This application is a U.S. national stage application of and claims the priority benefit of PCT/GB2011/000778 filed on May 20, 2011.
The present invention relates to the field of medical devices and in particular, although not exclusively, to medical cauterization and cutting devices. The invention also relates to drive circuits and methods for driving such medical devices.
Many surgical procedures require cutting or ligating blood vessels or other internal tissue. Many surgical procedures are performed using minimally invasive techniques, a hand-held cauterization device is used by the surgeon to perform the cutting or ligating. The existing hand-held cauterization devices require a desk top power supply and control electronics that are connected to the device through an electrical supply line.
It has been known for a number of years that these existing devices are cumbersome and difficult to use during a surgical operation due to the large size of the supply and control electronics and due to the tethering of the hand-held cauterization device to the supply and control electronics. It has also been known for a number of years that these problems would be overcome by providing a battery powered hand-held cauterization device in which the power and control electronics are mounted within the device itself, such as within the handle of the device. However, it is not a simple matter of miniaturising the electronics. The power that has to be supplied to the device during the surgical procedure and the current design of the electronics is such that large capacitors, inductors and transformers as well as heat sinks and fans are required.
In particular, the existing electronics design uses circuitry for providing an adjustable 24 Volt power supply; FETs and associated drive circuitry; a transformer for increasing the supply voltage; and filtering circuitry to remove harmonics from the square wave voltage levels that are generated by the FEE switches and the transformer. Given the voltage levels and the power levels used to drive the cauterization device, the transformers and output filters all have to be relatively bulky devices and large heat sinks and a fan are required to cool the FET switches.
The present invention aims to provide an alternative circuit design that will allow the miniaturisation of the circuitry so that it can be built into the hand-held cauterization device, whilst still being able to provide the power and control required for the medical procedure.
The present invention provides a medical device comprising an end effector having at least one electrical contact a radio frequency, RF, generation circuit for generating an RF drive signal and to provide the RF drive signal to the at least one electrical contact and wherein the RF generation circuit comprises a resonant circuit. In one embodiment, the radio frequency generation circuit comprises switching circuitry that generates a cyclically varying signal, such as a square wave signal, from a DC supply and the resonant circuit is configured to receive the cyclically varying signal from the switching circuitry. The DC supply is preferably provided by one or more batteries that can be mounted in a housing (such as a handle) of the device.
According to another aspect, the invention provides a medical device comprising: a handle for gripping by a user; an end effector coupled to the handle, the end effector having at least one electrical contact; battery terminals for connecting to one or more batteries; a radio frequency, RF, generation circuit coupled to said battery terminals and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact of said end effector; wherein the frequency generation circuit comprises: switching circuitry for generating a cyclically varying signal (which may be a square wave pulse width modulated signal) from a potential difference across said battery terminals; and a resonant drive circuit coupled to said switching circuitry and operable to filter the cyclically varying signal generated by the switching circuitry; and wherein the RF drive signal is obtained using an output signal from said resonant circuit.
The medical device may also comprise a control circuit (which may comprise hardware and/or software) that varies the frequency of the RF drive signal. The control circuit may vary the frequency based on a measurement of the RF drive signal in order to control at least one of the power, voltage and/or current delivered to the at least one electrical contact of the end effector. In a preferred embodiment, the measurement is obtained from a sampling circuit that operates synchronously with respect to the frequency of the RF drive signal. The frequency at which the sampling circuit samples the sensed signal may be an integer fraction of the frequency of the RF drive signal.
In one embodiment, the control circuit varies the frequency of the RF drive signal around (preferably just above or just below) the resonant frequency of the resonant circuit. The resonant characteristic of the resonant circuit may vary with a load connected to the at least one electrical contact and the control circuit may be arranged to vary the RF drive frequency to track changes in the resonant characteristic of the resonant circuit.
According to another aspect, the invention provides a medical device comprising: a handle for gripping by a user; an end effector coupled to the handle and having at least one electrical contact; a radio frequency, RF, generation circuit operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact; and a control circuit operable to vary the frequency of the RF drive signal to control at least one of the power, the voltage and the current provided to the at least one contact of the end effector.
The RF generation circuit may comprise a signal generator that generates a cyclically varying signal at the RF frequency; and a frequency dependent attenuator that attenuates the cyclically varying signal in dependence upon the frequency of the cyclically varying signal. The frequency dependent attenuator may be a lossless attenuator and may comprise a resonant circuit having a resonant frequency at or near the RF frequency of the cyclically varying signal.
The present invention also provides a medical device comprising: a handle for gripping by a user; an end effector coupled to the handle and having at least one electrical contact; a radio frequency, RF, generation circuit operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact; an input for receiving a sensed signal that varies with the RF drive signal applied to the at least one electrical contact; a sampling circuit for sampling the sensed signal received at said input; a measurement circuit operable to make measurements of the RF drive signal using samples obtained from the sampling circuit; and a control circuit operable to control the RF generation circuit in dependence upon the measurements made by the measurement circuit, to vary the frequency of the generated RF drive signal; wherein the sampling circuit is operable to sample the sensed signal at a sampling frequency that varies in synchronism with the frequency of the RE drive signal.
The invention also provides a method of operating a medical device comprising generating an RF signal and applying the RF signal to at least one electrode of an end effector of the medical device and controlling the frequency of the generated RF signal to control at least one of the power, current, and voltage applied to the at least one electrode.
According to another aspect, the invention provides a method of cauterising a vessel or tissue, the method comprising: gripping the vessel or tissue with an end effector of a medical device; applying an RF signal to at least one electrode of the end effector that is in contact with the vessel or tissue; and controlling the frequency of the RF signal to control at least one of the power, current, and voltage applied to the tissue to perform the cauterisation.
The above methods may use the above described medical device, although that is not essential.
The controlling step may vary the frequency of the RF signal to control the power applied to the tissue or vessel, and the method may further comprise obtaining measurements of the impedance of the tissue or vessel and varying the desired power applied to the tissue or vessel in dependence upon the obtained impedance measurements.
These and various other features and aspects of the invention will become apparent from the following detailed description of embodiments which are described with reference to the accompanying Figures in which:
Medical Device
Many surgical procedures require cutting or ligating blood vessels or other vascular tissue. With minimally invasive surgery, surgeons perform surgical operations through a small incision in the patient's body. As a result of the limited space, surgeons often have difficulty controlling bleeding by clamping and/or tying-off transected blood vessels. By utilizing electrosurgical forceps, a surgeon can cauterize, coagulate/desiccate, and/or simply reduce or slow bleeding by controlling the electrosurgical energy applied through jaw members of the electrosurgical forceps.
During a surgical procedure, the shaft 3 is inserted through a trocar to gain access to the patient's interior and the operating site. The surgeon will manipulate the forceps 9 using the handle 5 and the control levers 11 and 13 until the forceps 9 are located around the vessel to be cauterised. Electrical energy at an RF frequency (it has been found that frequencies above about 50 kHz do not affect the human nervous system) is then applied, in a controlled manner, to the forceps 9 to perform the desired cauterisation. As shown in
RF Drive Circuitry
As shown in
As shown in
In this embodiment, the amount of electrical power supplied to the forceps 9 is controlled by varying the frequency of the switching signals used to switch the FETs 23. This works because the resonant circuit 28 acts as a frequency dependent (lossless) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 28, the less the drive signal is attenuated. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 28, the more the drive signal is attenuated and so the power supplied to the load reduces. In this embodiment, the frequency of the switching signals generated by the FET gate drive circuitry 25 is controlled by a controller 41 based on a desired power to be delivered to the load 39 and measurements of the load voltage (VL) and of the load current (iL) obtained by conventional voltage sensing circuitry 43 and current sensing circuitry 45. The way that the controller 41 operates will be described in more detail below.
Controller
The frequency control module 55 uses the values obtained from the calculation module 53 and the power set point (Pset) obtained from the medical device control module 57 and predefined system limits (to be explained below), to determine whether or not to increase or decrease the applied frequency. The result of this decision is then passed to a square wave generation module 63 which, in this embodiment, increments or decrements the frequency of a square wave signal that it generates by 1 kHz, depending on the received decision. As those skilled in the art will appreciate, in an alternative embodiment, the frequency control module 55 may determine not only whether to increase or decrease the frequency, but also the amount of frequency change required. In this case, the square wave generation module 63 would generate the corresponding square wave signal with the desired frequency shift. In this embodiment, the square wave signal generated by the square wave generation module 63 is output to the FET gate drive circuitry 25, which amplifies the signal and then applies it to the FET 23-1. The FET gate drive circuitry 25 also inverts the signal applied to the FET 23-1 and applies the inverted signal to the FET 23-2.
Drive Signals and Signal Measurements
The samples obtained by the synchronous sampling circuitry 51 are then passed to the power, Vrms and Irms calculation module 53 which can determine the magnitude and phase of the measured signal from just one “I” sample and one “Q” sample of the load current and load voltage. However, in this embodiment, to achieve some averaging, the calculation module 53 averages consecutive “I” samples to provide an average “I” value and consecutive “0” samples to provide an average “Q” value; and then uses the average I and Q values to determine the magnitude and phase of the measured signal (in a conventional manner). As those skilled in the art will appreciate, with a drive frequency of about 400 kHz and sampling once per period means that the synchronous sampling circuit 51 will have a sampling rate of 400 kHz and the calculation module 53 will produce a voltage measure and a current measure every 0.01 ms. The operation of the synchronous sampling circuit 51 offers an improvement over existing products, where measurements can not be made at the same rate and where only magnitude information is available (the phase information being lost).
Limits
As with any system, there are certain limits that can be placed on the power, current and voltage that can be delivered to the forceps 9. The limits used in this embodiment and how they are controlled will now be described.
In this embodiment, the RF drive circuitry 20 is designed to deliver a power limited sine wave into tissue with the following requirements:
The last two requirements are represented graphically in
The frequency control module 55 maintains data defining these limits and uses them to control the decision about whether to increase or decrease the excitation frequency.
Resonant Characteristic and Frequency Control
As mentioned above, the amount of electrical power supplied to the forceps 9 is controlled by varying the frequency of the switching signals used to switch the FETs 23. This is achieved by utilising the fact that the impedance of the resonant circuit 28 changes rapidly with frequency. Therefore by changing the frequency of the switching signals, the magnitude of the current through the resonant circuit 28, and hence through the load 39, can be varied as required to regulate the output power.
As those skilled in the art will appreciate, the resonant circuit 28 is coupled to a load 39 whose impedance will vary during the surgical procedure. Indeed the medical device control module 57 uses this variation to determine whether the tissue or vessel has been cauterised, coagulated/desiccated. The varying impedance of the load 39 changes the frequency characteristic of the RF drive circuit 20 and hence the current that flows through the resonant circuit 28. This is illustrated in
As the impedance of the resonant circuit 28 increases sharply both above and below resonance, it is possible to operate the RF drive circuit 20 either above or below the resonant frequency. In this embodiment, the frequency control module 55 controls the operation of the drive circuit 20 so that it operates slightly above the resonant frequency as this should lead to lower switching losses through the FETs 23.
Therefore, the current and power applied to the load 39 should increase until one of the limits is reached. At this point, the control module 55 will determine, in step s9, that a limit has been reached and so will proceed to step s13, where the control module 55 decides to increase the drive frequency and sends the square wave generation module 63 an increase command. This will cause the drive frequency to move away from the resonant frequency of the circuit 28 and so the current and power delivered to the load 39 will reduce. The processing will then return to step s3 as before.
Thus, by starting on one side of the resonant peak and slowly moving the drive frequency towards and away from the resonant peak, the current and power level applied to the load 39 can be controlled within the defined limits even as the impedance of the load changes and the resonant characteristic 65 of the resonant circuit 28 changes as the tissue/vessel is cauterised.
As those skilled in the art will appreciate, it would also be possible to start on the left hand side of the resonant peak and increase the drive frequency to increase the delivered power and decrease the drive frequency to decrease the delivered power.
Medical Device Control Module
As mentioned above, the medical device control module 57 controls the general operation of the cauterisation device 1. It receives user inputs via the user input module 59. These inputs may specify that the jaws of the forceps 9 are now gripping a vessel or tissue and that the user wishes to begin cauterisation. In response, in this embodiment, the medical device control module 57 initiates a cauterisation control procedure. Initially, the medical device control module 57 sends an initiation signal to the frequency control module 55 and obtains current and power measurements from the calculation module 53. The medical device control module 57 then checks the obtained values to make sure that the load 39 is not open circuit or short circuit. If it is not, then the medical device control module 57 starts to vary the power set point to perform the desired cauterisation.
As shown in
Resonant Circuit Design
The way that the values of the inductors and capacitors were chosen in this embodiment will now be described. As those skilled in the art will appreciate, other design methodologies may be used.
The complex impedance of the circuit shown in
Where:
Rload_ref is the load resistance referred to the primary (by the square of the turns ratio); Rs represents the equivalent series resistance of the inductor, transformer capacitor and switching devices.
All other component non-idealities are ignored and the transformer is considered to be ideal as a first approximation.
Assuming that Rs is small, when the load is open circuit (ie Rload_ref is infinite) the resonant frequency can be shown to be:
Similarly, when the load is short circuit (ie Rload_ref is zero) the resonant frequency can be shown to be:
Assuming Rs is small, at each frequency between fmin and fmax there is a value of the load, Rload, at which the greatest power can be dissipated in the load. This maximum power can be shown to be large at frequencies near fmin and fmax, and has a minimum at the critical frequency, fc. We refer to this power as Pmax_fc- Starting with (1) it can be shown that the following relationship holds:
where Vs is the supply voltage.
It can be shown that the load at which equation (4) holds is given by:
Rload_ref=2πfLm (5)
Furthermore from (1) a relationship between fmin, fc and fmax can be established:
From (6) it can be shown that fmin,<fc<fmax. If the circuit is to operate at fc, then equation (4) gives an upper bound non the worst-case power delivered across a range of loads.
From (1), it can be shown that the efficiency of the circuit at resonance may be written as:
From (7) it may be shown that the efficiency is a maximum when Rload_ref=2πfLm, i.e. when (5) holds. Therefore the system is designed to operate around the point of maximum efficiency.
Design Procedure
For this specific embodiment of the design the following parameters were chosen:
Battery voltage of 24V however battery voltage droops with discharge and load so Vs_sq=18V (square wave peak to peak voltage) when used
Pload=45 W (maximum power into the load)
Vload=85 Vrms (maximum voltage into the load)
Iload=1.4 Arms (maximum current into the load)
fc=430 kHz (centre or critical switching frequency)
fmax=500 kHz (maximum switching frequency, which is the upper resonant frequency)
fmin=380 kHz (approximate minimum switching frequency—needs to be calculated)
Given these values, fmin can be computed using (6):
Resonant circuits produce sinusoidal waveforms therefore the input square wave voltage (Vs_sq) needs to be converted into the RMS of the fundamental switching frequency (Vs).
The power into the load (Pload) is set by Lm. Using (4) the transformer magnetising inductance (Lm) can be determined. This ensures that at the critical frequency, fc, the required power is delivered:
Ls can then be calculated (derived from equations 2& 3):
Following from this Cs can be calculated (from equation 3):
To maintain regulation, the circuit is run above resonance so actual values of Cs will be typically 20% higher to bring the operating point back down (if below resonance was chosen Cs would have to be reduced).
As previously mentioned, the efficiency is maximized when Rload_ref is equal to the magnetising reactance at the critical frequency (equation 5). It is desirable, therefore, to operate about the middle of the constant power range (shown in
Take the geometric mean of these load resistances to find Rload_c (centre or critical load resistance)
As discussed, for maximum efficiency, Rload_ref should match the impedance of the primary-referred magnetising reactance at fc. Hence, Rload should equal the secondary-referred magnetising reactance Lsec can therefore be calculated as follows:
Finally the transformer turns ratio can be calculated:
For any particular design it may be necessary to adjust the values due to the following reasons:
In this specific embodiment, the component values were optimized to:
Cs=82 nf
Lm=1.1 uH
Ls=1.4 uH
N=5 which gives Lsec≈24 uH
The following subsections briefly describe how these component values were physically implemented.
Capacitor Selection
A low loss capacitor is desired to minimise tosses and to ensure the component doesn't get too hot. Ceramic capacitors are ideal and the dielectric type of COG/NPO were used in this embodiment. The capacitor voltage rating is also important as it shouldn't be exceeded under all load conditions. Ten 250V 8.2 nF 1206 COG/NPO ceramics capacitors in parallel were used in this embodiment.
Inductor and Transformer
In this embodiment, Ferroxcube 3F3 E3216/20 a-core/plate combination was used as a ferrite core. Ferroxcube 3F3 is supplied by Ferroxcube, a subsidiary of Yageo Corporation, Taiwan. It is a high frequency ferrite material optimised for frequencies between 200 kHz and 500 kHz. By using this material the core losses are minimised. Core losses increase strongly with increasing flux density. In an inductor, for a particular required energy storage, the flux density increases with decreasing air gap (the air gap is the separation between the e-core & plate). Therefore the air gap and the number of turns can be increased to decrease core losses but this has to be balanced with the actual inductance value required and increased resistive losses introduced with the longer wire/track length.
The same issues apply to the transformer except core losses are due to the output voltage and the number of turns. Since the output voltage is fixed the number of turns is the only variable that can be changed but again this has to be balanced with resistive losses. Once the number of turns is set the air gap can then be adjusted to set Lm. Whatever core is used, it is best practise to fill the winding space with as much copper as possible to minimise resistive losses. In the transformer the' volume of windings is preferably about the same in the primary and secondary to balance the losses.
The resistive losses can usually be easily calculated but since the circuit is operating at about 400 kHz skin depth becomes an issue. The skin depth in copper at 400 kHz is only about 0.1 mm so a solid conductor thicker than this doesn't result in all the copper being used. Litz wire (stranded insulated copper wire twisted together where each strand is thinner than the skin depth) can be used to reduce this effect. In this embodiment 2 oz PCB tracks (about 0.07 mm thick copper tracks) were used for the windings of both the inductor (Ls) and the transformer to avoid having to wind custom components. The inductor had two turns with an air gap of 0.5 mm between the e-core and plate. The transformer had one turn on the primary and five turns on the secondary with an air gap between the e-core and plate of 0.1 mm.
Modifications and Alternatives
A medical cauterisation device has been described above. As those skilled in the art will appreciate, various modifications can be made and some of these will now be described. Other modifications will be apparent to those skilled in the art.
In the above embodiment, various operating frequencies, currents, voltages etc were described. As those skilled in the art will appreciate, the exact currents, voltages, frequencies, capacitor values, inductor values etc. can all be varied depending on the application and the values described above should not be considered as limiting in any way. However, in general terms, the circuit described above has been designed to provide an RF drive signal to a medical device, where the delivered power is desired to be at least 10 W and preferably between 10 W and 200 W; the delivered voltage is desired to be at least 20 Vrms and preferably between 30 Vrms and 120 Vrms; the delivered current is designed to be at least 0.5 Arms and preferably between 1 Arms and 2 Arms; and the drive frequency is at least 50 kHz.
In the above embodiment, the resonant circuit 28 was formed from capacitor-inductor-inductor elements. As those skilled in the art will appreciate, the resonant circuit 28 can be formed from various circuit designs.
In the above embodiment, an exemplary control algorithm for performing the cauterisation of the vessel or tissue gripped by the forceps was described. As those skilled in the art will appreciate, various different procedures may be used and the reader is referred to the literature describing the operation of cauterisation devices for further details
In the above embodiment, the RF drive signal generated by the drive circuitry was directly applied to the two forceps jaws of the medical device. In an alternative embodiment, the drive signal may be applied to one jaw, with the return or ground plane being provided through a separate connection on the tissue or vessel to be cauterised.
In the above embodiments, the forceps jaws were used as the electrodes of the medical device. In an alternative device, the electrodes may be provided separately from the jaws.
In the above embodiments, two FET switches were used to convert the DC voltage provided by the batteries into an alternating signal at the desired RF frequency. As those skilled in the art will appreciate, it is not necessary to use two switches—one switch may be used instead or multiple switches may be used connected, for example, in a bridge configuration. Additionally, although FET switches were used, other switching devices, such as bipolar switches may be used instead. However, MOSFETs are preferred due to their superior performance in terms of low losses when operating at the above described frequencies and current levels.
In the above embodiment, the resonant circuit 28 acted as a frequency dependent attenuator. The resonant circuit was designed as a substantially lossless attenuator, but this is not essential The resonant circuit may include lossy components as well, although the resulting circuit will of course be less efficient.
In the above embodiment, the I & Q sampling circuitry 51 sampled the sensed voltage/current signal once every period and combined samples from adjacent periods. As those skilled in the art will appreciate, this is not essential. Because of the synchronous nature of the sampling, samples may be taken more than once per period or once every nth period if desired. The sampling rate used in the above embodiment was chosen to maximise the rate at which measurements were made available to the medical device control module 57 as this allows for better control of the applied power during the cauterisation process.
In the above embodiment, a 24V DC supply was provided. In other embodiments, lower DC voltage sources may be provided. In this case, a larger transformer turns ratio may be provided to increase the load voltage to a desired level or lower operating voltages may be used.
In the above embodiment, a synchronous sampling technique was used to obtain measurements of the load voltage and load current. As those skilled in the art will appreciate, this is not essential and other more conventional sampling techniques can be used instead.
In the above embodiment, the medical device was arranged to deliver a desired power to the electrodes of the end effector. In an alternative embodiment, the device may be arranged to deliver a desired current or voltage level to the electrodes of the end effector.
In the above embodiment the battery is shown integral to the medical device. In an alternative embodiment the battery may be packaged so as to clip on a bell on the surgeon or simply be placed on the Mayo stand. In this embodiment a relatively small two conductor cable would connect the battery pack to the medical device.
Number | Date | Country | Kind |
---|---|---|---|
1008510.8 | May 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2011/000778 | 5/20/2011 | WO | 00 | 9/11/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/144911 | 11/24/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
969528 | Disbrow | Sep 1910 | A |
1570025 | Young | Jan 1926 | A |
1813902 | Bovie | Jul 1931 | A |
2442966 | Wallace | Jun 1948 | A |
2704333 | Calosi et al. | Mar 1955 | A |
2736960 | Armstrong | Mar 1956 | A |
2849788 | Creek | Sep 1958 | A |
2874470 | Richards | Feb 1959 | A |
2990616 | Balamuth et al. | Jul 1961 | A |
RE25033 | Balamuth et al. | Aug 1961 | E |
3015961 | Roney | Jan 1962 | A |
3053124 | Balamuth et al. | Sep 1962 | A |
3082805 | Royce | Mar 1963 | A |
3432691 | Shoh | Mar 1969 | A |
3433226 | Boyd | Mar 1969 | A |
3489930 | Shoh | Jan 1970 | A |
3513848 | Winston et al. | May 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3554198 | Tatoian et al. | Jan 1971 | A |
3614484 | Shoh | Oct 1971 | A |
3616375 | Inoue | Oct 1971 | A |
3629726 | Popescu | Dec 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3668486 | Silver | Jun 1972 | A |
3702948 | Balamuth | Nov 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3830098 | Antonevich | Aug 1974 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3885438 | Harris, Sr. et al. | May 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3924335 | Balamuth et al. | Dec 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
4012647 | Balamuth et al. | Mar 1977 | A |
4074719 | Semm | Feb 1978 | A |
4156187 | Murry et al. | May 1979 | A |
4167944 | Banko | Sep 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4300083 | Heiges | Nov 1981 | A |
4302728 | Nakamura | Nov 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4445063 | Smith | Apr 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4494759 | Kieffer | Jan 1985 | A |
4504264 | Kelman | Mar 1985 | A |
4512344 | Barber | Apr 1985 | A |
4526571 | Wuchinich | Jul 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4574615 | Bower et al. | Mar 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4641053 | Takeda | Feb 1987 | A |
4646738 | Trott | Mar 1987 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4662068 | Polonsky | May 1987 | A |
4674502 | Imonti | Jun 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4712722 | Hood et al. | Dec 1987 | A |
4819635 | Shapiro | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4836186 | Scholz | Jun 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4852578 | Companion et al. | Aug 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4881550 | Kothe | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4915643 | Samejima et al. | Apr 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4965532 | Sakurai | Oct 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5013956 | Kurozumi et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5084052 | Jacobs | Jan 1992 | A |
5105117 | Yamaguchi | Apr 1992 | A |
5109819 | Custer et al. | May 1992 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
D327872 | McMills et al. | Jul 1992 | S |
5152762 | McElhenney | Oct 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5163537 | Radev | Nov 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
5174276 | Crockard | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176677 | Wuchinich | Jan 1993 | A |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
D334173 | Liu et al. | Mar 1993 | S |
5209719 | Baruch et al. | May 1993 | A |
5213569 | Davis | May 1993 | A |
5214339 | Naito | May 1993 | A |
5218529 | Meyer et al. | Jun 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5241968 | Slater | Sep 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5254129 | Alexander | Oct 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5264925 | Shipp et al. | Nov 1993 | A |
5275166 | Vaitekunas et al. | Jan 1994 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282817 | Hoogeboom et al. | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5312023 | Green et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5345937 | Middleman et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5353474 | Good et al. | Oct 1994 | A |
5357164 | Imabayashi et al. | Oct 1994 | A |
5357423 | Weaver et al. | Oct 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5371429 | Manna | Dec 1994 | A |
5374813 | Shipp | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5387215 | Fisher | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5394187 | Shipp | Feb 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5408268 | Shipp | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5423844 | Miller | Jun 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451220 | Ciervo | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5483501 | Park et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5540693 | Fisher | Jul 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603773 | Campbell | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5618304 | Hart et al. | Apr 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5678568 | Uchikubo et al. | Oct 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5717306 | Shipp | Feb 1998 | A |
5728130 | Ishikawa et al. | Mar 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733074 | Stöck et al. | Mar 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5766164 | Mueller et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5823197 | Edwards | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5858018 | Shipp et al. | Jan 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5903607 | Tailliet | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5906627 | Spaulding | May 1999 | A |
5906628 | Miyawaki et al. | May 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
5974342 | Petrofsky | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5980546 | Hood | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993465 | Shipp et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
5994855 | Lundell et al. | Nov 1999 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024750 | Mastri et al. | Feb 2000 | A |
6027515 | Cimino | Feb 2000 | A |
6031526 | Shipp | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6036707 | Spaulding | Mar 2000 | A |
6048224 | Kay | Apr 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6096033 | Tu et al. | Aug 2000 | A |
6099542 | Cohn et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
6126629 | Perkins | Oct 2000 | A |
6129735 | Okada et al. | Oct 2000 | A |
6129740 | Michelson | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6139561 | Shibata et al. | Oct 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6147560 | Erhage et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6165150 | Banko | Dec 2000 | A |
6174310 | Kirwan, Jr. | Jan 2001 | B1 |
6179853 | Sachse et al. | Jan 2001 | B1 |
6183426 | Akisada et al. | Feb 2001 | B1 |
6193709 | Miyawaki et al. | Feb 2001 | B1 |
6204592 | Hur | Mar 2001 | B1 |
6205855 | Pfeiffer | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6252110 | Uemura et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
D445092 | Lee | Jul 2001 | S |
D445764 | Lee | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6257241 | Wampler | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6287344 | Wampler et al. | Sep 2001 | B1 |
6290575 | Shipp | Sep 2001 | B1 |
6306157 | Shchervinsky | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6338657 | Harper et al. | Jan 2002 | B1 |
6340352 | Okada et al. | Jan 2002 | B1 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6358264 | Banko | Mar 2002 | B2 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6384690 | Wilhelmsson et al. | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402743 | Orszulak et al. | Jun 2002 | B1 |
6402748 | Schoenman et al. | Jun 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6440062 | Ouchi | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6449006 | Shipp | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6475215 | Tanrisever | Nov 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6500312 | Wedekamp | Dec 2002 | B2 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
6514267 | Jewett | Feb 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6558376 | Bishop | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6565558 | Lindenmeier et al. | May 2003 | B1 |
6572563 | Ouchi | Jun 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
D477408 | Bromley | Jul 2003 | S |
6588277 | Giordano et al. | Jul 2003 | B2 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6607540 | Shipp | Aug 2003 | B1 |
6610059 | West, Jr. | Aug 2003 | B1 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626848 | Neuenfeldt | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6652513 | Panescu et al. | Nov 2003 | B2 |
6652539 | Shipp et al. | Nov 2003 | B2 |
6652545 | Shipp et al. | Nov 2003 | B2 |
6656132 | Ouchi | Dec 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6660017 | Beaupre | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6666860 | Takahashi | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6669690 | Okada et al. | Dec 2003 | B1 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679875 | Honda et al. | Jan 2004 | B2 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685701 | Orszulak et al. | Feb 2004 | B2 |
6685703 | Pearson et al. | Feb 2004 | B2 |
6689145 | Lee et al. | Feb 2004 | B2 |
6689146 | Himes | Feb 2004 | B1 |
6716215 | David et al. | Apr 2004 | B1 |
6719692 | Kleffner et al. | Apr 2004 | B2 |
6719776 | Baxter | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
D490059 | Conway et al. | May 2004 | S |
6731047 | Kauf et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6739872 | Turri | May 2004 | B1 |
6740079 | Eggers et al. | May 2004 | B1 |
D491666 | Kimmell et al. | Jun 2004 | S |
6743245 | Lobdell | Jun 2004 | B2 |
6746284 | Spink, Jr. | Jun 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752815 | Beaupre | Jun 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6762535 | Take et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6778023 | Christensen | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6802843 | Truckai et al. | Oct 2004 | B2 |
6809508 | Donofrio | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6835082 | Gonnering | Dec 2004 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6863676 | Lee et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6882439 | Ishijima | Apr 2005 | B2 |
6887209 | Kadziauskas et al. | May 2005 | B2 |
6887252 | Okada et al. | May 2005 | B1 |
6899685 | Kermode et al. | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6915623 | Dey et al. | Jul 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6926712 | Phan | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929602 | Hirakui et al. | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6933656 | Matsushita et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6942660 | Pantera et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6946779 | Birgel | Sep 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6974450 | Weber et al. | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
7001335 | Adachi et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7014638 | Michelson | Mar 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7037306 | Podany | May 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7066893 | Hibner et al. | Jun 2006 | B2 |
7066895 | Podany | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077845 | Hacker et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101378 | Salameh et al. | Sep 2006 | B2 |
7104834 | Robinson et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7117034 | Kronberg | Oct 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7128720 | Podany | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7144403 | Booth | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7204820 | Akahoshi | Apr 2007 | B2 |
7207997 | Shipp et al. | Apr 2007 | B2 |
7210881 | Greenberg | May 2007 | B2 |
7211079 | Treat | May 2007 | B2 |
7217128 | Atkin et al. | May 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7235071 | Gonnering | Jun 2007 | B2 |
7244262 | Wiener et al. | Jul 2007 | B2 |
7258688 | Shah et al. | Aug 2007 | B1 |
7269873 | Brewer et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
D552241 | Bromley et al. | Oct 2007 | S |
7282048 | Goble et al. | Oct 2007 | B2 |
7285895 | Beaupré | Oct 2007 | B2 |
7300431 | Dubrovsky | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7300446 | Beaupre | Nov 2007 | B2 |
7303531 | Lee et al. | Dec 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311706 | Schoenman et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7318831 | Alvarez et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7335165 | Truwit et al. | Feb 2008 | B2 |
7335997 | Wiener | Feb 2008 | B2 |
7337010 | Howard et al. | Feb 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7416437 | Sartor et al. | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
7419490 | Falkenstein et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422463 | Kuo | Sep 2008 | B2 |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431704 | Babaev | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7462181 | Kraft et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7481775 | Weikel, Jr. et al. | Jan 2009 | B2 |
7488285 | Honda et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530986 | Beaupre et al. | May 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7540871 | Gonnering | Jun 2009 | B2 |
7544200 | Houser | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7572266 | Young et al. | Aug 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7582084 | Swanson et al. | Sep 2009 | B2 |
7582095 | Shipp et al. | Sep 2009 | B2 |
7585181 | Olsen | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7601119 | Shahinian | Oct 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7659833 | Warner et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7670338 | Albrecht et al. | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7678125 | Shipp | Mar 2010 | B2 |
7682366 | Sakurai et al. | Mar 2010 | B2 |
7686770 | Cohen | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7713202 | Boukhny et al. | May 2010 | B2 |
7714481 | Sakai | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7726537 | Olson et al. | Jun 2010 | B2 |
7738969 | Bleich | Jun 2010 | B2 |
7740594 | Hibner | Jun 2010 | B2 |
7751115 | Song | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766693 | Sartor et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7771444 | Patel et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7778733 | Nowlin et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780593 | Ueno et al. | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7796969 | Kelly et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799020 | Shores et al. | Sep 2010 | B2 |
7799045 | Masuda | Sep 2010 | B2 |
7803152 | Honda et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7819819 | Quick et al. | Oct 2010 | B2 |
D627066 | Romero | Nov 2010 | S |
7824401 | Manzo et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7834484 | Sartor | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7878991 | Babaev | Feb 2011 | B2 |
7879033 | Sartor et al. | Feb 2011 | B2 |
7892606 | Thies et al. | Feb 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909824 | Masuda et al. | Mar 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
D637288 | Houghton | May 2011 | S |
D638540 | Ijiri et al. | May 2011 | S |
7936203 | Zimlich | May 2011 | B2 |
7951095 | Makin et al. | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7972329 | Refior et al. | Jul 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7981050 | Ritchart et al. | Jul 2011 | B2 |
7998157 | Culp et al. | Aug 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8057498 | Robertson | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8070711 | Bassinger et al. | Dec 2011 | B2 |
8070762 | Escudero et al. | Dec 2011 | B2 |
8075558 | Truckai et al. | Dec 2011 | B2 |
8089197 | Rinner et al. | Jan 2012 | B2 |
8097012 | Kagarise | Jan 2012 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8172846 | Brunnett et al. | May 2012 | B2 |
8172870 | Shipp | May 2012 | B2 |
8177800 | Spitz et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
8186877 | Klimovitch et al. | May 2012 | B2 |
D661801 | Price et al. | Jun 2012 | S |
D661802 | Price et al. | Jun 2012 | S |
D661803 | Price et al. | Jun 2012 | S |
D661804 | Price et al. | Jun 2012 | S |
8197502 | Smith et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8235917 | Joseph et al. | Aug 2012 | B2 |
8236019 | Houser | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8246575 | Viola | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8252012 | Stulen | Aug 2012 | B2 |
8253303 | Giordano et al. | Aug 2012 | B2 |
8257377 | Wiener et al. | Sep 2012 | B2 |
8257387 | Cunningham | Sep 2012 | B2 |
8273087 | Kimura et al. | Sep 2012 | B2 |
D669992 | Schafer et al. | Oct 2012 | S |
D669993 | Merchant et al. | Oct 2012 | S |
8286846 | Smith et al. | Oct 2012 | B2 |
8287485 | Kimura et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8298223 | Wham et al. | Oct 2012 | B2 |
8298225 | Gilbert | Oct 2012 | B2 |
8303576 | Brock | Nov 2012 | B2 |
8303580 | Wham et al. | Nov 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8319400 | Houser et al. | Nov 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8334635 | Voegele et al. | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8344596 | Nield et al. | Jan 2013 | B2 |
8348967 | Stulen | Jan 2013 | B2 |
8357103 | Mark et al. | Jan 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8372102 | Stulen et al. | Feb 2013 | B2 |
8374670 | Selkee | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8382782 | Robertson et al. | Feb 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8419759 | Dietz | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8439912 | Cunningham et al. | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444637 | Podmore et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8469981 | Robertson et al. | Jun 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8491578 | Manwaring et al. | Jul 2013 | B2 |
D687549 | Johnson et al. | Aug 2013 | S |
8509318 | Tailliet | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8523889 | Stulen et al. | Sep 2013 | B2 |
8531064 | Robertson et al. | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8546999 | Houser et al. | Oct 2013 | B2 |
8568400 | Gilbert | Oct 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8579928 | Robertson et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
D696631 | Price et al. | Dec 2013 | S |
8602031 | Reis et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8650728 | Wan et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8659208 | Rose et al. | Feb 2014 | B1 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8696366 | Chen et al. | Apr 2014 | B2 |
8704425 | Giordano et al. | Apr 2014 | B2 |
8709031 | Stulen | Apr 2014 | B2 |
8749116 | Messerly et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8754570 | Voegele et al. | Jun 2014 | B2 |
8764735 | Coe et al. | Jul 2014 | B2 |
8773001 | Wiener et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8845537 | Tanaka et al. | Sep 2014 | B2 |
8882791 | Stulen | Nov 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8900259 | Houser et al. | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8951272 | Robertson et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8961547 | Dietz et al. | Feb 2015 | B2 |
8974477 | Yamada | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
9039695 | Giordano et al. | May 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
20010025173 | Ritchie et al. | Sep 2001 | A1 |
20010025183 | Shahidi et al. | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052617 | Anis et al. | May 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020156466 | Sakurai et al. | Oct 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20030014087 | Fang et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030050572 | Brautigam et al. | Mar 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030144680 | Kellogg et al. | Jul 2003 | A1 |
20030199794 | Sakurai et al. | Oct 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212363 | Shipp | Nov 2003 | A1 |
20030212392 | Fenton et al. | Nov 2003 | A1 |
20030212422 | Fenton et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040097912 | Gonnering | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040132383 | Langford et al. | Jul 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040176686 | Hare et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040204728 | Haefner | Oct 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20050021018 | Anderson et al. | Jan 2005 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050049546 | Messerly et al. | Mar 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165345 | Laufer et al. | Jul 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050182339 | Lee et al. | Aug 2005 | A1 |
20050188743 | Land | Sep 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050209620 | Du et al. | Sep 2005 | A1 |
20050222598 | Ho et al. | Oct 2005 | A1 |
20050234484 | Houser et al. | Oct 2005 | A1 |
20050249667 | Tuszynski et al. | Nov 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060066181 | Bromfield et al. | Mar 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060084963 | Messerly | Apr 2006 | A1 |
20060095046 | Trieu et al. | May 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060206115 | Schomer et al. | Sep 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060235306 | Cotter et al. | Oct 2006 | A1 |
20060247558 | Yamada | Nov 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070056596 | Fanney et al. | Mar 2007 | A1 |
20070060915 | Kucklick | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070074584 | Talarico et al. | Apr 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070129716 | Daw et al. | Jun 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070131034 | Ehlert et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070162050 | Sartor | Jul 2007 | A1 |
20070166663 | Telles et al. | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070175949 | Shelton, IV et al. | Aug 2007 | A1 |
20070185380 | Kucklick | Aug 2007 | A1 |
20070191712 | Messerly et al. | Aug 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070239101 | Kellogg | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260234 | McCullagh et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070282335 | Young et al. | Dec 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20070288055 | Lee | Dec 2007 | A1 |
20080009848 | Paraschiv et al. | Jan 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080058585 | Novak et al. | Mar 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080114364 | Goldin et al. | May 2008 | A1 |
20080125768 | Tahara et al. | May 2008 | A1 |
20080140158 | Hamel et al. | Jun 2008 | A1 |
20080147092 | Rogge et al. | Jun 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080172051 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188878 | Young | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208108 | Kimura | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080243162 | Shibata et al. | Oct 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249553 | Gruber et al. | Oct 2008 | A1 |
20080255423 | Kondo et al. | Oct 2008 | A1 |
20080262490 | Williams | Oct 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080281322 | Sherman et al. | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20090023985 | Ewers | Jan 2009 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090054886 | Yachi et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090112229 | Omori et al. | Apr 2009 | A1 |
20090118751 | Wiener et al. | May 2009 | A1 |
20090118802 | Mioduski et al. | May 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090143806 | Witt et al. | Jun 2009 | A1 |
20090149801 | Crandall et al. | Jun 2009 | A1 |
20090207923 | Dress | Aug 2009 | A1 |
20090216157 | Yamada | Aug 2009 | A1 |
20090223033 | Houser | Sep 2009 | A1 |
20090254077 | Craig | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090275940 | Malackowski et al. | Nov 2009 | A1 |
20090318945 | Yoshimine et al. | Dec 2009 | A1 |
20090327715 | Smith et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100016785 | Takuma | Jan 2010 | A1 |
20100016852 | Manzo et al. | Jan 2010 | A1 |
20100022825 | Yoshie | Jan 2010 | A1 |
20100030233 | Whitman et al. | Feb 2010 | A1 |
20100030248 | Palmer et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100042077 | Okada | Feb 2010 | A1 |
20100049180 | Wells et al. | Feb 2010 | A1 |
20100063525 | Beaupre et al. | Mar 2010 | A1 |
20100063528 | Beaupré | Mar 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100222714 | Muir et al. | Sep 2010 | A1 |
20100228264 | Robinson et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100262134 | Jensen et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100280407 | Polster | Nov 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100298851 | Nield | Nov 2010 | A1 |
20100331742 | Masuda | Dec 2010 | A1 |
20110004233 | Muir et al. | Jan 2011 | A1 |
20110009850 | Main et al. | Jan 2011 | A1 |
20110077648 | Lee et al. | Mar 2011 | A1 |
20110082486 | Messerly et al. | Apr 2011 | A1 |
20110087215 | Aldridge et al. | Apr 2011 | A1 |
20110087217 | Yates et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087256 | Wiener et al. | Apr 2011 | A1 |
20110112526 | Fritz et al. | May 2011 | A1 |
20110125151 | Strauss et al. | May 2011 | A1 |
20110125174 | Babaev | May 2011 | A1 |
20110144806 | Sandhu et al. | Jun 2011 | A1 |
20110196399 | Robertson et al. | Aug 2011 | A1 |
20110224689 | Larkin et al. | Sep 2011 | A1 |
20110238065 | Hunt et al. | Sep 2011 | A1 |
20110257650 | Deville et al. | Oct 2011 | A1 |
20110270126 | Gunday et al. | Nov 2011 | A1 |
20110290853 | Shelton, IV et al. | Dec 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20120004655 | Kim et al. | Jan 2012 | A1 |
20120022525 | Dietz et al. | Jan 2012 | A1 |
20120022530 | Woodruff et al. | Jan 2012 | A1 |
20120059289 | Nield et al. | Mar 2012 | A1 |
20120065628 | Naito | Mar 2012 | A1 |
20120071863 | Lee et al. | Mar 2012 | A1 |
20120078139 | Aldridge et al. | Mar 2012 | A1 |
20120078243 | Worrell et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120078247 | Worrell et al. | Mar 2012 | A1 |
20120078278 | Bales, Jr. et al. | Mar 2012 | A1 |
20120080332 | Shelton, IV et al. | Apr 2012 | A1 |
20120101495 | Young et al. | Apr 2012 | A1 |
20120116379 | Yates et al. | May 2012 | A1 |
20120116391 | Houser et al. | May 2012 | A1 |
20120116394 | Timm et al. | May 2012 | A1 |
20120116395 | Madan et al. | May 2012 | A1 |
20120130256 | Buysse et al. | May 2012 | A1 |
20120130365 | McLawhorn | May 2012 | A1 |
20120136354 | Rupp | May 2012 | A1 |
20120138660 | Shelton, IV | Jun 2012 | A1 |
20120143211 | Kishi | Jun 2012 | A1 |
20120150170 | Buysse et al. | Jun 2012 | A1 |
20120165816 | Kersten et al. | Jun 2012 | A1 |
20120172873 | Artale et al. | Jul 2012 | A1 |
20120172904 | Muir et al. | Jul 2012 | A1 |
20120177005 | Liang et al. | Jul 2012 | A1 |
20120184946 | Price et al. | Jul 2012 | A1 |
20120199630 | Shelton, IV | Aug 2012 | A1 |
20120199632 | Spivey et al. | Aug 2012 | A1 |
20120203143 | Sanai et al. | Aug 2012 | A1 |
20120203247 | Shelton, IV et al. | Aug 2012 | A1 |
20120209289 | Duque et al. | Aug 2012 | A1 |
20120209303 | Frankhouser et al. | Aug 2012 | A1 |
20120210223 | Eppolito | Aug 2012 | A1 |
20120215220 | Manzo et al. | Aug 2012 | A1 |
20120245582 | Kimball et al. | Sep 2012 | A1 |
20120253370 | Ross et al. | Oct 2012 | A1 |
20120265196 | Turner et al. | Oct 2012 | A1 |
20120269676 | Houser et al. | Oct 2012 | A1 |
20120310262 | Messerly et al. | Dec 2012 | A1 |
20120330307 | Ladtkow et al. | Dec 2012 | A1 |
20130012957 | Shelton, IV et al. | Jan 2013 | A1 |
20130012970 | Houser | Jan 2013 | A1 |
20130030433 | Heard | Jan 2013 | A1 |
20130035680 | Ben-Haim et al. | Feb 2013 | A1 |
20130053840 | Krapohl et al. | Feb 2013 | A1 |
20130072856 | Frankhouser et al. | Mar 2013 | A1 |
20130072857 | Frankhouser et al. | Mar 2013 | A1 |
20130079762 | Twomey et al. | Mar 2013 | A1 |
20130103023 | Monson et al. | Apr 2013 | A1 |
20130103024 | Monson et al. | Apr 2013 | A1 |
20130110145 | Weitzman | May 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130123777 | Monson et al. | May 2013 | A1 |
20130123782 | Trees et al. | May 2013 | A1 |
20130123822 | Wellman et al. | May 2013 | A1 |
20130131660 | Monson et al. | May 2013 | A1 |
20130165929 | Muir et al. | Jun 2013 | A1 |
20130211397 | Parihar et al. | Aug 2013 | A1 |
20130217967 | Mohr et al. | Aug 2013 | A1 |
20130226207 | Stulen et al. | Aug 2013 | A1 |
20130226208 | Wiener et al. | Aug 2013 | A1 |
20130245659 | Robertson et al. | Sep 2013 | A1 |
20130267975 | Timm et al. | Oct 2013 | A1 |
20130274734 | Maass et al. | Oct 2013 | A1 |
20130282003 | Messerly et al. | Oct 2013 | A1 |
20130282038 | Dannaher et al. | Oct 2013 | A1 |
20130282039 | Wiener et al. | Oct 2013 | A1 |
20130285758 | Aldridge et al. | Oct 2013 | A1 |
20130289591 | Boudreaux et al. | Oct 2013 | A1 |
20130296908 | Schulte et al. | Nov 2013 | A1 |
20130338661 | Behnke, II | Dec 2013 | A1 |
20130345733 | Robertson et al. | Dec 2013 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005653 | Shelton, IV et al. | Jan 2014 | A1 |
20140005654 | Batross et al. | Jan 2014 | A1 |
20140005656 | Mucilli et al. | Jan 2014 | A1 |
20140005661 | Shelton, IV et al. | Jan 2014 | A1 |
20140005662 | Shelton, IV et al. | Jan 2014 | A1 |
20140005667 | Stulen et al. | Jan 2014 | A1 |
20140005668 | Rhee et al. | Jan 2014 | A1 |
20140005676 | Shelton, IV et al. | Jan 2014 | A1 |
20140005680 | Shelton, IV et al. | Jan 2014 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140005682 | Worrell et al. | Jan 2014 | A1 |
20140005701 | Olson et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005703 | Stulen et al. | Jan 2014 | A1 |
20140005704 | Vakharia et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005708 | Shelton, IV et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140012299 | Stoddard et al. | Jan 2014 | A1 |
20140058427 | Robertson | Feb 2014 | A1 |
20140066962 | Robertson et al. | Mar 2014 | A1 |
20140087569 | Lee | Mar 2014 | A1 |
20140107538 | Wiener et al. | Apr 2014 | A1 |
20140114327 | Boudreaux et al. | Apr 2014 | A1 |
20140135804 | Weisenburgh, II et al. | May 2014 | A1 |
20140155921 | Price et al. | Jun 2014 | A1 |
20140180280 | Sigmon, Jr. | Jun 2014 | A1 |
20140243864 | Voegele et al. | Aug 2014 | A1 |
20140276738 | Price et al. | Sep 2014 | A1 |
20140276970 | Messerly et al. | Sep 2014 | A1 |
20140336686 | Houser et al. | Nov 2014 | A1 |
20150045819 | Houser et al. | Feb 2015 | A1 |
20150066067 | Stulen | Mar 2015 | A1 |
20150073460 | Stulen | Mar 2015 | A1 |
20150112335 | Boudreaux et al. | Apr 2015 | A1 |
20150119914 | Neurohr et al. | Apr 2015 | A1 |
20150119915 | Neurohr et al. | Apr 2015 | A1 |
20150119916 | Dietz et al. | Apr 2015 | A1 |
20150123348 | Robertson et al. | May 2015 | A1 |
20150157355 | Price et al. | Jun 2015 | A1 |
20150157356 | Gee | Jun 2015 | A1 |
20150164533 | Felder et al. | Jun 2015 | A1 |
20150164534 | Felder et al. | Jun 2015 | A1 |
20150164535 | Felder et al. | Jun 2015 | A1 |
20150164536 | Czarnecki et al. | Jun 2015 | A1 |
20150164537 | Cagle et al. | Jun 2015 | A1 |
20150164538 | Aldridge et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
2003241752 | Sep 2003 | AU |
1233944 | Nov 1999 | CN |
1253485 | May 2000 | CN |
1634601 | Jul 2005 | CN |
1640365 | Jul 2005 | CN |
1694649 | Nov 2005 | CN |
1922563 | Feb 2007 | CN |
1951333 | Apr 2007 | CN |
101040799 | Sep 2007 | CN |
101467917 | Jan 2009 | CN |
3904558 | Aug 1990 | DE |
9210327 | Nov 1992 | DE |
4323585 | Jan 1995 | DE |
19608716 | Apr 1997 | DE |
20021619 | Mar 2001 | DE |
10042606 | Aug 2001 | DE |
0136855 | Sep 1984 | EP |
0171967 | Feb 1986 | EP |
1839599 | Oct 1987 | EP |
0336742 | Apr 1989 | EP |
0424685 | May 1991 | EP |
0443256 | Aug 1991 | EP |
0456470 | Nov 1991 | EP |
0598976 | Jan 1994 | EP |
0677275 | Mar 1995 | EP |
0482195 | Jan 1996 | EP |
0695535 | Feb 1996 | EP |
0741996 | Nov 1996 | EP |
0612570 | Jun 1997 | EP |
1108394 | Jun 2001 | EP |
0908148 | Jan 2002 | EP |
1229515 | Aug 2002 | EP |
1285634 | Feb 2003 | EP |
0908155 | Jun 2003 | EP |
0705570 | Apr 2004 | EP |
0765637 | Jul 2004 | EP |
0870473 | Sep 2005 | EP |
0624346 | Nov 2005 | EP |
1594209 | Nov 2005 | EP |
1199044 | Dec 2005 | EP |
1609428 | Dec 2005 | EP |
1199043 | Mar 2006 | EP |
1433425 | Jun 2006 | EP |
1256323 | Sep 2006 | EP |
1704824 | Sep 2006 | EP |
1749479 | Feb 2007 | EP |
1815950 | Aug 2007 | EP |
1844720 | Oct 2007 | EP |
1862133 | Dec 2007 | EP |
1875875 | Jan 2008 | EP |
1199045 | Jun 2008 | EP |
1964530 | Sep 2008 | EP |
1972264 | Sep 2008 | EP |
1974771 | Oct 2008 | EP |
1435852 | Dec 2008 | EP |
1498082 | Dec 2008 | EP |
1707131 | Dec 2008 | EP |
1997438 | Dec 2008 | EP |
1477104 | Jan 2009 | EP |
2014218 | Jan 2009 | EP |
2042112 | Apr 2009 | EP |
1832259 | Jun 2009 | EP |
2074959 | Jul 2009 | EP |
2106758 | Oct 2009 | EP |
2111813 | Oct 2009 | EP |
2200145 | Jun 2010 | EP |
1214913 | Jul 2010 | EP |
2238938 | Oct 2010 | EP |
2298154 | Mar 2011 | EP |
1510178 | Jun 2011 | EP |
2305144 | Jun 2011 | EP |
2335630 | Jun 2011 | EP |
1502551 | Jul 2011 | EP |
2361562 | Aug 2011 | EP |
2365608 | Sep 2011 | EP |
2422721 | Feb 2012 | EP |
1927321 | Apr 2012 | EP |
2510891 | Oct 2012 | EP |
2316359 | Mar 2013 | EP |
1586275 | May 2013 | EP |
1616529 | Sep 2013 | EP |
2583633 | Oct 2014 | EP |
2032221 | Apr 1980 | GB |
2317566 | Apr 1998 | GB |
2379878 | Nov 2004 | GB |
2447767 | Aug 2011 | GB |
S 50-100891 | Dec 1973 | JP |
S 59-68513 | Oct 1982 | JP |
62-221343 | Sep 1987 | JP |
S 62-227343 | Oct 1987 | JP |
62-292153 | Dec 1987 | JP |
63-109386 | May 1988 | JP |
63-315049 | Dec 1988 | JP |
H 01-151452 | Jun 1989 | JP |
H 01-198540 | Aug 1989 | JP |
02-71510 | May 1990 | JP |
2-286149 | Nov 1990 | JP |
H 02-292193 | Dec 1990 | JP |
04-25707 | Feb 1992 | JP |
4-30508 | Mar 1992 | JP |
H 04-150847 | May 1992 | JP |
H 04-152942 | May 1992 | JP |
05-095955 | Apr 1993 | JP |
H 06-070938 | Mar 1994 | JP |
6-104503 | Apr 1994 | JP |
6-507081 | Aug 1994 | JP |
H 7-508910 | Oct 1995 | JP |
7-308323 | Nov 1995 | JP |
8-24266 | Jan 1996 | JP |
8-275951 | Oct 1996 | JP |
H 08-299351 | Nov 1996 | JP |
H 08-336545 | Dec 1996 | JP |
H 09-503146 | Mar 1997 | JP |
H 09-135553 | May 1997 | JP |
H 10-005237 | Jan 1998 | JP |
10-295700 | Nov 1998 | JP |
H 11-501543 | Feb 1999 | JP |
H 11-128238 | May 1999 | JP |
H 11-192235 | Jul 1999 | JP |
11-253451 | Sep 1999 | JP |
H 11-318918 | Nov 1999 | JP |
2000-041991 | Feb 2000 | JP |
2000-070279 | Mar 2000 | JP |
2000-210299 | Aug 2000 | JP |
2000-287987 | Oct 2000 | JP |
2001-029353 | Feb 2001 | JP |
2001-502216 | Feb 2001 | JP |
2003612 | Jun 2001 | JP |
2001-309925 | Nov 2001 | JP |
2002-186901 | Jul 2002 | JP |
2002-204808 | Jul 2002 | JP |
2002-263579 | Sep 2002 | JP |
2002-301086 | Oct 2002 | JP |
2002-330977 | Nov 2002 | JP |
2002-542690 | Dec 2002 | JP |
2003-000612 | Jan 2003 | JP |
2003-010201 | Jan 2003 | JP |
2003-510158 | Mar 2003 | JP |
2003-116870 | Apr 2003 | JP |
2003-126110 | May 2003 | JP |
2003-310627 | May 2003 | JP |
2003-530921 | Oct 2003 | JP |
2003-339730 | Dec 2003 | JP |
2004-147701 | May 2004 | JP |
2005027026 | Jan 2005 | JP |
2005-040222 | Feb 2005 | JP |
2005-066316 | Mar 2005 | JP |
2005-074088 | Mar 2005 | JP |
2005-534451 | Nov 2005 | JP |
2006-6410 | Jan 2006 | JP |
2006-512149 | Apr 2006 | JP |
2006-116194 | May 2006 | JP |
2006-158525 | Jun 2006 | JP |
2006-218296 | Aug 2006 | JP |
2006217716 | Aug 2006 | JP |
2006-288431 | Oct 2006 | JP |
2007-050181 | Mar 2007 | JP |
2003-126104 | May 2007 | JP |
2007-229454 | Sep 2007 | JP |
2007-527747 | Oct 2007 | JP |
2008-508065 | Mar 2008 | JP |
2008-119250 | May 2008 | JP |
2008-521503 | Jun 2008 | JP |
2008-212679 | Sep 2008 | JP |
2008-284374 | Nov 2008 | JP |
2009-511206 | Mar 2009 | JP |
2009-517181 | Apr 2009 | JP |
4262923 | May 2009 | JP |
2009-523567 | Jun 2009 | JP |
2009-236177 | Oct 2009 | JP |
2010-000336 | Jan 2010 | JP |
2010-514923 | May 2010 | JP |
2010-540186 | Dec 2010 | JP |
2012-235658 | Nov 2012 | JP |
5208761 | Jun 2013 | JP |
2154437 | Aug 2000 | RU |
WO 9222259 | Dec 1992 | WO |
WO 9308757 | May 1993 | WO |
WO 9314708 | Aug 1993 | WO |
WO 9316646 | Sep 1993 | WO |
WO 9320877 | Oct 1993 | WO |
WO 9421183 | Sep 1994 | WO |
WO 9424949 | Nov 1994 | WO |
WO 9509572 | Apr 1995 | WO |
WO 9630885 | Oct 1996 | WO |
WO 9639086 | Dec 1996 | WO |
WO 9816156 | Apr 1998 | WO |
WO 98026739 | Jun 1998 | WO |
WO 9835621 | Aug 1998 | WO |
WO 9837815 | Sep 1998 | WO |
WO 9847436 | Oct 1998 | WO |
WO 9920213 | Apr 1999 | WO |
WO 9952489 | Oct 1999 | WO |
WO 0064358 | Nov 2000 | WO |
WO 0074585 | Dec 2000 | WO |
WO 0154590 | Aug 2001 | WO |
WO 0167970 | Sep 2001 | WO |
WO 0195810 | Dec 2001 | WO |
WO 0224080 | Mar 2002 | WO |
WO 0238057 | May 2002 | WO |
WO 02062241 | Aug 2002 | WO |
WO 03082133 | Oct 2003 | WO |
WO 2004012615 | Feb 2004 | WO |
WO 2004026104 | Apr 2004 | WO |
WO 2004032754 | Apr 2004 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2004032763 | Apr 2004 | WO |
WO 2004037095 | May 2004 | WO |
WO 2004098426 | Nov 2004 | WO |
WO 2004112618 | Dec 2004 | WO |
WO 2005117735 | Dec 2005 | WO |
WO 2005122917 | Dec 2005 | WO |
WO 2006012797 | Feb 2006 | WO |
WO 2006042210 | Apr 2006 | WO |
WO 2006058223 | Jun 2006 | WO |
WO 2006063199 | Jun 2006 | WO |
WO 2006083988 | Aug 2006 | WO |
WO 2006119139 | Nov 2006 | WO |
WO 2006119376 | Nov 2006 | WO |
WO 2006129465 | Dec 2006 | WO |
WO 2007008703 | Jan 2007 | WO |
WO 2007008710 | Jan 2007 | WO |
WO 2007040818 | Apr 2007 | WO |
WO 2007047380 | Apr 2007 | WO |
WO 2007047531 | Apr 2007 | WO |
WO 2007056590 | May 2007 | WO |
WO 2007087272 | Aug 2007 | WO |
WO 2007143665 | Dec 2007 | WO |
WO 2008016886 | Feb 2008 | WO |
WO 2008042021 | Apr 2008 | WO |
WO 2008049084 | Apr 2008 | WO |
WO 2008051764 | May 2008 | WO |
WO 2008089174 | Jul 2008 | WO |
WO 2008118709 | Oct 2008 | WO |
WO 2008130793 | Oct 2008 | WO |
WO 2009010565 | Jan 2009 | WO |
WO 2009018406 | Feb 2009 | WO |
WO 2009027065 | Mar 2009 | WO |
WO 2009046234 | Apr 2009 | WO |
WO 2009120992 | Oct 2009 | WO |
WO 2010068783 | Jun 2010 | WO |
WO 2011008672 | Jan 2011 | WO |
WO 2011052939 | May 2011 | WO |
WO 2011100321 | Aug 2011 | WO |
WO 2011144911 | Nov 2011 | WO |
WO 2012061722 | May 2012 | WO |
WO 2012128362 | Sep 2012 | WO |
WO 2012135705 | Oct 2012 | WO |
WO 2012135721 | Oct 2012 | WO |
WO 2013018934 | Feb 2013 | WO |
WO 2013062978 | May 2013 | WO |
Entry |
---|
International Search Report for PCT/GB2011/000778, dated Oct. 19, 2011 (8 pages). |
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Incropera et al., “Fundamentals of Heat and Mass Transfer”, Wiley, New York (1990). (Book—not attached). |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995). |
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970). |
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997). |
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961). |
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000). |
http://www.apicalinstr.com/generators.htm. |
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724. |
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . . . |
http://www.4-traders.com/JOHNSON-JOHNSON-4832/news/Johnson-Johnson-Ethicon-E . . . |
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html. |
http://www.meqadyne.com/es—generator.php. |
http://www.valleylab.com/product/es/generators/index.html. |
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages). |
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” Biomedical Engineering, IEEE Transactions on , vol. BME-31, No. 12, pp. 787, 792, Dec. 1984. |
Fowler, K.R., “A programmable, arbitrary waveform electrosurgical device,” Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, vol., No., pp. 1324, 1325 vol. 3, Nov. 4-7, 1988. |
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral analysis interpretation of electro-surgical generator nerve and muscle stimulation,” Biomedical Engineering, IEEE Transactions on , vol. 35, No. 7, pp. 505, 509, Jul. 1988. |
U.S. Appl. No. 13/751,680, filed Jan. 28, 2013. |
Number | Date | Country | |
---|---|---|---|
20130345689 A1 | Dec 2013 | US |