to deliver electrical pulses with the amplitudes, pulse widths, frequency, or electrode polarities specified by the selected one or more therapy programs.
Signal generator 84, as well as electrical sensing module 86, is electrically coupled to electrodes of IMD 16 and/or leads coupled to IMD 16. In the example illustrated in
Signal generator 84 may include a switch module and processor 80 may use the switch module to select, e.g., via a data/address bus, which of the available electrodes are used to deliver stimulation signals, e.g., pacing, cardioversion, defibrillation, and/or neurostimulation signals. The switch module may include a switch array, switch matrix, multiplexer, or any other type of switching device suitable to selectively couple a signal to selected electrodes.
Electrical sensing module 86 monitors signals from at least a subset of the available electrodes, e.g., to monitor electrical activity of heart 12. Electrical sensing module 86 may also include a switch module to select which of the available electrodes are used to sense the heart activity. In some examples, processor 80 may select the electrodes that function as sense electrodes, i.e., select the sensing configuration, via the switch module within electrical sensing module 86, e.g., by providing signals via a data/address bus.
In some examples, electrical sensing module 86 includes multiple detection channels, each of which may comprise an amplifier. Each sensing channel may detect electrical activity in respective chambers of heart 12, and may be configured to detect either R-waves or P-waves. In some examples, electrical sensing module 86 or processor 80 may include an analog-to-digital converter for digitizing the signal received from a sensing channel for electrogram (EGM) signal processing by processor 80. In response to the signals from processor 80, the switch module within electrical sensing module 86 may couple the outputs from the selected electrodes to one of the detection channels or the analog-to-digital converter.
During pacing, escape interval counters maintained by processor 80 may be reset upon sensing of R-waves and P-waves with respective detection channels of electrical sensing module 86. Signal generator 84 may include pacer output circuits that are coupled, e.g., selectively by a switching module, to any combination of the available electrodes appropriate for delivery of a bipolar or unipolar pacing pulse to one or more of the chambers of heart 12. Processor 80 may control signal generator 84 to deliver a pacing pulse to a chamber upon expiration of an escape interval. Processor 80 may reset the escape interval counters upon the generation of pacing pulses by signal generator 84, or detection of an intrinsic depolarization in a chamber, and thereby control the basic timing of cardiac pacing functions. The escape interval counters may include P-P, V-V, RV-LV, A-V, A-RV, or A-LV interval counters, as examples. The value of the count present in the escape interval counters when reset by sensed R-waves and P-waves may be used by processor 80 to measure the durations of R-R intervals, P-P intervals, P-R intervals and R-P intervals. Processor 80 may use the count in the interval counters to detect heart rate, such as an atrial rate or ventricular rate. In some examples, an IMD may include one or more sensors in addition to electrical sensing module 86. For example, an IMD may include a pressure sensor and/or an oxygen sensor (for tissue oxygen or blood oxygen sensing).
Telemetry module 88 includes any suitable hardware, firmware, software or any combination thereof for communicating with another device, such as programmer 24 (
The techniques described in this disclosure may be applicable to IMDs that support sensing and delivery of therapy. In other examples, the techniques may be applicable to IMDs that provide sensing only. The techniques described in this disclosure, including those attributed to IMD 16 and programmer 24, or other elements such as modules or components of such devices, may be implemented, at least in part, in hardware, software, firmware or any combination thereof. Even where functionality may be implemented in part by software or firmware, such elements will be implemented in a hardware device. For example, various aspects of the techniques may be implemented within one or more processors, including one or more microprocessors, DSPs, ASICs, FPGAs, or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components, embodied in programmers, such as physician or patient programmers, stimulators, or other devices. The term “processor” or “processing circuitry” may generally refer to any of the foregoing circuitry, alone or in combination with other circuitry, or any other equivalent circuitry.
Such hardware, software, or firmware may be implemented within the same device or within separate devices to support the various operations and functions described in this disclosure. In addition, any of the described units, modules or components may be implemented together or separately as discrete but interoperable logic devices. Depiction of different features as modules or units is intended to highlight different functional aspects and does not necessarily imply that such modules or units must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components, or integrated within common or separate hardware or software components.
When implemented in software, the functionality ascribed to the systems, devices and techniques described in this disclosure may be embodied as instructions on a non-transitory computer-readable medium such as RAM, ROM, NVRAM, EEPROM, FLASH memory, magnetic data storage media, optical data storage media, or the like. The instructions may be executed to support one or more aspects of the functionality described in this disclosure.
Various examples have been described. These and other examples are within the scope of the claims.
In one example, a medical device programmer comprises a telemetry module that wirelessly communicates with an implantable medical device (IMD) that delivers therapy to a patient, a processor that communicates with the IMD via the telemetry module, a user interface including a display that displays data received from the IMD and receives input from a user, a memory that stores selectable patient therapy parameters for the IMD, a programmer housing with a base below the display, and an adjustable kickstand on a side of the programmer housing that opposes the display. The kickstand is configured to combine with the base to support the programmer in a upright position when the kickstand is fully-collapsed. The kickstand is configured to combine with the base to support the programmer in a reclined position when the kickstand is fully-extended. In some examples, the medical device programmer may be part of a system comprising the medical device programmer and the IMD.
The programmer may further comprise a friction hinge that connects the kickstand to the programmer housing. The friction hinge may provide infinite adjustability between the upright and reclined positions. The display may comprise a touchscreen. The friction hinge may provide sufficient opening resistance at every position between the upright position and the reclined position to allow a user to provide user inputs to the programmer by pressing on the touch screen without causing the kickstand to extend further when the programmer is supported by base and the kickstand on a flat surface. The friction hinge may provide a greater opening resistance than closing resistance. The opening resistance may be at least 50 percent greater than the closing resistance of the friction hinge. For example, the opening resistance may be about 20 in-lbs and the closing resistance may be about 14 in-lbs.
When the programmer is supported by on a flat surface in the upright position with the kickstand fully-collapsed, the display may be at an angle of about 80 degrees to about 90 degrees the flat surface. For example, the display may be at an angle of about 87 degrees to the flat surface.
When the programmer is supported by the kickstand and the base on a flat surface in the reclined position with the kickstand fully-extended, the display is at an angle of less than about 45 degrees to the flat surface. When the programmer is supported by the kickstand and the base on a flat surface in the reclined position with the kickstand fully-extended, the display may be at an angle of about 30 degrees to the flat surface.
When the programmer is supported by the kickstand and the base on a flat surface in the upright position with the kickstand fully-collapsed, the display may be at an angle of about 80 degrees to about 90 degrees the flat surface, when the programmer is supported by the kickstand and the base on the flat surface in the reclined position with the kickstand fully-extended, the display may be at an angle of less than about 45 degrees to the flat surface, and the kickstand may provide infinite adjustability between the upright and reclined positions.
The base may include a convex outer surface that provides an about consistent contact surface area to support the programmer at any angle between the upright position and the reclined position. The base may also include at least two feet formed from a molded elastomer, wherein the feet combine to form the convex outer surface of the base.
The programmer housing may include a metal mounting plate, and the programmer may further comprise: a hinge connecting the kickstand to the programmer housing, and hinge mounting screws that secure the hinge to the metal mounting plate, wherein the hinge is in direct contact with the metal mounting plate when secured to the metal mounting plate by the hinge mounting screws.
The kickstand may include a metal insert that extends substantially the entire length of the kickstand, wherein the metal insert forms a Kensington security slot.
The processor may be configured to perform at least one of a group consisting of: analyze data from the IMD, calibrate the IMD, present data to the user via the user interface for review or analysis, provide instructions to the user via the user interface, provide alarms to the user via the user interface, store selectable therapy delivery and/or sensing parameters of the IMD in the memory, provide an indication of therapy delivery parameters selected by the user to the IMD via the telemetry module, and store a therapy delivery and/or sensing history of the IMD in the memory.
The programmer may include one or more interfaces selected from a group consisting of: a computer expansion card slot, a docking station connector, a barcode reader, a video interface, a computer networking port, a peripheral device interface, an audio jack, and a power supply jack.
The display may comprise a touchscreen display configured to receive input from the user.
In another example, a medical device programmer comprises: a telemetry module that wirelessly communicates with an implantable medical device (IMD) that delivers therapy to a patient, a processor that communicates with the IMD via the telemetry module, a user interface including a display that displays data received from the IMD and receives input from a user, a memory that stores selectable patient therapy parameters for the IMD, a programmer housing with a base below the display, an adjustable kickstand on a side of the programmer housing that opposes the display, and a cooling fan to cool electronic components of the programmer. The programmer housing includes a fan grate that allows airflow from the cooling fan to pass through the programmer housing. The fan grate is positioned behind the kickstand when the kickstand is in the fully-collapsed position. The kickstand includes an aperture adjacent the fan grate when the kickstand is in the fully-collapsed position, the aperture allowing airflow from the cooling fan to pass through the fan grate when the kickstand is in the fully-collapsed position. In some examples, the medical device programmer may be part of a system comprising the medical device programmer and the IMD.
The fan grate may serve as an airflow outlet.
The kickstand may be configured to combine with the base to support the programmer in a upright position when the kickstand is fully-collapsed, and the kickstand may be configured to combine with the base to support the programmer in a reclined position when the kickstand is fully-extended.
The programmer may further comprise a friction hinge that connects the kickstand to the programmer housing. The friction hinge may provide infinite adjustability between the upright and reclined positions. The display may comprise a touchscreen. The friction hinge may provide sufficient opening resistance at every position between the upright position and the reclined position to allow a user to provide user inputs to the programmer by pressing on the touch screen without causing the kickstand to extend further when the programmer is supported by base and the kickstand on a flat surface. The friction hinge may provide a greater opening resistance than closing resistance.
When the programmer is supported by the kickstand and the base on a flat surface in the upright position with the kickstand fully-collapsed, the display may be at an angle of about 80 degrees to about 90 degrees the flat surface, when the programmer is supported by the kickstand and the base on the flat surface in the reclined position with the kickstand fully-extended, the display may be at an angle of less than about 45 degrees to the flat surface, and the kickstand may provide infinite adjustability between the upright and reclined positions.
The base may include a convex outer surface that provides an about consistent contact surface area to support the programmer at any angle between the upright position and the reclined position. The base may further include at least two feet formed from a molded elastomer, wherein the feet combine to form the convex outer surface of the base.
The programmer housing may include a metal mounting plate, and the programmer may further comprise: a hinge connecting the kickstand to the programmer housing, and hinge mounting screws that secure the hinge to the metal mounting plate, wherein the hinge is in direct contact with the metal mounting plate when secured to the metal mounting plate by the hinge mounting screws.
The kickstand may include a metal insert that extends substantially the entire length of the kickstand, wherein the metal insert forms a Kensington security slot.
The processor may be configured to perform at least one of a group consisting of: analyze data from the IMD, calibrate the IMD, present data to the user via the user interface for review or analysis, provide instructions to the user via the user interface, provide alarms to the user via the user interface, store selectable therapy delivery and/or sensing parameters of the IMD in the memory, provide an indication of therapy delivery parameters selected by the user to the IMD via the telemetry module, and store a therapy delivery and/or sensing history of the IMD in the memory.
The programmer may include one or more interfaces selected from a group consisting of: a computer expansion card slot, a docking station connector, a barcode reader, a video interface, a computer networking port, a peripheral device interface, an audio jack, and a power supply jack.
The display may comprise a touchscreen display configured to receive input from the user.
This application claims the benefit of U.S. Provisional Application No. 61/444,578, entitled, “MEDICAL DEVICE PROGRAMMER WITH ADJUSTABLE KICKSTAND,” and filed on Feb. 18, 2011, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3631847 | Hobbs, II | Jan 1972 | A |
3942535 | Schulman | Mar 1976 | A |
4208008 | Smith | Jun 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4282872 | Franetzki et al. | Aug 1981 | A |
4304238 | Fischer | Dec 1981 | A |
4365633 | Loughman et al. | Dec 1982 | A |
4373527 | Fischell | Feb 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4443218 | DeCant, Jr. et al. | Apr 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4542532 | McQuilkin | Sep 1985 | A |
4550731 | Batina et al. | Nov 1985 | A |
4550732 | Batty, Jr. et al. | Nov 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4564012 | Shimada et al. | Jan 1986 | A |
4573994 | Fischell et al. | Mar 1986 | A |
4587970 | Holley et al. | May 1986 | A |
4678408 | Nason et al. | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731051 | Fischell | Mar 1988 | A |
4731726 | Allen, II | Mar 1988 | A |
4803625 | Fu et al. | Feb 1989 | A |
4809697 | Causey, III et al. | Mar 1989 | A |
4826810 | Aoki | May 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
4926865 | Oman | May 1990 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5158078 | Bennett et al. | Oct 1992 | A |
5226413 | Bennett et al. | Jul 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5339821 | Fujimoto | Aug 1994 | A |
5341291 | Roizen et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5350407 | McClure et al. | Sep 1994 | A |
5350411 | Ryan et al. | Sep 1994 | A |
5357427 | Langen et al. | Oct 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5383915 | Adams | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5417222 | Dempsey et al. | May 1995 | A |
5456692 | Smith, Jr. et al. | Oct 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5485408 | Blomquist | Jan 1996 | A |
5503770 | James et al. | Apr 1996 | A |
5507288 | Böcker et al. | Apr 1996 | A |
5512246 | Russell et al. | Apr 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569187 | Kaiser | Oct 1996 | A |
5573506 | Vasko | Nov 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5594638 | Iliff | Jan 1997 | A |
5607458 | Causey, III et al. | Mar 1997 | A |
5609060 | Dent | Mar 1997 | A |
5615318 | Matsuura | Mar 1997 | A |
5626144 | Tacklind et al. | May 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5653735 | Chen et al. | Aug 1997 | A |
5660176 | Iliff | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5678571 | Brown | Oct 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5690690 | Nappholz et al. | Nov 1997 | A |
5701894 | Cherry et al. | Dec 1997 | A |
5704366 | Tacklind et al. | Jan 1998 | A |
5713856 | Eggers et al. | Feb 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5764159 | Neftel | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5779655 | Holden | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5792201 | Causey, III et al. | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5861018 | Feierbach | Jan 1999 | A |
5868669 | Iliff | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5879163 | Brown et al. | Mar 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5897493 | Brown | Apr 1999 | A |
5898679 | Brederveld et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5913310 | Brown | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5938690 | Law et al. | Aug 1999 | A |
5940801 | Brown | Aug 1999 | A |
5954643 | Van Antwerp et al. | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5997476 | Brown | Dec 1999 | A |
6009339 | Bentsen et al. | Dec 1999 | A |
6011984 | VanAntwerp et al. | Jan 2000 | A |
6032119 | Brown et al. | Feb 2000 | A |
6101478 | Brown | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6168563 | Brown | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6177905 | Welch | Jan 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6249703 | Stanton et al. | Jun 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6308102 | Sieracki et al. | Oct 2001 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6532628 | Kim | Mar 2003 | B2 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6609032 | Woods et al. | Aug 2003 | B1 |
6622045 | Snell et al. | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6654027 | Hernandez | Nov 2003 | B1 |
6659968 | McClure | Dec 2003 | B1 |
6665565 | Stomberg et al. | Dec 2003 | B1 |
6804558 | Haller et al. | Oct 2004 | B2 |
6868309 | Begelman | Mar 2005 | B1 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6978181 | Snell | Dec 2005 | B1 |
7015935 | Herget et al. | Mar 2006 | B2 |
7043305 | KenKnight et al. | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7065409 | Mazar | Jun 2006 | B2 |
7142923 | North et al. | Nov 2006 | B2 |
7146219 | Sieracki et al. | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7181286 | Sieracki et al. | Feb 2007 | B2 |
7216000 | Sieracki et al. | May 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7373206 | Sieracki et al. | May 2008 | B2 |
7489970 | Lee et al. | Feb 2009 | B2 |
7499048 | Sieracki et al. | Mar 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
7657319 | Goetz et al. | Feb 2010 | B2 |
7742821 | Vamos et al. | Jun 2010 | B1 |
7848819 | Goetz et al. | Dec 2010 | B2 |
7885712 | Goetz et al. | Feb 2011 | B2 |
7899546 | Sieracki et al. | Mar 2011 | B2 |
20010041920 | Starkweather et al. | Nov 2001 | A1 |
20020016568 | Lebel et al. | Feb 2002 | A1 |
20020049480 | Lebel et al. | Apr 2002 | A1 |
20020123673 | Webb et al. | Sep 2002 | A1 |
20020133207 | Thomas et al. | Sep 2002 | A1 |
20030041192 | Teng et al. | Feb 2003 | A1 |
20030088290 | Spinelli et al. | May 2003 | A1 |
20030109905 | Mok et al. | Jun 2003 | A1 |
20030130708 | Von Arx et al. | Jul 2003 | A1 |
20030171789 | Malek et al. | Sep 2003 | A1 |
20030177031 | Malek | Sep 2003 | A1 |
20040055114 | Lu | Mar 2004 | A1 |
20040073095 | Causey, III et al. | Apr 2004 | A1 |
20040138518 | Rise et al. | Jul 2004 | A1 |
20040138724 | Sieracki et al. | Jul 2004 | A1 |
20040143302 | Sieracki et al. | Jul 2004 | A1 |
20040167587 | Thompson et al. | Aug 2004 | A1 |
20040199215 | Lee et al. | Oct 2004 | A1 |
20040215286 | Stypulkowski | Oct 2004 | A1 |
20040225337 | Housworth et al. | Nov 2004 | A1 |
20040260363 | Arx et al. | Dec 2004 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050021108 | Klosterman et al. | Jan 2005 | A1 |
20050277999 | Strother et al. | Dec 2005 | A1 |
20050283198 | Haubrich et al. | Dec 2005 | A1 |
20060113382 | Singgih et al. | Jun 2006 | A1 |
20060161213 | Patel | Jul 2006 | A1 |
20060190047 | Gerber et al. | Aug 2006 | A1 |
20070156033 | Causey, III et al. | Jul 2007 | A1 |
20080055826 | Smith et al. | Mar 2008 | A1 |
20080140161 | Goetz et al. | Jun 2008 | A1 |
20080140162 | Goetz et al. | Jun 2008 | A1 |
20080140163 | Keacher et al. | Jun 2008 | A1 |
20090157137 | Gilkerson et al. | Jun 2009 | A1 |
20100228323 | Vamos et al. | Sep 2010 | A1 |
20100280578 | Skelton et al. | Nov 2010 | A1 |
20120036679 | Chen | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
43 29 229 | Mar 1995 | DE |
0750921 | Jan 1997 | EP |
0753327 | Jan 1997 | EP |
0 806 738 | Nov 1997 | EP |
0 880 936 | Dec 1998 | EP |
WO 9401039 | Jan 1994 | WO |
WO 9721456 | Jun 1997 | WO |
WO 9728736 | Aug 1997 | WO |
WO 9820439 | May 1998 | WO |
WO 9824358 | Jun 1998 | WO |
WO 9842407 | Oct 1998 | WO |
WO 9849659 | Nov 1998 | WO |
WO 9859487 | Dec 1998 | WO |
WO 9908183 | Feb 1999 | WO |
WO 9910801 | Mar 1999 | WO |
WO 9918532 | Apr 1999 | WO |
WO 9922236 | May 1999 | WO |
WO 9956613 | Nov 1999 | WO |
WO 0019887 | Apr 2000 | WO |
WO 0078210 | Dec 2000 | WO |
WO 0128416 | Apr 2001 | WO |
WO 0128495 | Apr 2001 | WO |
WO 0139089 | May 2001 | WO |
0145793 | Jun 2001 | WO |
WO 0152718 | Jul 2001 | WO |
WO 0156454 | Aug 2001 | WO |
0187413 | Nov 2001 | WO |
WO 02057994 | Jul 2002 | WO |
WO 03092769 | Nov 2003 | WO |
2008051983 | May 2008 | WO |
2009062938 | May 2009 | WO |
2010143045 | Dec 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20120215284 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61444578 | Feb 2011 | US |