Medical device with tail(s)

Information

  • Patent Grant
  • 6656146
  • Patent Number
    6,656,146
  • Date Filed
    Tuesday, April 27, 1999
    25 years ago
  • Date Issued
    Tuesday, December 2, 2003
    21 years ago
Abstract
A ureteral stent for assisting movement of urine along a patient's ureter and into the patient's bladder. The stent includes an elongated tubular segment extending toward the bladder from a kidney end region for placement in the renal cavity to a bladder end region. A central lumen connects at least one opening at the first end region to at least one opening in the bladder end region. Thin flexible tail(s) are attached to the bladder end region of the tubular segment at a point outside the bladder so as to receive urine from the opening in the bladder end region of the tubular segment and to transport urine from there across the ureter/bladder junction and into the bladder. The tails include an elongated external urine-transport surface sized and configured to transport urine along the ureter. The urine transporting surface(s) are sized and configured to extend along at least part of the ureter, across the ureter/bladder junction, and from there into the bladder.
Description




FIELD OF THE INVENTION




This application relates to ureteral stents.




BACKGROUND OF THE INVENTION




Ureteral stents are used to assist urinary drainage from the kidney to the bladder in patients with ureteral obstruction or injury, or to protect the integrity of the ureter in a variety of surgical manipulations. More specifically, stents may be used to treat or avoid ureter obstructions (such as ureteral stones or ureteral tumors) which disrupt the flow of urine from the kidneys to the bladder. Serious obstructions may cause urine to back up into the kidneys, threatening renal function. Ureteral stents may also be used after endoscopic inspection of the ureter.




Ureteral stents typically are tubular in shape, terminating in two opposing ends: a kidney (upper) end and a bladder (lower) end. The ends may be coiled in a pigtail or J-shape to prevent the upward or downward migration of the stent, e.g., with physiological movements. The kidney coil is designed to retain the stent within the renal pelvis of the kidney and to prevent stent migration down the ureter. The bladder coil sits in the bladder and is designed to prevent stent migration upwards toward the kidney. The bladder coil is also used to aid in retrieval and removal of the stent.




Ureteral stents, particularly the portion positioned in the ureter near the bladder and inside the bladder, may produce adverse effects including blood in the urine, a continual urge to urinate, strangury, and flank pain accompanying reflux of urine up the stent (e.g., when voiding) as pressure within the bladder is transmitted to the kidney. In short, stents may cause or contribute to significant patient discomfort and serious medical problems.





FIG. 10

is a schematic drawing of the human urinary tract without a stent, showing the renal pelvis, the kidney, the ureter, and the ureteral orifices opening into the bladder.

FIG. 11

depicts a typical double-J stent


10


which comprises a small tube


12


which sits inside the urinary system and assists the flow of urine from the kidney (renal pelvis) to the bladder.

FIG. 12

depicts prior art indwelling ureteral stent


10


in position. Such stents are typically made of biocompatible plastic, coated plastic, or silicone material. Tube


12


typically varies in size from 4-8 fr. (mm in circumference), and it has multiple small holes throughout its length. A coiled shape pre-formed at each end


14


and


16


is designed to confine its movement within the urinary system, so that it will be maintained in the desired position. The upper (kidney) end


14


of the stent may be closed or tapered, depending on the method of insertion (e.g., the use of a guidewire). The tubular stent extends through the ureteral orifice


18




a


and into the bladder, fixing orifice


18




a


open, and thereby enhancing the opportunity for reflux. For clarity, the ureter entering bladder


20


through orifice


18




b


is not shown. A monofilament thread


22


may be attached to the bladder end of the stent for removal, usually without cystoendoscopy.




U.S. Pat. No. 4,531,933 (“the '933 patent”) discloses a ureteral stent having helical coils at each end which are provided for preventing migration and expulsion.




SUMMARY OF THE INVENTION




We have discovered a ureteral stent design that avoids patient discomfort and urine reflux upward toward the kidney. Rather than rely on a tubular structure to contain and facilitate all (or, in some embodiments, any) urine flow along the ureter, the invention features a thin flexible elongated tail member having an elongated external urine-transport surface. Urine flows along the outside surface of the structure, between that surface and the inside wall of the ureter. Without limiting ourselves to a specific mechanism, it appears that urine may remain attached to, and flow along, the external urine transport surface. The use of a foreign body that is as small as possible in the lower (bladder) end of the ureter and in the bladder itself decreases patient discomfort. Typically, the external urine transport surface is sized and configured to extend along at least part of the ureter near the bladder, across the ureter/bladder junction, and from there through the ureteral opening into the bladder.




While most or all of the length of the stent may rely on such an external surface to assist flow, more typically the stent will also include an upper elongated tubular segment to transport urine along a significant portion of the upper ureter. The upper tubular segment is connected at its lower end to an elongated tail which has the above described external urine-transport surface. The upper tubular segment comprises: a) an upper region having at least a first opening; b) a lower region having at least a second opening to be positioned in the ureter outside the bladder, and c) a central lumen connecting the first opening to the second opening. The elongated tail is a thin flexible tail member or filament(s) extending from the lower region of the tubular segment at a point outside the bladder so as to receive urine from the second opening of the tubular segment and to transport urine along the ureter from the lower region of the tubular segment across the ureter/bladder junction and into the bladder. Typically, but not exclusively, the upper region of the tubular segment is configured and sized for placement in the renal cavity.




Typically the elongated tail member comprises at least one (and more preferably at least two) thread filament(s). Two or more of the filaments may be configured in at least one filament loop, and, advantageously, the tail comprises no unlooped filaments, so that the tail is free from loose ends. The loop(s) can be made by joining the ends of a single filament, in which case the filament loop comprises a junction of individual filament ends, which junction typically is positioned at the point where tail joins to the elongated tubular segment. Preferably, the tail is long enough to effectively prevent migration of the entire tail into the ureter, and the tail has a smaller outer diameter than the outer diameter of the tubular segment.




The tubular stent segment is stiff enough to avoid crimping during insertion through the ureter, so that it can be inserted by typical procedures. The tail, on the other hand, is extremely flexible (soft) in comparison to the tubular segment, and it has a much smaller diameter than the tubular segment to avoid discomfort. Even quite thin structures will provide urine transport, and the thinner and more flexible the tail is, the less likely it is to cause patient discomfort. On the other hand, the tail (and its connection to the rest of the stent) should have sufficient strength so the stent can be retrieved by locating the tail in the bladder and pulling on the tail to retrieve the stent from the kidney and ureter. Details of the tail size are discussed below. The use of reinforcing materials (e.g., sutures as described below) permits the use of thinner tails while still providing the ability to locate the tail in the bladder and to retrieve the stent. The tail may be a suture, and the suture may be coated to avoid encrusting.




The external urine-transport surface of the tail can be convex (circular or oval in section), concave or flat. The tail filament may be fluted. The tail may, but need not, include an accurately shaped anchor segment to control migration up the ureter. The tail may be either solid or hollow; even when hollow, it is not designed to transport a significant amount of urine internally. The tail may also be tapered.




The upper region of the tubular segment may have a portion designed for placement in the renal cavity, which portion has enlarged diameter and/or straight sides and corners. The stent may include an extractor thread attached to the lower end of the elongated tail member.




To make the stent, the tail may be molded in one piece with the tubular segment, or it may be made separately and attached to the bladder end region of the tubular segment at a point toward the kidney from the bladder end of the lower region of the tubular segment. In one specific embodiment, the tail is attached near or at the bladder end of the bladder end region of the tubular segment. The stent may include a suture securing the tail to the tubular segment, and the suture may be incorporated into the tail to impart strength to the tail so the tail may be used to retrieve the stent. If the tail includes a hollow lumen, the suture may be positioned inside that lumen. The suture may be attached to the tubular segment at a point in the bladder end region of the tubular segment, and the suture may extend from the point of attachment through an opening in the bladder end region to the central lumen of the tubular segment and from there to the hollow tail. Alternatively, at least the bladder end region of the tubular segment may include two lumens, a main urine-transporting lumen and a bladder lumen to encase the suture, so that the suture does not become encrusted.




The outer diameter of the tubular segment can be tapered so that it decreases approaching its lower region. The lower region of the tubular segment may include multiple openings positioned, e.g., axially along include its length or radially around its circumference, or in other patterns. In addition, the outer diameter of the stent's tubular segment may decrease approaching the upper region. In other words, the maximum diameter may be at the site of the injury to encourage a sufficiently large inner diameter in the repaired structure, and the tubular segment's outer diameter may decrease moving away from that point of maximum diameter to sections of the normal ureter that are not in need of a broad support structure. Typically, the outer diameter of the upper end of the tubular segment will be greater than the outer diameter of the bladder end. The upper region may include multiple openings (inlets).




In an alternative embodiment, the elongated external urine-transport surface is a continuous surface extending from the kidney to the bladder, e.g., it is the outer surface of a solid member extending from the kidney to the bladder.




Another aspect of the invention features a method of introducing a ureteral stent (described above) into a patient, by (a) positioning the kidney end region of the tubular segment within the renal pelvis; and (b) positioning the elongated flexible member(s) in the bladder.




Yet another aspect of the invention features a method of manufacturing a ureteral stent as -described above. The method comprises: (a) providing a polymer pre-form having a tubular shape; (b) forming an elongated tubular stent segment from the polymer pre-form, and (c) providing tail member(s) at an end region of the tubular segment designed to be positioned toward the patient's bladder.




As described in greater detail below, the stent may be manufactured from a polymer form having a tubular shape by forcing the form onto a mandrel to produce the desired three dimensional shape (coils, etc.). The elongated tubular member(s) is attached to one end of the tubular member(s) using sutures as described above. Heat treatments to fuse the structures and/or standard adhesives may be used. Alternatively, the tubular member(s) and the elongated member constitute a one-piece stent.




The use of relatively thin, flexible elongated member(s) to assist urine flow across the ureterovesical junction and into the bladder may reduce reflux and irritation and thereby reduce patient discomfort and medical problems associated with ureteral stents.




Other features and advantages of the invention will appear from the following description of the preferred embodiment, and from the claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of a ureteral stent with a central portion of the tubular segment omitted.





FIG. 2

is a cross-sectional view along line


2





2


in FIG.


1


.





FIG. 3

is an enlarged side-view of a portion of the ureteral stent in FIG.


1


.





FIG. 4A

is a view of an alternate embodiment of the stent in

FIG. 1

, and

FIG. 4B

is a section taken along


4


B—


4


B of FIG.


4


A.





FIGS. 5A and 5B

are schematic representations of another stent according to the invention, depicted in place.





FIGS. 6A-6D

depict alternative cross-sections of the tail of a stent according to FIG.


5


.





FIG. 7

is a schematic representation of yet another stent according to the invention, having an extraction thread.





FIG. 7A

is an enlargement of a portion of FIG.


7


.





FIG. 8

is a schematic representation of the stent of

FIG. 7

shown in position.





FIG. 8A

is a detail of the connection between the tail and the extraction thread.





FIG. 8B

is a cross-section of threads of differing softness, showing the effect of compression on interstitial space.





FIG. 9

shows an alternative embodiment of the stent.





FIG. 10

is a schematic drawing of the human urinary tract without a stent, showing the renal pelvis, the kidney, the ureter, and the ureteral orifices opening into the bladder.





FIG. 11

depicts a prior art double-J stent outside the body.





FIG. 12

depicts a prior art J indwelling ureteral stent in position.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




In

FIG. 1

, ureteral stent


100


includes an elongated tubular body


130


connecting coil end


140


to straight end region


120


. Tubular body


130


is designed to extend from the renal pelvis through the ureter to a terminus upstream of the bladder. Tail


110


is attached to straight end region


120


, and tail


110


extends along the ureter, across the ureter/bladder junction and into the bladder.




The two opposing end regions


120


and


140


of elongated tubular body


130


are illustrated in FIG.


1


. Coiled end region


140


is designed to be placed in the renal pelvis of the kidney. For illustrative purposes, coiled end region


140


is shown with a pigtail helical coil although any shape that will retain the stent in place within the kidney will do. Coiled end region


140


includes several openings


125


placed along the wall of the tubular body; the openings may be arranged in various geometries (e.g., axial, circumferential, spiral). The entire tubular segment, including the region between the kidney and the bladder end regions, may include additional openings.




The bladder end region


120


of the tubular stent segment is designed to terminate in the ureter, upstream of the bladder. For purposes of further description, the end region of stent


100


received in the kidney will be designated the kidney end and the opposite end of stent


100


toward the bladder will be termed the bladder end.





FIG. 2

is a cross-sectional view of stent


100


of FIG.


1


. In

FIG. 2

, elongated tubular body


130


has annular walls


250


having an inner and outer diameter. The outer diameter of tubular body


130


may be substantially uniform throughout much of the length of the tube, or it may taper from a relatively short region of larger diameter (the site of the repair, where there is a risk that the healing process will substantially restrict flow in the lumen) to a region of generally small diameter. The precise configuration may depend on the ureteral defect being corrected. Just one of the many classes of procedures that can benefit from the stent are endopyelotomies—procedures for treating ureteropelvic junction (UPJ) obstruction by an incision which perforates the ureter at the stricture. In these and other procedures, the stent keeps the ureter lumen open during the healing process, so that the inner diameter of the resulting healed structure is adequate. The section of the tubular segment at the defect is large enough to support growth of repair tissue having an adequate inner diameter. At other sections of the ureter (e.g., sections not being surgically repaired), the outer diameter of the tubular segment may be far smaller, but with an inner diameter adequate for passage over a guidewire. For example, the outer diameter of the bladder end region of the tubular segment typically is 2 Fr.-12 Fr. Preferably the outer diameter of tubular body


130


is greatest at the ureteropelvic junction obstruction but begins to taper approaching each end. Alternatively, for a patient with an upper ureteral obstruction, the upper (kidney) portion of the tubular member


130


may be uniform in diameter, tapering just in the lower (bladder) portion.




Tubular member


130


defines a central lumen or passageway


260


, extending from kidney end region


140


to bladder end region


120


. The inner diameter of lumen


260


is sufficient to permit passage over a guidewire. Tubular body


130


may also have openings


125


extending through its walls


250


to facilitate the flow of urine from the kidney into central lumen


260


and openings


127


to facilitate flow out of central lumen


260


.




In

FIG. 3

, the outer diameter of elongated tubular body


130


tapers near bladder end region


120


. The outer diameter of bladder end region


120


may be made as small as possible while maintaining the ability to pass over a guidewire. Elongated tubular body


130


may (but need not be) substantially straight in bladder end region


120


, i.e. it does not coil or curve in the absence of external force. When tail


110


is a single filament, it typically is thinner than even the smallest portion of bladder end region


120


of the tubular stent segment. Alternatively, it may be desirable to design the tail from multiple filaments, each of which, by itself, is much thinner than the bladder end region of the tubular stent segment. Together, such a multi-filament tail has a larger effective diameter, providing additional bulk while maintaining comfort. Tail


110


may be attached at or near the end of region


120


, and it extends from that attachment into the bladder. Tail


110


is either solid or hollow. It can be generally cylindrical in shape; alternatively, it can be fluted, concave (quarter-moon)-shaped or it may assume other shapes.




The tail can have an outer diameter that is significantly less than the inner diameter of the ureter (typically 2-5 mm) and no greater than the outer diameter of the tubular segment from which it extends. For example the tail diameter is less than 10 Fr. and as low as a suture (about 0.5 Fr). Preferably the tail diameter is between 2 Fr. and 4 Fr. The length of tail


110


is preferably between 1 and 100 cm. In one embodiment, the tail is long enough so that at least a portion of it will remain in the bladder, and effectively the entire tail cannot migrate up into the ureter. Preferably the length is between 1 and 40 cm. Tail


110


is flexible and, upon application of force, can be curved, but also has memory such that when the force is removed, it is generally straight.




Stent


100


, including tail


110


and tube


130


, may be a single unit. Thus, tail


110


can be a unified piece, extending from bladder end region


120


with no additional attachment means. Alternatively tail


110


can be secured to elongated tube


130


or bladder end region


120


by physical or mechanical methods.




For example, in

FIG. 4A

, a suture


415


is inserted through an opening


418


in the tubular member and then threaded through the lumen


417


of tubular member


430


. In

FIG. 4B

, tail


410


is a hollow member having suture


415


threaded through its inner lumen


412


.





FIG. 5

is a schematic of another stent


510


. The kidney end A of the stent has a pre-formed memory bend, to coil


512


as shown. Kidney end A is larger and more rectangular to help prevent upward as well as downward stent migration. End A may be closed or tapered to accommodate various insertion techniques. For the upper portion (A-B) of the stent, diameter, lumen size, perforations and materials are conventional. The lower end


514


of the tubular stent segment ends at B. The distance A-B could vary depending on the patient's anatomy. At B, the stent is tapered (or at least smooth and constant in diameter).




Two or more monofilament or coated (plastic or silicone) threads


516


exit from the lumen or from the stent wall. These threads only partially fill the ureter and are as flexible (soft) as possible. Typically, they are cut to a length which forces confinement within the bladder.




The portion of the upper segment


512


lying within the renal pelvis (e.g, from the kidney end of the stent to point A) is expanded so that it is larger insection, and it may even be oval or rectangular in cross-section, to help prevent upward as well as downward stent migration. The


30


kidney end of the stent may be closed and/or tapered to accommodate the desired insertion technique. The upper portion


512


is made of a relatively stiff material (among the materials currently used in ureteral stents), and it should be designed to effectively restrict the motion of the stent to prevent proximal as well as distal migration of the catheter during normal physiological activity (required because the lower pre-formed portion is deleted). The length of the straight portion of the upper segment (

FIG. 5A

point A to B) will vary with patient size and anatomy. In the preferred configuration, the upper segment extends more than halfway down the ureter when in proper position. The lowest end of the upper segment (

FIG. 5A

point B) should be tapered or beveled to facilitate withdrawal. Otherwise, the upper segment is a typical stent in diameter, materials and shape.




The lower segment (

FIG. 5A

point B to point C) consists of two or more (e.g four) monofilament, plastic coated or silicone coated threads (shown in section in

FIG. 5B

) which extend from the lumen or sidewall of the lower end of the upper segment (

FIG. 5A

point B) along ureter


513


into the bladder. These threads are extremely flexible, and their diameter is selected to maintain a passage for urine flow and yet drastically reduce bladder and ureteral irritation. By avoiding distortion of the ureter wall, the threads may inhibit urinary reflux as well. The threads should be long enough to reach well into the bladder (

FIG. 5A

point C), but not so long as to wash into the urethra with voiding. One thread


518


(or two or more threads in a loop) may be long enough to exit through the urethra (

FIG. 5A

point B to point D) to permit ready removal by pulling (avoiding cystoendoscopy).




These extended threads may also be used for stent exchange, in which a second catheter is exchanged for the catheter already in place. According to that procedure, these extended threads are captured with a snare that has been inserted through the central lumen of a second catheter. The snare is used to pull the threads through the lumen as the second catheter is advanced into the ureter. A guidewire is then inserted through the central lumen of the second catheter to the kidney (outside the first catheter's tubular body). The first stent is then removed by pulling on the threads, leaving the guidewire in position for placement of a new stent using standard techniques.





FIGS. 6A-6D

are alternative cross sectional sketches (taken at the same location as

FIG. 5B

) of some possible arrays of threads passing within the lower ureter


517


. Multiple threads


516


(


2


and


4


, respectively) are shown in

FIGS. 6A and 6B

. A substantially similar conduit could be achieved by fluted type cross sections in a single filament FIGS.


6


C and


6


D). The shapes of

FIGS. 6C and 6D

could also be effective in reducing stiffness and hence irritability at the bladder end (i.e., lower segment), e.g., in a single filament design. Multiple threads may have the advantage of better surgical manipulability and superior comfort to the patient.




Further refinements are described below and in

FIGS. 7 and 7A

which deal with: a) proximal or upward stent migration of either the entire stent or individual threads in the lower segment independent of upper segment movement; b) bunching of one or more threads within the ureter so as to obstruct flow or cause ureteral injury or knotting at the time of removal; and c) in multi-thread embodiments, discomfort and/or reduced drainage through the ureter resulting from the use of threads of different lengths. In

FIG. 6

F (F=French size=circumference in mm) stent is a generally a good size for adult urinary systems. It is large enough to provide good drainage and small enough to minimize local irritation and inflammation of the ureter. In this embodiment, the upper segment need be only a single loop of conventional size because a change in the design of the lower segment (see later discussion and

FIG. 8

) should prevent proximal migration. The upper segment (

FIG. 7

point A to point C) is constructed of a relatively firm material because, during insertion, the pusher tubing should be removed after the guidewire is removed. This means that there will be some drag on the threads during removal of the pusher tubing which could dislodge the stent if the coil (

FIG. 7

point A to point B, about 2.5 cm) does not provide adequate resistance. The coil may be tapered or closed depending on the insertion technique desired (i.e., over a previously placed guidewire.





FIG. 7

point B to point C should have an approximate length of 12 cm. This is long enough to prevent dislocation of the upper segment in a large renal pelvis and short enough to end well above the point where the ureter crosses the common iliac vessels. At the iliac vessels, the ureter takes a fairly sharp turn and the threads will more easily follow the natural curves at this point. This design should reduce the inflammation that is normally seen in this region when a conventional double-J stent is left indwelling on a chronic basis.




The junction of the upper and lower segments at

FIG. 7

point C is important. See

FIG. 7A

, which enlarges this junction. At point C (

FIG. 7

) the threads are attached to the upper segment in a manner that achieves the following goals: 1) the threads are securely attached to the upper segment and to each other (at least for a short distance of about 0.8 mm) so that their orientation to themselves is maintained (to the maintenance of lower end asymmetry); 2) the threads do not obstruct the lumen of the upper segment and they allow for the easy passage of a standard guidewire (e.g., 0.035 guidewire); 3) the transition diameters in this region closely preserve the


6


F standard so that this point can pass in both directions smoothly throughout the instruments used for insertion and through the ureter; 4) there is no cause for a localized ureteral obstruction; and 5) there is an effective abutment for the pusher tubing. For an average size ureter a good starting string diameter for a four string lower segment (FIG..


7


point C to point E) would be 0.020 inches. A simple monofilament nylon thread is an easy potential solution but may be too stiff. A more supple monofilament or woven thread with silicone or other coating may be required to achieve minimal irritability. However, the threads should be sufficiently resistant to compression so that tissue generated pressures cannot collapse the interspaces of the threads. See

FIG. 8B

, showing cross-sections of threads (left) which retain interstitial space under some modest compression and of threads (right) which are so soft that they compress into a plug with reduced interstitial space. These threads may have centimeter markings beginning at a point no more than 20 centimeters from point B (

FIG. 7

) so that functional ureteral and total stent length may be noted.




The portion of the lower segment which lies within the bladder when the stent is in proper anatomic position (

FIG. 7

point D to point E) is important to both comfort and function. Proximal migration can be controlled by using asymmetrical lengths of the thread pairs, with one pair being 2 cm longer than the other pair, so that the fused junction


810


of these threads tends to intersect with the ureteral orifice


814


at an angle (e.g., ˜90°) with the stiffened area


815


having a length of 6 mm (see detail FIG.


8


A). In the ideally fitted stent of this embodiment, the thread pairs will extend beyond the ureteral orifice (

FIG. 7

point D) by 1 cm at the short limb


820


and 3 cm at the long limb


825


. However, this lower segment configuration allows for considerable tolerance in sizing (unlike unsecured independent threads which must be selected to have a length so as to avoid upward migration of the thread through the ureteral orifice


814


) and a chosen length which is 1 cm shorter or 2-3 cm longer than the ideal length should be satisfactory. Using this configuration the threads should form a continuous loop


828


of 3.5 cm length to prevent free ends from poking the bladder wall or prolapsing through the urethra. Buoyant threads may add to patient comfort, because they will float away from the trigone region of the bladder, where most of the sensory nerve fibers are located. A typical small gauge filament extraction thread


830


may be attached to the longer limb


825


of the thread pairs, which is a suitable pulling point for removal.




From this embodiment, a small diameter pusher tubing of 4-4.5 F should be used to aid insertion. Soft percuflex is near optimal for the lower segment, and firm or regular percuflex is used for the upper segment.




The bladder end should be easily inserted using instruments, and it should prevent proximal migration of the. stent. The design of

FIG. 7

will avoid tangling and migration of the stent. Alternatively, soft percuflex, for example, has good resistance to extreme flexion at small radii (e.g., even 0.020″ diameter) so that a simple continuous loop extending from the junction of the upper and lower segments (see

FIG. 9

) may be adequate to prevent upward migration. The design of

FIG. 9

also has the advantage of relative ease of manufacture and relative ease of insertion, as well as ease and comfort of removal.




Other dimensions that can be used (without limitation) are 12 cm straight portion of the upper hollow shaft, and 12 cm, 14 cm, or 16 cm length of added loops of soft percuflex. For the 0.020″ diameter material, either 2 or 3 loops may be used providing 4 or 6 strings, total. For 0.040″ inch material, either 1 or 2 loops is recommended.





FIG. 9

shows such an alternative embodiment having a simple coil at the kidney end. The lower end is constructed of looped string like elements with ends fused at the junction between the lower and the upper end. Therefore, there are an even number of string elements, with no free ends. Circle E in

FIG. 9

represents an idealized depiction of the ureteral opening into the bladder. While not shown in

FIG. 9

, the loops may be fused over a very short distance at the bladder end in order to prevent tangling of loops and to improve stent handling. Any conventional means of fusion may be used. Optionally, organization of the loops can be maintained by pre-placing them inside the pusher tubing using a long monofilament nylon loop tail, similar to those used for the non-invasive removal stents (i.e. without sensor endoscopy).




Methods for insertion and removal of ureteral stents are known in the art. Generally, stent placement is achieved by advancing the tubular stent segment over a guidewire in the ureter. A pushing catheter passes the tubular segment into the kidney, while maintaining the tail in the bladder. Other methods such as a stiff sheath can be used to position the stent. Once in position, the sheath can be removed.




The tubular portion of the stent may be manufactured by extruding a tube according to known techniques. The elongated tail may be separately manufactured by conventional techniques and attached to the tubular portion, e.g., using biocompatible adhesive materials or heat. Alternatively, the stent may be made by injection molding the tube and the tail as a single piece, using a pin to create hollow segments. The stent may be manufactured from any of a number of biocompatible polymers commonly used inside the body, including polyurethane and polyethylene. In still other embodiments, the entire stent may be solid, so that urine is conveyed entirely on an external stent surface.



Claims
  • 1. A medical device, the device comprising:an elongated member comprising a first portion comprising an upper region including a first terminal end, and a substantially straight lower region configured for positioning in the ureter; and a second portion continuously and integrally extending from the lower region of the first portion, the second portion comprising a plurality of elongated, flexible tail members defining a stiffened area including a junction adapted to lie within a bladder, whereby the junction intersects a ureteral orifice of the bladder thereby preventing migration of the medical device.
  • 2. The medical device of claim 1 in which said elongated, flexible tail members comprise at least one longitudinal channel on a surface of said tail members.
  • 3. The medical device of claim 2 in which the longitudinal channel is continuous and uninterrupted along the length of each tail member.
  • 4. The medical device of claim 1 in which the tail members are solid.
  • 5. The medical device of claim 1 in which the upper region of the first portion has an outer diameter and each of said tail members has an outer diameter, the outer diameter of each tail member being smaller than the outer diameter of the upper region of the first portion.
  • 6. The device of claim 1 in which the tail members comprise at least one thread filament.
  • 7. The device of claim 6 in which the tail members comprise a plurality of thread filaments.
  • 8. The device of claim 7, in which the tail members comprise at least two looped filaments.
  • 9. The device of claim 6 in which the tail members comprise at least one looped filament.
  • 10. The device of claim 9 in which the tail members comprise no unlooped filaments, so that the tail members are free from loose ends.
  • 11. The device of claim 6 in which the tail members comprise a fluted filament.
  • 12. The medical device of claim 1 wherein the lower region is configured to extend more than halfway down the ureter.
  • 13. The medical device of claim 1 wherein the lower region extends to above the point the ureter crosses the common iliac vessels.
  • 14. The medical device of claim 1 wherein the substantially straight lower region is about 12 cm in length.
  • 15. The medical device of claim 1 wherein the junction comprises asymmetrical thread pairs.
  • 16. The medical device of claim 1 wherein the junction of the tail members is fused.
  • 17. A medical device, the device comprising:an elongated member comprising a first portion comprising an upper region including a first terminal end, and a substantially straight lower region configured for positioning in the ureter; and a second portion continuously and integrally extending from the lower region of the first portion, the second portion comprising a plurality of solid, elongated, flexible tail members wherein one or more of-such tail members is tapered.
  • 18. The medical device of claim 17 in which said elongated, flexible tail members comprise at least one longitudinal channel on a surface of the tail members.
  • 19. The medical device of claim 17 in which the upper region of the first portion has an outer diameter and each of said tail members has an outer diameter, the outer diameter of each tail member being smaller than the outer diameter of the upper region of the first portion.
  • 20. The device of claim 17 in which the tail members comprise at least one thread filament.
  • 21. The device of claim 20 in which the tail members comprise a plurality of thread filaments.
  • 22. The device of claim 17, in which the tail members comprise at least two looped filaments.
  • 23. The device of claim 17 in which the tail members comprise a fluted filament.
  • 24. The medical device of claim 17 in which the tail members comprise at least one looped filament.
  • 25. The medical device of claim 24 in which the tail members comprise no unlooped filaments, so that the tail members are free from loose ends.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of Ser. No. 08/743,885, now allowed filed on Nov. 6, 1996, which is entitled under 35 U.S.C. § 119 (e)(1) to the filing dates of earlier co-pending provisional applications U.S. Ser. No. 60/006,259, filed Nov. 7, 1995, U.S. Ser. No. 60/009,983, filed Jan. 16, 1996, and U.S. Ser. No. 60/025,284, filed Sep. 19, 1996.

US Referenced Citations (257)
Number Name Date Kind
191775 Parsons Jun 1877 A
256590 Pfarre Apr 1882 A
386603 Parsons Jul 1888 A
559620 Shearer May 1896 A
1211928 Fisher Jan 1917 A
2257369 Davis Sep 1941 A
3087493 Schossow Apr 1963 A
3314430 Alley et al. Apr 1967 A
3359974 Khalil Dec 1967 A
3394705 Abramson Jul 1968 A
3437088 Bielinski Apr 1969 A
3485234 Stevens Dec 1969 A
3593713 Bogoff et al. Jul 1971 A
3612050 Sheridan Oct 1971 A
3633579 Alley et al. Jan 1972 A
3726281 Norton et al. Apr 1973 A
3746003 Blake et al. Jul 1973 A
3788326 Jacobs Jan 1974 A
3828767 Spiroff Aug 1974 A
3902492 Greenhalgh Sep 1975 A
3906954 Baehr et al. Sep 1975 A
3920023 Dye et al. Nov 1975 A
3995623 Blake et al. Dec 1976 A
4004588 Alexander Jan 1977 A
4037599 Raulerson Jul 1977 A
4065264 Lewin Dec 1977 A
4069814 Clemens Jan 1978 A
4096860 McLaughlin Jun 1978 A
4099528 Sorenson et al. Jun 1978 A
4100246 Frisch Jul 1978 A
4129129 Amrine Dec 1978 A
4134402 Marhurkar Jan 1979 A
4138288 Lewin Feb 1979 A
4138457 Rudd et al. Feb 1979 A
4144884 Tersteegen et al. Mar 1979 A
4149535 Volder Apr 1979 A
4168703 Kenigsberg Sep 1979 A
4173981 Mortensen Nov 1979 A
4180068 Jacobsen et al. Dec 1979 A
4182739 Curtis Jan 1980 A
4183961 Curtis Jan 1980 A
4202332 Tersteegen et al. May 1980 A
4203436 Grimsrud May 1980 A
4212304 Finney Jul 1980 A
4217895 Sagae et al. Aug 1980 A
4223676 Wuchinich et al. Sep 1980 A
4236520 Anderson Dec 1980 A
4239042 Asai Dec 1980 A
4257416 Prager Mar 1981 A
4270535 Bogue et al. Jun 1981 A
4307723 Finney Dec 1981 A
4327722 Groshong et al. May 1982 A
4334327 Lyman et al. Jun 1982 A
4385631 Uthmann May 1983 A
4403983 Edelman et al. Sep 1983 A
4405313 Sisley et al. Sep 1983 A
4405314 Cope Sep 1983 A
4406656 Hattler et al. Sep 1983 A
4413989 Schjeldahl et al. Nov 1983 A
4419094 Patel Dec 1983 A
D272651 Marhurkar Feb 1984 S
4443333 Marhurkar Apr 1984 A
4451252 Martin May 1984 A
4456000 Schjeldahl et al. Jun 1984 A
4484585 Baier Nov 1984 A
4493696 Uldall Jan 1985 A
4504264 Kelman Mar 1985 A
31873 Howes Apr 1985 A
4531933 Norton et al. Jul 1985 A
4540402 Aigner Sep 1985 A
4543087 Sommercorn et al. Sep 1985 A
4559046 Groshong et al. Dec 1985 A
4563170 Aigner Jan 1986 A
4568329 Marhurkar Feb 1986 A
4568338 Todd Feb 1986 A
4581012 Brown et al. Apr 1986 A
4583968 Marhurkar Apr 1986 A
4596548 DeVries et al. Jun 1986 A
4601697 Mammolenti et al. Jul 1986 A
4601701 Mueller, Jr. Jul 1986 A
4608993 Albert Sep 1986 A
4610657 Densow Sep 1986 A
4619643 Bai Oct 1986 A
4623327 Marhurkar Nov 1986 A
4626240 Edelman et al. Dec 1986 A
4643711 Bates Feb 1987 A
4643716 Drach Feb 1987 A
4648865 Aigner Mar 1987 A
4666426 Aigner May 1987 A
4671795 Mulchin Jun 1987 A
4675004 Hadford et al. Jun 1987 A
4682978 Martin Jul 1987 A
4687471 Twardowski et al. Aug 1987 A
4692141 Marhurkar Sep 1987 A
4694838 Wijayarthna et al. Sep 1987 A
4713049 Carter Dec 1987 A
4722725 Sawyer et al. Feb 1988 A
4737146 Amaki et al. Apr 1988 A
4738667 Galloway Apr 1988 A
4747840 Ladika et al. May 1988 A
4753640 Nichols et al. Jun 1988 A
4755176 Patel Jul 1988 A
4769005 Ginsburg et al. Sep 1988 A
4770652 Marhurkar Sep 1988 A
4772268 Bates Sep 1988 A
4773432 Rydell Sep 1988 A
4776841 Catalano Oct 1988 A
4787884 Goldberg Nov 1988 A
4790809 Kuntz Dec 1988 A
4790810 Pugh, Jr. et al. Dec 1988 A
4795439 Guest Jan 1989 A
4808155 Marhurkar Feb 1989 A
4809710 Williamson Mar 1989 A
4813429 Eshel et al. Mar 1989 A
4813925 Anderson, Jr. et al. Mar 1989 A
4820262 Finney Apr 1989 A
4822345 Danforth Apr 1989 A
4838881 Bennett Jun 1989 A
4842582 Marhurkar Jun 1989 A
4842590 Tanabe et al. Jun 1989 A
4846791 Hattler et al. Jul 1989 A
4846814 Ruiz Jul 1989 A
4863442 DeMello et al. Sep 1989 A
4874360 Goldberg et al. Oct 1989 A
4887996 Bengmark Dec 1989 A
4894057 Howes Jan 1990 A
4895561 Marhurkar Jan 1990 A
4913683 Gregory Apr 1990 A
4931037 Wetterman Jun 1990 A
4950228 Knapp, Jr. et al. Aug 1990 A
4960409 Catalano Oct 1990 A
4960411 Buchbinder Oct 1990 A
4961809 Martin Oct 1990 A
4963129 Rusch Oct 1990 A
4981482 Ichikawa Jan 1991 A
4985022 Fearnot et al. Jan 1991 A
4986814 Burney et al. Jan 1991 A
4990133 Solazzo Feb 1991 A
4995863 Nichols et al. Feb 1991 A
4995865 Gahara et al. Feb 1991 A
4995868 Brazier Feb 1991 A
4998919 Schnepp-Pesch et al. Mar 1991 A
5009636 Wortley et al. Apr 1991 A
5013296 Buckberg et al. May 1991 A
5019102 Hoene May 1991 A
5029580 Radford et al. Jul 1991 A
5041083 Tsuchida et al. Aug 1991 A
5053004 Markel et al. Oct 1991 A
5053023 Martin Oct 1991 A
5057073 Martin Oct 1991 A
5116309 Coll May 1992 A
5124127 Jones et al. Jun 1992 A
5129910 Phan et al. Jul 1992 A
5135487 Morrill et al. Aug 1992 A
5135599 Martin et al. Aug 1992 A
5141499 Zappacosta Aug 1992 A
5141502 Macaluso, Jr. Aug 1992 A
5149330 Brightbill Sep 1992 A
5156592 Martin et al. Oct 1992 A
5156596 Balbierz et al. Oct 1992 A
5160325 Nichols et al. Nov 1992 A
5167623 Cianci et al. Dec 1992 A
5171216 Dasse et al. Dec 1992 A
5176625 Brisson Jan 1993 A
5176626 Soehandra Jan 1993 A
5178803 Tsuchida et al. Jan 1993 A
5188593 Martin Feb 1993 A
5190520 Fenton, Jr. et al. Mar 1993 A
5195962 Martin et al. Mar 1993 A
5197951 Marhurkar Mar 1993 A
5207648 Gross May 1993 A
5209723 Twardowski et al. May 1993 A
5211627 William May 1993 A
5221253 Coll Jun 1993 A
5221255 Marhurkar et al. Jun 1993 A
5221256 Marhurkar Jun 1993 A
5234663 Jones et al. Aug 1993 A
5240677 Jones et al. Aug 1993 A
5242395 Maglinte Sep 1993 A
5250038 Melker et al. Oct 1993 A
5261879 Brill Nov 1993 A
5269802 Garber Dec 1993 A
5275597 Higgins et al. Jan 1994 A
5279560 Morrill et al. Jan 1994 A
5282784 Willard Feb 1994 A
5292305 Boudewijn et al. Mar 1994 A
5295954 Sachse Mar 1994 A
5308322 Tennican et al. May 1994 A
5318532 Frassica Jun 1994 A
5324274 Martin Jun 1994 A
5330449 Prichard et al. Jul 1994 A
5338311 Marhurkar Aug 1994 A
5342301 Saab Aug 1994 A
5346467 Coll Sep 1994 A
5346471 Raulerson Sep 1994 A
5348536 Young et al. Sep 1994 A
5354263 Coll Oct 1994 A
5358689 Jones et al. Oct 1994 A
5360397 Pinchuk Nov 1994 A
5364340 Coll Nov 1994 A
5364344 Beattie et al. Nov 1994 A
5366464 Belknap Nov 1994 A
5372600 Beyar et al. Dec 1994 A
5374245 Marhurkar Dec 1994 A
5378230 Marhurkar Jan 1995 A
5380270 Ahmadzadeh Jan 1995 A
5380276 Miller et al. Jan 1995 A
5395316 Martin Mar 1995 A
5399172 Martin et al. Mar 1995 A
5401257 Chevalier, Jr. et al. Mar 1995 A
5403291 Abrahamson Apr 1995 A
5405320 Twardowski et al. Apr 1995 A
5405329 Durand Apr 1995 A
5405341 Martin Apr 1995 A
5411490 Tennican et al. May 1995 A
5440327 Stevens Aug 1995 A
5451206 Young Sep 1995 A
5464398 Haindl Nov 1995 A
5470322 Horzewski et al. Nov 1995 A
5472417 Martin et al. Dec 1995 A
5472432 Martin Dec 1995 A
5480380 Martin Jan 1996 A
5486159 Marhurkar Jan 1996 A
5489278 Abrahamson Feb 1996 A
5509897 Twardowski et al. Apr 1996 A
5514100 Marhurkar May 1996 A
5514176 Bosley, Jr. May 1996 A
5522807 Luther Jun 1996 A
5527337 Stack et al. Jun 1996 A
5531741 Barbacci Jul 1996 A
5554136 Luther Sep 1996 A
5556390 Hicks Sep 1996 A
5569182 Twardowski et al. Oct 1996 A
5569184 Crocker et al. Oct 1996 A
5569195 Saab Oct 1996 A
5571093 Cruz et al. Nov 1996 A
5573508 Thornton Nov 1996 A
5599291 Balbierz et al. Feb 1997 A
5609627 Goicoechea et al. Mar 1997 A
5613980 Chauhan Mar 1997 A
5624413 Markel et al. Apr 1997 A
5630794 Lax et al. May 1997 A
5643222 Marhurkar Jul 1997 A
5647843 Mesrobian et al. Jul 1997 A
5649909 Cornelius Jul 1997 A
5653689 Buelna et al. Aug 1997 A
5681274 Perkins et al. Oct 1997 A
5683640 Miller et al. Nov 1997 A
5685862 Marhurkar Nov 1997 A
5685867 Twardowski et al. Nov 1997 A
5695479 Jagpal Dec 1997 A
5769868 Yock Jun 1998 A
5792105 Lin et al. Aug 1998 A
5795326 Siman Aug 1998 A
5830184 Basta Nov 1998 A
5830196 Hicks Nov 1998 A
5843028 Weaver et al. Dec 1998 A
Foreign Referenced Citations (47)
Number Date Country
1092927 Jan 1981 CA
1150122 Jul 1983 CA
1167727 May 1984 CA
1193508 Sep 1985 CA
1219785 Mar 1987 CA
1225299 Nov 1987 CA
2259865 Jun 1974 DE
3112762 Jan 1983 DE
3517813 May 1985 DE
3517813 Nov 1986 DE
3517813 Nov 1986 DE
3740288 Apr 1989 DE
3740288 Apr 1989 DE
4103573 Aug 1992 DE
4134030 Apr 1993 DE
93 14 585.3 Mar 1994 DE
0036642 Sep 1981 EP
0079719 May 1983 EP
0101890 Mar 1984 EP
0144525 Jun 1985 EP
0168136 Jan 1986 EP
0183421 Jun 1986 EP
0101890 Sep 1986 EP
0326908 Aug 1989 EP
0333308 Sep 1989 EP
0183421 Apr 1990 EP
0386408 Sep 1990 EP
0490459 Jun 1992 EP
0490459 Jun 1992 EP
0554722 Aug 1993 EP
0 876 803 Nov 1998 EP
1285953 Jan 1962 FR
1508959 Dec 1967 FR
2297640 Aug 1976 FR
2530958 Feb 1984 FR
2 611 486 Sep 1988 FR
2017499 Oct 1979 GB
2156220 Oct 1985 GB
2235384 Mar 1991 GB
57-90150 Jun 1982 JP
WO 8404043 Oct 1984 WO
WO 9526763 Oct 1995 WO
WO 9535130 Dec 1995 WO
WO 9710858 Mar 1997 WO
WO 9717094 May 1997 WO
WO 9737699 Oct 1997 WO
WO 9737718 Oct 1997 WO
Non-Patent Literature Citations (41)
Entry
Mardis et al., “Comparative Evaluation of Materials Used for Internal Ureteral Stents,” Journal of Endourology, 1993, vol. 7, No. 2, (pp. 105-113).
“Ureteroscopic Procedures—Technical Advances,” Color Atlas/Text of Ureteroscopy, 1993 New York, Igaku-Shoin, p. 281.
Collier et al., “Proximal Stent Displacement As Complication of Pigtail Ureteral Stent,” Urology, Apr. 1979, vol. XIII, No. 4, (pp. 372-375).
Birch et al., “Tethered Ureteric Stents—a Clinical Assessment,” British Journal of Urology, 1988, 62, (pp. 409-411).
Mardis et al., “Guidewires, Ureteral Catheters, and Stents,” Color Atlas/Text of Ureteroscopy, New York, Igaku-Shoin, Ch. 5, (pp. 65-84).
Cook Urological product brochure, “Ureteral Stents,” 1987, (pp. 3-23; last page).
Cook Urological catalog, “Urological Surgical Product,” 1990-1991, (pp. 1-3, 7-29, 48-148; last page).
Bard/angiomed product brochure, 1988.
Cook Urological Catalog, 1995, (pp. 1-2, 9-41, 63-173; last page).
Mardis et al., “Ureteral Stents-Materials,” Urologic Clinics of North America, Aug. 1988, vol. 15, No. 3, (pp. 471-479).
Mardis et al., “Ureteral Stents Use and Complications,” Problems in Urology, Jun. 1992 vol. 6, No. 2, (pp. 296-306).
Hackethorn et al., “Antegrade Internal Ureteral Stenting: A Technical Refinement,” Radiology, Jul. 1985, vol. 156, No. 3, (pp. 287-288).
Rutner et al., “Percutaneous Pigtail Nephrostomy,” Urology, Oct. 1979, vol. XIV, No. 4, (pp. 337-340).
Mardis, “Evaluation of Polymeric Materials for Endourologic Devices,” Seminars in Interventional Radiology, Mar. 1987, vol. 4, No. 1, (pp. 36-45).
Mardis et al., “Double Pigtail Ureteral Stent,” Urology, Jul. 1979, vol. XIV, No. 1, (pp. 23-26).
Hepperlen et al., “Self-Retained Internal Ureteral Stents: A New Approach,” The Journal of Urology, Jun. 1978, vol. 119, (pp. 731-734).
Culkin, “Complications of Ureteral Stents,” Infections in Urology, Sep./Oct. 1996, (pp. 139-143).
Sadlowski et al., “New Technique For Percutaneous Nephrostomy Under Ultrasound Guidance,” Journal of Urology, May 1979, vol. 121, (pp. 559-561).
Camacho et al. “Double-Ended Pigtail Ureteral Stent: Useful Modifcation to Single End Ureteral Stent,” Urology, May 1979, vol. XIII, No. 5, (pp. 516-520).
Bigongiari et al., “Conversion of Percutaneous Ureteral Stent To Indwelling Pigtail Stent Over Guidewire,” Urology, May 1980, vol. XV, No. 5, (pp. 461-465).
Minkov et al., “Our Experience in the Application of the Biocompatible Indwelling Ureteral Stents,” International Urology and Nephrology, 1986, 18 (4), (pp. 403-409).
Mardis et al., “Polyethylene Double-Pigtail Ureteral Stents,” Urologic Clinics of North America, Feb. 1982, vol. 9, No. 1, (pp. 95-101).
Stables, “Percutaneous Nephrostomy: Techniques, Indications, and Results,” Urologic Clinics of North America, Feb. 1982, vol. 9, No. 1, (pp. 15-29).
Bard Urological Division product catalog, 1990, (pp. 1-3, A1-A30, D7-D26; last page).
Cook Urological product brochure, “Filiform Ureteral Multi-Length Silicone Stent Sets,” 1989.
Surgitek brochure, “The Solution Is Perfectly Clear,” 1990.
Bard brochure, “Introducing The Bard Urinary Diversion Stent,” 1984.
Bard product brochure, “Stents To Satisfy The Urologist: . . . ”, 1988.
Bard product brochure, “Introducing The Bard Pediatric Urethral Stent,” 1983.
Bard Access Systems Vas-Cath Incorporated Catalog (date unknown).
Cook Critical Care Catalog, “Products for Dialysis” pp. 3-15 (1989).
Cook Critical Care Catalog, “Uldall Double Lumen Hernodialysis Catheter Trays” (date unknown).
Horizon Medical Products Catalog (date unknown).
McIntosh, et al, J.A.M.A. 169(8): 137-8 (1959).
MEDCOMP Catalog, “Hemodialysis Products” pp. 1-11, 14-16, 19-27, 30-36 (date unknown).
MEDCOMP Catalog “Schon Twin-Cath” (date unknown).
Quinton Instrument Co. Catalog, “Hemodialysis and Apheresis” (1994).
Quinton Instrument Co. Catalog, “Hemodialysis and Apheresis” (1995).
Quinton Instrument Co. Catalog, “Oncology/Critical Care” (1993).
Riesenfeld, et al. “Surface Modification of Functionally Active Heparin, ” MEDICAL DEVICE TECHNOLOGY (Mar. 1995).
“Triple Lumen Catheter” p. 3 (First! An Information Service of Individual, Inc., Sep. 25, 1995).
Provisional Applications (3)
Number Date Country
60/025284 Sep 1996 US
60/009983 Jan 1996 US
60/006259 Nov 1995 US
Continuations (1)
Number Date Country
Parent 08/743885 Nov 1996 US
Child 09/300657 US