This disclosure relates to medical device transcutaneous communication systems and methods and, more particularly, to a device arbitration system and method for transcutaneous communication with such medical devices.
Implantable medical devices for producing a therapeutic result in a patient are well known. Examples of such implantable medical devices include implantable drug infusion pumps, implantable neurostimulators, implantable cardioverters, implantable cardiac pacemakers, implantable defibrillators and cochlear implants. Some of these devices, if not all, and other devices either provide an electrical output or otherwise contain electrical circuitry to perform their intended function.
It is common for implantable medical devices, including implantable medical devices providing an electrical therapeutic output, to utilize transcutaneous telemetry to transfer information to and from the implanted medical device. Information typically transferred to an implanted medical device includes transferring instructions or programs to the implanted medical device from an external device such as an external programmer. Information typically transferred from an implanted medical includes information regarding the status and/or performance of the implanted medical device.
As telemetry ranges increase, there is an increasing problem with communicating with multiple devices, as more than one device can be in the telemetry range of a programmer at once. If more than one implanted medical device responds to an identification command, the communication link may fail as uplink responses collide with one another.
In order to efficiently select the desired one of a plurality of implanted medical devices, many or all of which may respond to an identification command issued by an external device, special techniques may be used.
In an embodiment, the present invention provides a medical system having a plurality of implantable medical devices and an external device being configured to transcutaneously send an identification command to at least one of the plurality of implantable medical devices. The plurality of implantable medical devices are configured to respond to the identification command with an uplink response in one of a plurality of uplink time slots. The external device is configured to receive the uplink response from each of at least one of the plurality of implanted medical devices. The external device is configured to establish transcutaneous communication to a selected one of the plurality of implanted medical devices based, at least in part, upon an order in time of which the plurality of implanted medical devices respond with the uplink response.
In another embodiment, the present invention provides a method of selecting one of a plurality of implanted medical devices with which to establish transcutaneous communication from an external device associated with at least one of the plurality of medical devices. An identification command is sent from the external device. At least one of the plurality of implanted medical devices respond to the identification command with an uplink response in one of a plurality of uplink time slots. The uplink response from at least one of the plurality of implanted medical devices is received with the external device. One of the plurality of implanted medical devices is selected to establish transcutaneous communication based, at least in part, on upon an order in time of which the plurality of implanted medical devices respond with the uplink response.
In a preferred embodiment, the implanted medical devices selected is primarily based upon an order in time of which the plurality of implanted medical devices respond with the uplink response.
In a preferred embodiment, the implanted medical device selected is primarily based upon which of the plurality of implanted medical devices are first to respond with the uplink response.
In a preferred embodiment, the implanted device selected is based, at least in part, upon a signal strength of the uplink response of at least one of the plurality of implanted medical devices.
In a preferred embodiment, selection of the implanted medical device favors the uplink response having a stronger of the signal strength.
In a preferred embodiment, if at least two of the plurality of medical devices respond with the uplink signal in one of the plurality uplink time slots, known ones of the plurality of medical devices cease responding to the identification command; and the identification command is resent and sending of the identification command is repeated.
In a preferred embodiment, each of the plurality of medical devices are identified based, at least in part, on the uplink signal received; if at least two of the plurality of medical devices respond with the uplink signal in one of the plurality uplink time slots, known ones of the plurality of medical devices cease responding to the identification command; and the identification command is resent and to the uplink signal is again received.
In a preferred embodiment, identification commands are continued to be resent until no two of the plurality of medical devices respond with the uplink signal in one of the plurality of uplink time slots.
In a preferred embodiment, known ones of the plurality of medical devices cease responding, for a predetermined period of time, to the identification command as a result of being instructed to cease responding.
In a preferred embodiment, known ones of the plurality of medical devices cease responding, until instructed otherwise, to the identification command.
In a preferred embodiment, at least one of the plurality of implantable medical devices determines, at least in part, in which of the plurality of time slots in which to provide the uplink response based, at least in part, upon a strength of the identification command received by the at least one of the plurality of implantable medical device.
In a preferred embodiment, the plurality of medical devices provide the uplink response in an earlier set of the plurality of time slots when the strength of identification command is above a predetermined threshold and in a later set of the plurality of time slots when the strength of identification command is below the predetermined threshold.
In a preferred embodiment, a user is instructed to move at least a portion of the external device closer to one of the plurality of implanted medical devices with which the user wishes to establish transcutaneous communication.
The following exemplary embodiments are described, for the most part, in the context of a implantable neurostimulator having a rechargeable power source, although use of the various device arbitration system with other implantable medical devices, such as pacemakers, implantable cardiac defibrillators, defibrillators, therapeutic agent infusion devices (e.g., drug pumps), is contemplated.
External device 15 may be used to transcutaneously communicate with implantable neurostimulator 22 as discussed below.
Neurostimulation system 20 includes an external communication device such as a physician programmer usually operable by a medical practitioner, such as a physician, and/or a patient programmer usually operable by the patient. Neurostimulation system 20 may also include or be used with various other medical devices and computer-based platforms, such as PCs, notebooks, servers, etc.
A physician programmer is typically used by a physician, clinician or other medical professional to control or set all available parameters of the implantable medical device and to set parameters and limits under which a patient may be able to control or adjust the implanted medical device.
A patient programmer is typically used by a patient, or another person caring for such patient, into whom the implantable medical device has been implanted for control of medical device parameters over which the patient typically has control. As an example, the patient could use the control to turn the implantable medical on or off or to adjust the therapy level or therapy type provided by the implanted medical device within constraints previously set by the physician programmer.
It is to be recognized and understood that the present invention may be found useful with other types of external devices, other than specifically physician programmers or patient programmers, in transcutaneous communication with implanted medical devices.
An external device typically uses well known wireless communication techniques to transcutaneously communicate with an implanted medical device. Such transcutaneous communication is typically referred to as telemetry. Many well known telemetry techniques are available to provide such transcutaneous communication.
A problem may arise, however, when an external device, such as a physician programmer or a patient programmer, attempts to communicate with an implanted medical device in a physical location which is somewhat in the proximity of a second implantable or implanted medical device. Such a situation may occur, for example, if a patient has more than one medical device implanted, if a second patient also having an implanted medical device is nearby, e.g., in an emergency ward or a hospital or other medical setting, or if another implantable medical awaiting implant, for example, is located nearby.
In a typical transcutaneous communication situation involving an external device and an implanted medical device, the external device will send a wireless communication request, such as an identification command. An implanted medical will receive the identification request and will send back an acknowledgement, perhaps including information about the implanted medical device. This procedure works well as long as only one implantable or implantable medical device is within wireless range of the communication request. For example, in
Partly for this reason, some delay is designed into the timing of the acknowledgement for an implanted medical device. A reply period may be divided into a plurality of time slots. An individual medical device, such as neurostimulator 22A or neurostimulator 22B may reply to the communication request (identification command) in one of the plurality of time slots. This is illustrated schematically in the timing diagram of
If implanted medical device 15 randomly picks one of the plurality of time slots in which to respond, the chance of two or more medical devices responding in the same time slot (52, 54, 56, 58, 60, 62, 64 and 66) is reduced. If two or more medical devices do respond in the same time slot, e.g., time slot 52, then a collision occurs and communication is not established. In this case, external device 15 may reissue an identification command and repeat the process. The probability that the two or more medical devices will again randomly pick the same time slot to respond on consecutive iterations of issuance of identification commands is reduced.
However, even if communication is successful on a second or subsequent issuance of an identification command, the establishment of transcutaneous communication is delayed due to the time required to reissue the identification command and to reprocess acknowledgements. Since, in many instances, transcutaneous communication will not or can not occur during the delivery of therapy to the patient, the time periods between therapies, e.g., between electrical stimulation pulses, is in short supply. Thus, increasing the time required to establish transcutaneous communication is significant.
Even if two or more medical devices respond in different time slots, external device 15 must still determine which of the medical devices 22 with which to establish communication. This can be done by building a list of medical devices 22 responding to the identification request and allowing a user of the external device 15, e.g., a physician or the patient, to select the appropriate medical device 22. For example, a table, list or other presentation of information such as that illustrated in
Other techniques to establish transcutaneous communication between an external device 15 and one of a plurality of medical devices 22 are contemplated.
A first exemplary technique implanted medical devices respond to an identification command (sent by an external unit) with various random delays to prevent the uplink response from multiple implanted medical devices from overlapping and thereby corrupting the signal. The user of the external device can then look at each time slot, identify and record each implanted medical device that responds, i.e., sends an uplink response, and telemeter the identified implanted medical devices to stop communicating to an identification command from that external device for a period of time, and then reissue the identification command. After repeated attempts, all implanted medical devices within range can be found and silenced. When no further implanted medical devices respond to the identification command, a complete list of implanted medical devices within range is obtained. The user may select from the list of devices based on knowledge of how the devices are named or identified in order to uniquely select an individual implanted medical device.
This is illustrated in the timing diagram of
A second exemplary technique uses a pseudo-random system that is based on downlink telemetry strength. Implanted medical devices that receive a strong downlink signal reply to an identification command in a first time slot, or in a first few time slots, during device arbitration. Implanted medical devices that receive a weaker downlink signal reply to the identification command in a later time slot or in later time slots. The user can then select the implanted medical device that first responds to the identification command, which typically is the implanted medical device closest to the external device operated by the user and that received the strongest downlink signal, i.e., the strongest identification command. The user not need select the particular implanted medical device from a list of devices that are in the telemetry range of the external device. The arbitration is faster than the first exemplary technique, since it doesn't need to find and identify every implanted medical device within range, but only needs to find the closest implanted medical device, which responds in one of the earliest timeslots. Multiple command attempts are typically not needed.
In
This technique works well when external device 15 is located significantly closer to the medical device 22 with which communication is intended than other medical devices within communication range. An additional benefit of this technique is that if only one medical device 22 responds in a time slot indicative of a strong downlink signal, and perhaps if the user is confident that external device 15 is positioned closest to the intended medical device 22, then communication may be established with that medical device 22 without the necessity of identifying or listing all responding medical devices 22.
External device 15 will start a transcutaneous communication session with the first implanted medical device 22A recognized after broadcasting an identification command is sent. As noted above, the uplink time slots (52, 54, 56, 58, 60, 62, 64 and 66) may be grouped according to detected downlink strength.
External device 15 may send an identification command 50 to find a medical device 22 on the first button pressed by a user that requires telemetry. The delayed uplinks from the medical device 22 may be grouped so that the medical device 22 that receives the identification command 50 with high downlink strength (for example, data strength of 7), it will send an uplink response randomized in the first four timeslots (52, 54, 56 and 58) (100-400 milliseconds of delay) and if the medical device 22 receives the identification command 50 with medium or low downlink strength (for example, data strength of 3 or 1), it will respond with a randomized uplink in the last four timeslots (60, 62, 64 and 66) (500-800 milliseconds of delay).
A medical device 22 detects a high strength downlink if an external device 22 is positioned properly over the medical device 22. Another medical device 22 that is sitting right next to the first medical device 22 will get a strength indicator of medium or low. This dramatically increases the odds of selecting the medical device 22 that is closest to the external device and can shorten the amount of time (up to 400 milliseconds) for determining which medical device 22 to talk to for a properly located external device 15.
If two implanted medical devices are at an approximately equal distance from the external device, special provision may need to be made since collision of uplink responses from the multiple implanted medical devices is likely. First, the system may still pick the first implanted medical device that communicates with it, since there still can be timeslots within each downlink strength that are still randomly sorted, or sorted by serial number, for example, so uplink responses from equally spaced implanted medical device do not collide. Second, the user may by alerted to move the external device closer to the implanted medical device with which communication is desired, in the event of collision of uplink responses from more than one implanted medical device. Third, all of the implanted medical devices may be listed as in the first exemplary technique described above and the user may select the implanted medical device with which communication is desired.
In a third exemplary technique, the user may look at the strength of the uplink signal from each of the plurality of implanted medical devices. In this exemplary embodiment, time-slot arbitration would be used with many different time slots to minimize and, hopefully, prevent uplink response collisions. The user may receive uplink response from all of the implanted medical devices using the arbitration techniques as described above in the first exemplary technique and then look to see which implanted medical device replied with the strongest uplink signal. The user may then select the implanted device having the strongest uplink response signal, which is usually the implanted medical device that is closest to the external device issuing the identification command.
It is to be recognized and understood that the above described techniques are primarily intended to arbitrate between two or more implanted medical devices in the establishment and/or identification of such devices by an external device desiring to communicate with one or more such devices. It should be recognized that once each, or one of, the implanted medical are identified such that an identifier associated with the implanted medical device is known to the external device, that the external device may communicate with any such known implanted medical device simply by specifying the identifier or address of that device without the necessity to further resort to arbitration techniques.
After the communication session starts, the ID medical device 22 selected is set in the external device 15 and the external device 15 will only communicate to the initial medical device 22 found until the communication session is ended.
The contents of provisional U.S. Application Ser. No. 60/589,994, filed Jul. 20, 2004, are hereby incorporated by reference.
Thus, embodiments of the medical device telemetry arbitration system are disclosed. One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.
This application claims priority to provisional U.S. Application Ser. No. 60/589,994, filed Jul. 20, 2004.
Number | Date | Country | |
---|---|---|---|
60589994 | Jul 2004 | US |