This invention relates to medical device systems and related methods of using medical device systems.
The body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced, or even replaced, with a medical endoprosthesis. An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Examples of endoprosthesis include stents and covered stents, sometimes called “stent-grafts”.
Endoprostheses can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site. Upon reaching the site, the endoprosthesis is expanded, for example, so that it can contact the walls of the lumen.
The expansion mechanism may include forcing the endoprosthesis to expand radially. For example, the expansion mechanism can include the catheter carrying a balloon, which carries a balloon expandable endoprosthesis. The balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn.
In another technique, a self-expandable endoprosthesis is formed of an elastic material that can be reversibly compacted and expanded, e.g., elastically or through a material phase transition. During introduction into the body, the endoprosthesis is restrained in a compacted condition on a catheter. Upon reaching the desired implantation site, the restraint is removed, for example, by retracting a restraining device such as an outer sheath, enabling the endoprosthesis to self-expand by its own internal elastic restoring force.
In an aspect, the invention features a medical device system including a catheter and a stent releasably attached to the catheter. The catheter of the medical device system has a catheter longitudinal axis and is selectively deflectable from the catheter longitudinal axis. The stent of the medical device system includes segments of different conductivity, which are arranged to define at least one closed, conductive loop that has a normal vector that is transverse to a stent longitudinal axis. The stent is releasably attached to the catheter so that the normal vector of the at least one closed, conductive loop is transverse to the catheter longitudinal axis.
In an aspect, the invention features a medical device system including a catheter being able to selectively bend towards a first direction; and a stent including a feature that determines a radial orientation of the stent, wherein the stent is releasably attached to the catheter.
In an aspect, the invention features a method of treating a body of a subject, including inserting into the body of the subject a stent that is releasably attached to a catheter, the stent including at least one closed conductive loop, the loop having a normal vector that is transverse to a stent longitudinal axis, the visibility of the stent varying under MRI as a function of the inproduct between the normal vector and the MRI B0 field axis and releasing the stent from the catheter at a release site to preferentially orient the stent to enhance visibility under MRI.
In an aspect, the invention features a method, including providing a stent having a conductive loop with a normal vector, the normal vector having a select orientation relative to the stent axis, deploying the stent at the target site such that the normal vector has a select orientation at the target site, and analyzing the target site by MRI.
Embodiments may include one or more of the following. The catheter is selectively deflectable in a first direction and the stent is attached to the catheter so that the normal vector substantially moves within the plane defined by the longitudinal axis and the first direction. The stent is attached to the catheter so that the normal vectors of all closed conductive loops are substantially parallel. The segments are arranged to define a single closed conductive loop having a normal vector that is transverse to the stent longitudinal axis. The catheter has a cross-sectional geometry that provides selective deflection. The cross-sectional geometry comprises an oval. The catheter further includes one or more stiffeners arranged to provide selective deflection. The catheter includes a polymer body. The catheter includes an electroactive polymer arranged to provide selective deflection. The stent is balloon expandable. The stent is self-expandable.
Embodiments may also include one or more of the following. The catheter is deflected towards the release site so that the normal vector of the loop is substantially parallel to the B0 field axis. The catheter is removed from the body of the subject. The release site is selected from the group consisting of thoracic aorta, renal artery, iliac artery, femoral artery, and subclavian artery. The stent is expanded at the release site. The stent is attached to the catheter so that during use the feature is positioned at a target site when the catheter is bent towards the first direction. The stent is attached to the catheter so that a normal vector defining the feature of the stent is substantially parallel and opposite to the first direction when the catheter is bent towards the first direction. The radial orientation feature is an opening within a wall of the stent. The feature is a closed, conductive loop.
Embodiments may also include one or more of the following. At the target site, the normal vector is substantially parallel to and in the direction of the main magnetic field applied during MRI imaging. The main magnetic field is substantially parallel to the feet-head axis of the body. The normal vector is transverse to the stent axis. The normal vector is oriented 25° to 90° relative to the stent axis. The stent has multiple loops, each of which is oriented transverse to the stent axis. All of the multiple loops have a common orientation angle relative to the stent axis. The stent has a single loop. The target site is in the renal arteries, iliac arteries, thoracic aorta, subclavian or femoral arteries. The orientation of an applied magnetic field is selected during MRI relative to the orientation of the normal vector.
Embodiments may have one or more of the following advantages. The stent can be releasably attached to the catheter so that the stent is delivered to a target site in a desired orientation. As a result, the stent can be positioned within the patient's body efficiently, which leads to improved health care. As a further result, in embodiments where the stent includes one or more conductive loops, the interior of the stent can be visualized with a magnetic resonance imaging (MRI) system because the conductive loops of the stent can be oriented to face the same direction as an incident magnetic field created by the MRI system.
Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
Referring particularly to
During MRI, an incident electromagnetic field is applied to a patient's body and, as a result, is applied to the stent. The visibility of the stent can vary under MRI as a function of the in product (vector inner product) of the stent normal vector and the B0 field axis. The magnetic environment of the stent can be constant or variable, such as when the stent moves within the magnetic field (e.g., from patient breathing resulting in diaphragm motion and motion of the renal artery or from blood flow) or when the incident magnetic field is varied. When there is a change in the magnetic environment of the stent, which can act as a coil or a solenoid, an induced electromotive force (emf) is generated according to Faraday's Law. The induced emf in turn can produce an eddy current within a closed, conductive loop that induces a magnetic field that opposes the change in magnetic field. The induced magnetic field can interact with the incident magnetic field to reduce (e.g., distort) the visibility of material within the lumen of the stent. As a result, by controlling (e.g., reducing, eliminating, or selecting the orientation of) closed, conductive loops that induce magnetic fields which oppose the incident magnetic fields (e.g., closed, conductive loops that have normal vectors not substantially aligned with the incident magnetic field) visualization is improved. MRI is further discussed in The Basics of NMR, Joseph P. Hornak, Ph.D., Copyright 1997-99, J. P. Hornak.
Referring to
Segments 42 are formed from low or non-conductive materials such as, for example, ceramic and/or polymer materials, that are bonded to, inserted and/or embedded into the conductive material to increase resistance and thus prevent or reduce conduction through the segments 42, and thus reduce or eliminate the formation of conductive loops with non-selected orientations including, for example, around the circumference of stent 12. For example, the segments 42 can be formed by bonding a length of high resistance material to a lower resistance material making up segments 40. For example, segment 42 shown within section labeled D of
Referring to
The position in which stent 12 is releasably attached to portion 20 is selected to provide desirable magnetic resonance imaging. For example, as shown in
Referring to
A medical professional at some later time can visualize the interior of stent 12 to monitor recovery (e.g., check to see if a stenosis has formed within the lumen of stent 12). Using an MRI system the medical professional can apply a static magnetic field aligned along the patient's longitudinal axis 24 to view the interior of stent 12 with little or no distortions generated by stent 12. In addition, the delivery and deployment can be monitored by MRI by visualizing changes in the MRI signal because stent orientation changes as it is delivered through the vasculature, creating variations in the signal.
Referring to
Referring to
Referring to
While certain embodiments have been disclosed, others are also possible. For example, although a portion of the catheter of the medical device system is described above as being selectively deflectable along a bending direction because of its oval cross-sectional shape, in certain embodiments, a portion of the catheter can be selectively deflectable and have a cross-sectional shape other than oval (e.g., rectangular, trapezoidal, square, circular). Selective deflection can be effected by use of a pull wire attached to a distal portion of the catheter and accessible from a proximal portion.
In embodiments, the catheter portion can be selectively deflectable along a bending direction because of the material(s) forming the portion. For example, the material(s) forming the portion can provide different material properties (e.g., stiffness) for different axes defining the portion's cross-sectional shape. In certain embodiments, the material(s) used to form portion 20 can include material(s) that change shape after a stimulus (e.g., electric energy, thermal energy) is applied. As a result of the material's change in shape, the cross-sectional shape of the catheter portion is altered to provide increased stiffness along one axis compared to another. Examples of suitable material(s) include shape memory alloys, such as titanium nickel alloys, and electroactive polymers, such as polyelectrolyte gels, ionic polymers, conducting polymers, and other electroactive polymers described in “Polymer Actuators” by Sommer-Larsen et al. (6.6 MB), Nordic Polymer DAYS, Stockholm, June 13-15, http://www.risoe.dk/fys-artmus/publications.htm, Proceedings of Actuator 2002, 8th International Conference on New Actuators, Bremen, Germany, pp. 371-378.
In embodiments, the catheter portion can be selectively deflectable along a bending direction because of one or more stiffening elements disposed within a matrix material forming the portion. Referring to
In embodiments, the orientation of the MRI field can be modified to a desired orientation relative to the orientation of the vector of the closed loop of the stent. In embodiments, the position of the patient in the MRI field can be modified to a desired orientation of the vector of the closed loop stent. For example, the arms could be positioned occurs the patient's abdomen to orient the radial and ulnar arteries perpendicular to the magnetic field.
All of the features disclosed herein may be combined in any combination. Each feature disclosed may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.
All publications, applications, and patents referred to in this application are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference in their entirety.
Still other embodiments are in the following claims.