Medical device

Information

  • Patent Grant
  • 10912580
  • Patent Number
    10,912,580
  • Date Filed
    Monday, December 8, 2014
    10 years ago
  • Date Issued
    Tuesday, February 9, 2021
    3 years ago
Abstract
A medical device is described having a handle, a shaft coupled to the handle and an end effector coupled to the shaft. In one embodiment, the device includes an ultrasonic transducer and is arranged so that ultrasonic or electrical energy can be delivered to a vessel or tissue to be treated. Various novel sensing circuits are described to allow a measure of the drive signal to be measured and fed back to a controller. An active fuse circuit is also described for protecting one or more batteries of the device from an over-current situation.
Description

The present invention relates to the field of medical devices and in particular, although not exclusively, to medical cauterization and cutting devices. The invention also relates to drive circuits and methods for driving such medical devices.


Many surgical procedures require cutting or ligating blood vessels or other internal tissue and many procedures are performed using minimally invasive techniques with a hand-held cauterization device to perform the cutting or ligating. Some existing hand-held cauterization devices use an ultrasonic transducer in the cauterization device to apply ultrasonic energy to the tissue to be cut or ligated. Other hand-held cauterization devices apply RF energy directly to the tissue/vessel being cauterized via forceps of the device.


The present invention aims to provide an alternative surgical device that is able to apply ultrasonic energy or RF energy to the vessel or tissue to be cauterized. Other aspects of the invention relate to the way in which control circuitry is provided to select between the different operating modes. Other aspects of the invention relate to the way in which voltage and current measurements can be made in the circuit design for reporting to a controller, such as a microprocessor; and to the way in which control circuitry can be provided to ensure that too much current is not drawn from the battery.


According to one aspect, the present invention provides a medical device comprising: an end effector for gripping a vessel/tissue; an ultrasonic transducer coupled to the end effector; a drive circuit coupled to the end effector and to the ultrasonic transducer and operable to generate a periodic drive signal and to provide the drive signal either to the ultrasonic transducer or to the end effector; and a controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector.


In one embodiment, the drive circuit comprises a first resonant circuit having a first resonant frequency and a second resonant circuit having a second resonant frequency that is different to the first resonant frequency, wherein the first resonant frequency corresponds to a resonant characteristic of the ultrasonic transducer and wherein the controller is operable to control the drive circuit so that the drive circuit generates a drive signal having a frequency corresponding to the first resonant frequency when the drive signal is to be applied to the ultrasonic transducer and so that the drive circuit generates a drive signal having a frequency corresponding to the second resonant frequency when the drive signal is to be applied to the end effector.


A signal generator may also be provided that is coupled between the controller and the drive circuit for generating a cyclically varying voltage from a DC voltage supply in dependence upon control signals from the controller and for supplying the cyclically varying voltage to the first and second resonant circuits of the drive circuit.


The controller may be arranged to vary the period of the drive signal about the first resonant frequency or the second resonant frequency to vary the energy supplied to the vessel or tissue gripped by the end effector. The controller may vary the period of the drive signal so that the frequency of the drive signal varies around the first resonant frequency within 0.1% to 1% of the first resonant frequency; or so that the frequency of the drive signal varies around the second resonant frequency within 40% to 60% of the second resonant frequency.


Typically, the resonant characteristics of the first and second resonant circuits vary with the tissue or vessel gripped by the forceps and in one embodiment, the controller is configured to vary the period of the drive signal to track changes in the respective resonant characteristic.


An ultrasonic waveguide may be provided that is coupled to the ultrasonic transducer for guiding ultrasonic energy generated by the ultrasonic transducer towards the end effector. The end effector may comprise first and second jaws and the second resonant circuit may be electrically coupled to the first and second jaws of the end effector. For example, the first jaw of the end effector may be electrically coupled to the waveguide and the second resonant circuit may be electrically coupled to the first jaw of the end effector via the ultrasonic waveguide. In some embodiments, the first resonant circuit is electrically coupled to the ultrasonic transducer and to the waveguide.


Sensing circuitry may be provided for sensing a drive signal applied to the ultrasonic transducer or to the end effector. In one embodiment, one or both of the first and second resonant circuits may comprise at least one of an inductor coil, a capacitor and a resistor and wherein the sensing circuitry may comprise an op-amp circuit for sensing the voltage across the inductor coil or the capacitor or the resistor and for converting the sensed voltage to a sensor signal suitable for inputting to the controller. In an alternative embodiment, one or both of the first and second resonant circuits may comprise an impedance element that is connected between the resonant circuit and a reference potential and wherein the sensing circuitry comprises a divider circuit for obtaining a measure of the voltage across the impedance element and a bias signal generator for applying a DC bias signal to the voltage measure. In this case, the impedance element may comprise a capacitor or a resistor. Typically, the sensing circuitry comprises DC blocking circuitry for preventing the DC bias signal from the bias signal generator from coupling with the drive circuit. The bias signal generator may comprises a voltage divider circuit connected between a reference voltage and a supply voltage of the controller.


The device is preferably a battery operated device and comprises one or more batteries for powering the device and further comprising an active fuse circuit for protecting the one or more batteries. The active fuse circuit may comprise a switch electrically coupled between a terminal of the one or more batteries and the drive circuit and control circuitry configured to open the switch to isolate the supply terminal from the drive circuit.


The present invention also provides a medical device comprising: an end effector for gripping a vessel/tissue; a drive circuit for generating a cyclically varying drive signal for driving energy into the vessel/tissue; sensing circuitry for sensing a drive signal generated by the drive circuit; and a controller responsive to the sensing circuitry and operable to control the drive circuit to control the energy delivered to the vessel/tissue; wherein the drive circuit comprises an impedance element that is coupled to a reference potential and wherein the sensing circuitry comprises a divider circuit for obtaining a measure of the voltage across the impedance element and a bias signal generator for applying a DC bias signal to the voltage measure.


The impedance element may be a capacitor or a resistor. The sensing circuitry may also comprise DC blocking circuitry for preventing the DC bias signal from the bias signal generator from coupling with the drive circuit. The bias signal generator may comprise a divider circuit connected between a reference voltage and a supply voltage of the controller. The divider circuit of the bias signal generator may be connected to the supply voltage of the controller via a switch and wherein the controller is configured to open the switch when the controller does not require signals from the sensing circuitry.


The present invention also provides a medical device comprising: an end effector for gripping a vessel/tissue; one or more batteries for providing a DC voltage supply; a signal generator coupled to the one or more batteries for generating a cyclically varying drive signal from the DC voltage supply for driving energy into the vessel/tissue; a controller operable to control the signal generator to control the energy delivered to the vessel/tissue; and an active fuse circuit coupled between the one or more batteries and the signal generator for protecting the one or more batteries.


The active fuse circuit may comprise a switch that is electrically coupled between a terminal of the one or more batteries and the signal generator; and control circuitry configured to switch the switch. The switch may be arranged to disconnect the signal generator from the one or more batteries or may connect a large impedance between the signal generator and the one or more batteries.


The control circuitry of the active fuse may comprise circuitry for sensing a measure of the current being drawn from the one or more batteries and is configured to switch the switch in the event that the current measure exceeds a threshold. The control circuitry of the active fuse may comprise a comparator for comparing the current measure with the threshold and wherein an output of the comparator controls the opening and closing of the switch.


The present invention also provides a method of operating a medical device comprising generating a periodic drive signal and applying the drive signal to an ultrasonic transducer or to an end effector of the medical device and controlling the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector.


The present invention also provides a method of cauterising or cutting a vessel or tissue, the method comprising: gripping the vessel or tissue with an end effector of a medical device; using a drive circuit to apply a periodic drive signal either to an ultrasonic transducer or to the end effector; and controlling the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector. The method may use the above described medical device.


The present invention also provides electronic apparatus for use in a medical device having an ultrasonic transducer and an end effector, the electronic apparatus comprising: a drive circuit for generating a periodic drive signal; and a controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector; wherein the drive circuit comprise a first resonant circuit having a first resonant frequency and a second resonant circuit having a second resonant frequency that is different to the first resonant frequency, and wherein the controller is operable to control the drive circuit so that the drive circuit generates a drive signal having a frequency corresponding to the first resonant frequency when the drive signal is to be applied to the ultrasonic transducer and so that the drive circuit generates a drive signal having a frequency corresponding to the second resonant frequency when the drive signal is to be applied to the end effector.


The present invention also provides a medical device comprising: an end effector for gripping a vessel/tissue; a drive circuit coupled to the end effector and operable to generate a drive signal and to provide the drive signal to the end effector; a controller operable to generate and output control signals to the drive circuit to control the drive signal generated by the drive circuit; wherein the drive circuit and a load formed by the vessel/tissue gripped by the end effector define a resonant circuit whose resonant frequency varies as the impedance of the load formed by the vessel/tissue gripped by the end effector changes; wherein the controller is arranged to generate control signals which cause the drive circuit to generate a drive signal having a frequency that tracks said resonant frequency as it changes; and wherein said controller is further arranged to reduce one or more of the power, current or voltage delivered to the load formed by the vessel/tissue gripped by the end effector.


Sensor circuitry may be provided for sensing signals applied to the load formed by the vessel/tissue gripped by the end effector and measurement circuitry for processing the signals from the sensor circuitry to determine a measure of the impedance of the load formed by the vessel/tissue gripped by the end effector. In this case, the controller can generate said control signals in dependence upon said measure of the impedance of the load formed by the vessel/tissue gripped by the end effector.


In one embodiment, the controller generates control signals having sequences of pulses and the controller skips one or more pulses from the control signals in order to reduce one or more of the power, current or voltage delivered to the load formed by the vessel/tissue gripped by the end effector.


Typically, in this case, the controller comprises a pulse signal generator that generates pulses at a desired frequency that depends on said resonant frequency and the controller skips pulses generated by said pulse signal generator by suppressing pulses generated by the pulse signal generator.





These and various other features and aspects of the invention will become apparent from the following detailed description of embodiments which are described with reference to the accompanying Figures in which:



FIG. 1 illustrates a hand-held cauterization device that has batteries and drive and control circuitry mounted in a handle portion of the device;



FIG. 2 is a part block diagram illustrating the main components of the cauterization device used in one embodiment of the invention;



FIG. 3 is a circuit diagram illustrating the main electrical components of the cauterization device shown in FIG. 2;



FIG. 4 schematically illustrates the way in which the ultrasonic transducer is coupled to a waveguide for delivering the generated ultrasonic energy to the forceps and illustrating the way in which the circuitry shown in FIG. 3 can deliver electrical energy to the forceps;



FIG. 5 is a block diagram that schematically illustrates processing modules that form part of the microprocessor shown in FIG. 2;



FIG. 6 illustrates the form of control signals generated by the microprocessor to control the drive circuit whilst minimising 3rd harmonic content;



FIG. 7 is a contour plot illustrating the delivered power versus the load resistance and the drive frequency;



FIG. 8a is a circuit diagram illustrating one way in which a measure of the load current can be determined and supplied to the microprocessor;



FIG. 8b is a circuit diagram illustrating another way in which a measure of the load current can be determined and supplied to the microprocessor;



FIG. 8c is a circuit diagram illustrating one way in which a measure of the load voltage can be determined and supplied to the microprocessor;



FIG. 9a is a circuit diagram illustrating one way in which a measure of the load current can be determined and supplied to the microprocessor without using an op-amp circuit;



FIG. 9b is a circuit diagram illustrating one way in which a measure of the load current can be determined and supplied to the microprocessor and illustrating one way in which a measure of the load voltage can be determined and supplied to the microprocessor without using op-amp circuits; and



FIG. 10 is a circuit diagram illustrating an active fuse circuit used to protect the batteries shown in FIG. 2 from excessive current demand.





MEDICAL DEVICE

Many surgical procedures require cutting or ligating blood vessels or other vascular tissue. With minimally invasive surgery, surgeons perform surgical operations through a small incision in the patient's body. As a result of the limited space, surgeons often have difficulty controlling bleeding by clamping and/or tying-off transected blood vessels. By utilizing ultrasonic-surgical forceps or electro-surgical forceps, a surgeon can cauterize, coagulate/desiccate, and/or simply reduce bleeding by controlling the ultrasonic energy applied to the tissue/vessel by an ultrasonic transducer or by controlling the RF energy applied to the tissue/vessel via the forceps.



FIG. 1 illustrates the form of an ultrasonic/RF-surgical medical device 1 that is designed for minimally invasive medical procedures, according to one embodiment of the present invention. As shown, the device 1 is a self contained device, having an elongate shaft 3 that has a handle 5 connected to the proximal end of the shaft 3 and an end effector 7 connected to the distal end of the shaft 3. In this embodiment, the end effector 7 comprises medical forceps 9 that are controlled by the user manipulating control levers 11 and 13 of the handle 5.


During a surgical procedure, the shaft 3 is inserted through a trocar to gain access to the patient's interior and the operating site. The surgeon will manipulate the forceps 9 using the handle 5 and the control levers 11 and 13 until the forceps 9 are located around the vessel to be cut or cauterised. Electrical energy is then applied, in a controlled manner, either to the tissue directly via the forceps 9 (as RF energy) or to an ultrasonic transducer 8 that is mounted within the handle 5 and coupled to the forceps 9 via a waveguide (not shown) within the shaft 3, in order to perform the desired cutting/cauterisation using ultrasonic energy. As shown in FIG. 1, in this embodiment, the handle 5 also houses batteries 15 and control electronics 17 for generating and controlling the electrical energy required to perform the cauterisation. In this way, the device 1 is self contained in the sense that it does not need a separate control box and supply wire to provide the electrical energy to the forceps 9. However, such a separate control box may be provided if desired.


System Circuitry



FIG. 2 is a schematic block diagram illustrating the main electrical circuitry of the cauterization/cutting device 1 used in this embodiment to generate and control the electrical energy supplied to the ultrasonic transducer or to the forceps 9. As will be explained in more detail below, in this embodiment, the circuitry is designed to control the period of an electrical drive waveform that is generated in order to control the amount of power delivered to the tissue/vessel being cauterized.


As shown in FIG. 2, the cauterization/cutting device 1 comprises a user interface 21—via which the user is provided with information (such as an indication that energy is being applied to the gripped tissue/vessel by electrical energy or ultrasonic energy) and through which the user controls the operation of the cauterization/cutting device 1, including selection of ultrasonic operation or RF operation. As shown, the user interface 21 is coupled to a microprocessor 23 that controls the cutting/cauterisation procedure by generating control signals that it outputs to gate drive circuitry 25. In response to the control signals from the microprocessor 23, the gate drive circuitry 25 generates gate control signals that cause a bridge signal generator 27 to generate a desired drive waveform that is applied either to the ultrasonic transducer 8 or to the forceps 9 via a drive circuit 29. Voltage sensing circuitry 31 and current sensing circuitry 33 generate measures of the current and voltage applied to the ultrasonic transducer 8 or to the forceps 9, which they feed back to the microprocessor 23 for control purposes. FIG. 2 also shows the batteries 15 that provide the power for powering the electrical circuitry shown in FIG. 2. In this embodiment, the batteries 15 are arranged to supply 0V and 14V rails.



FIG. 3 illustrates in more detail the components of the gate drive circuitry 25, the bridge signal generator 27 and the drive circuit 29. FIG. 3 also shows an electrical equivalent circuit 30 of the piezo-electric ultrasonic transducer 8 and the load (Rload) formed by the tissue/vessel to be treated. As shown in FIG. 3, the gate drive circuitry 25 includes two FET gate drives 37—FET gate drive 37-1 and FET gate drive 37-2. A first set of control signals (CTRL1) from the microprocessor 23 is supplied to FET gate drive 37-1 and a second set of control signals (CTRL2) from the microprocessor 23 is supplied to FET gate drive 37-2. FET gate drive 37-1 uses the first set of control signals (CTRL1) to generate two drive signals—one for driving each of the two FETs 41-1 and 41-2 of the bridge signal generator 27. The FET gate drive 37-1 generates drive signals that causes the upper FET (41-1) to be on when the lower FET (41-2) is off and vice versa. This causes the node A to be alternately connected to the 14V rail (when FET 41-1 is switched on) and the 0V rail (when the FET 41-2 is switched on). Similarly, FET gate drive 37-2 uses the second set of control signals (CTRL2) to generate two drive signals—one for driving each of the two FETs 41-3 and 41-4 of the bridge signal generator 27. The FET gate drive 37-2 generates drive signals that causes the upper FET (41-3) to be on when the lower FET (41-4) is off and vice versa. This causes the node B to be alternately connected to the 14V rail (when FET 41-3 is switched on) and the 0V rail (when the FET 41-4 is switched on). Thus the two sets of control signals (CTRL1 and CTRL2) output by the microprocessor 23 control the digital waveform that is generated and applied between nodes A and B. Each set of control signals (CTRL1 and CTRL2) comprises of a pair of signal lines, one to indicate when the high side FET is on and the other to indicate when the low side FET is on. Thus the microprocessor 23, either through software or through a dedicated hardware function can ensure that the undesirable condition when both high and low side FETs are simultaneously turned on does not occur. In practice this requires leaving a dead time when both high and low side FETs are turned off to ensure that, even when allowing for variable switching delays, there is no possibility that both FETs can be simultaneously on. In the present embodiment a dead time of about 100 ns was used.


As shown in FIG. 3, the nodes A and B are connected to the drive circuit 29, thus the digital voltage generated by the bridge signal generator 27 is applied to the drive circuit 29. This applied voltage will cause current to flow in the drive circuit 29. As shown in FIG. 3, the drive circuit 29 includes two transformer circuits 42-1 and 42-2. The first transformer circuit 42-1 is designed for efficient driving of the ultrasonic transducer 8 and includes a capacitor-inductor-inductor resonant circuit 43-1 formed by capacitor CUSs 45, inductor LUSs 47 and inductor LUSm 49. When driving the ultrasonic transducer 8, the microprocessor 23 is arranged to generate control signals for the gate drive circuitry 25 so that the fundamental frequency (fd) of the digital voltage applied across nodes A and B is around the resonant frequency of the resonant circuit 43-1, which in this embodiment is about 50 kHz. As a result of the resonant characteristic of the resonant circuit 43-1, the digital voltage applied across nodes A and B will cause a substantially sinusoidal current at the fundamental frequency (fd) to flow within the resonant circuit 43-1. This is because higher harmonic content of the drive voltage will be attenuated by the resonant circuit 43-1 and the impedance of Lt and Ct1 referred to the transformer primary.


As illustrated in FIG. 3, the inductor LUSm 49 forms the primary of the transformer circuit 42-1, the secondary of which is formed by inductor LUSsec 53. The transformer up-converts the drive voltage (VUSd) across the inductor Lm 49 to a load voltage (VL; typically about 120 volts) that is applied to the ultrasonic transducer 8. The electrical characteristics of the ultrasonic transducer 8 change with the impedance of the forceps' jaws and any tissue or vessel gripped by the forceps 9; and FIG. 3 models the ultrasonic transducer 8 and the impedance of the forceps' jaws and any tissue or vessel gripped by the forceps 9 by the inductor Lt 57, the parallel capacitors Ct1 59 and Ct2 61 and the resistance Rload.


The inductor LUSs and capacitor CUSs of the drive circuit 29 are designed to have a matching LC product to that of inductor Lt and capacitor Ct1 of the ultrasonic transducer 8. Matching the LC product of a series LC network ensures that the resonant frequency of the network is maintained. Similarly, the magnetic reactance of the inductor LUSm is chosen so that at resonance it matches with the capacitive reactance of the capacitor Ct2 of the ultrasonic transducer 8. For example, if the transducer 8 is defined such that capacitor Ct2 has a capacitance of about 3.3 nF, then the inductor LUSm should have an inductance of about 3 mH (at a resonant frequency of about 50 kHz). Designing the drive circuit 29 in this way provides for the optimum drive efficiency in terms of energy delivery to the tissue/vessel gripped by the forceps 9. The efficiency improvement is realised because the current flowing in CUSs and consequently the FET bridge (27) is reduced, because the transformer magnetising current cancels out the current flowing in Ct2 In addition, because of this current cancellation, the current flowing in CUSs is proportional to the current flowing in Rload, which allows the load current to be determined by measuring the current flowing in CUSs.


The second transformer circuit 42-2 is designed for efficient driving of electrical RF energy directly to the tissue/vessel via the forceps 9 and includes a capacitor-inductor-inductor resonant circuit 43-2 formed by capacitor CFs 46, inductor LFs 48 and inductor LFm 50. When driving the forceps 9 directly with electrical energy, the microprocessor 23 is arranged to generate control signals for the gate drive circuitry 25 so that the fundamental frequency (fd) of the digital voltage applied across nodes A and B is around the resonant frequency of the resonant circuit 43-2, which in this embodiment is about 500 kHz. As a result of the resonant characteristic of the resonant circuit 43-2, the digital voltage applied across nodes A and B will cause a substantially sinusoidal current at the fundamental frequency (fd) to flow within the resonant circuit 43-2. This is because higher harmonic content of the drive voltage will be attenuated by the resonant circuit 43-2.


As illustrated in FIG. 3, the inductor LFm 50 forms the primary of the transformer circuit 42-1, the secondary of which is formed by inductor LUSsec 54. The transformer up-converts the drive voltage (VFd) across inductor LFm 50 to the load voltage (VFL; typically about 120 volts) that is applied to the forceps 9. The tissue or vessel gripped by the jaws of the forceps 9 is represented as the resistive load Rload in the box labelled 9 in FIG. 3. In practice, this will be the same resistive load that is illustrated in the electrical equivalent circuit 30 of the ultrasonic transducer 8.



FIG. 4 is a schematic diagram illustrating the way in which the ultrasonic transducer 8 couples to the tissue/vessel to be cauterized and the way in which the circuit components illustrated in FIG. 3 connect to the ultrasonic transducer 8 and to the forceps 9. In particular, FIG. 4 shows the shaft 3, the forceps 9 and the ultrasonic transducer 8. FIG. 4 also shows the waveguide 72 along which the ultrasonic signal that is generated by the ultrasonic transducer 8 is guided. The waveguide 72 is connected to the node “BB” show in FIG. 3, whilst the input supply to the ultrasonic transducer 8 is connected to node “AA” shown in FIG. 3. The output node “CC” of the second transformer circuit 42-2 is connected to a conductive inner wall of the sheath 3, which is electrically connected to the upper jaw 74 of the forceps 9. The return path is through the tissue/vessel to be cauterized and the lower jaw 76, which is electrically connected to the node “BB”.


When the drive signal has a drive frequency of about 50 kHz, very little current will flow within the second transformer circuit 42-2 because the drive frequency is far away from the resonant frequency of the resonant circuit 43-2 such that the input impedance of the second transformer circuit 42-2 will be very high for this drive signal. Therefore, the power will be delivered almost entirely via the first transformer circuit 42-1. Similarly, when the drive signal has a drive frequency of about 500 kHz, very little current will flow within the first transformer circuit 42-1 because the drive frequency is far away from the resonant frequency of the resonant circuit 43-1 such that the input impedance of the first transformer circuit 42-1 will be very high for this drive signal. Therefore, the power will be delivered almost entirely via the second transformer circuit 42-2. In this way, the two transformer circuits 42-1 and 42-2 can be driven by a common bridge signal generator 27; although it is also feasible to drive each transformer circuit with separate bridge signal generators.


It is not always desired to apply full power to the tissue/vessel to be treated. Therefore, in this embodiment in the ultrasonic mode of operation, the amount of ultrasonic energy supplied to the vessel/tissue is controlled by varying the period of the digital waveform applied across nodes A and B so that the drive frequency (fd) moves away from the resonant frequency of the ultrasonic transducer 8. This works because the ultrasonic transducer 8 acts as a frequency dependent (lossless) attenuator. The closer the drive signal is to the resonant frequency of the ultrasonic transducer 8, the more ultrasonic energy the ultrasonic transducer 8 will generate. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the ultrasonic transducer 8, less and less ultrasonic energy is generated by the ultrasonic transducer 8. In addition or instead, the duration of the pulses of the drive signals may be varied to control the amount of ultrasonic energy delivered to the tissue/vessel.


Similarly, in the electrical mode of operation, the amount of electrical power supplied to the forceps 9 is controlled by varying the period of the digital waveform applied across nodes A and B so that the drive frequency (fd) moves away from the resonant frequency of the resonant circuit 43-2. This works because the resonant circuit 43-1 acts as a frequency dependent (lossless) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 43-1, the less the drive signal is attenuated. Conversely, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 43-1, the more the drive signal is attenuated and so the electrical energy supplied to the tissue/vessel reduces. The drive frequency needs to move away from the resonant frequency by about 50% of the resonant frequency to achieve the desired range of power variation. An alternative approach to controlling the power, current or voltage applied during the electrical mode of operation is to continuously tune the frequency of the excitation signal to keep it matched with the resonant frequency of the drive circuit (as it changes with the changing load impedance) and thereby maintain efficient operation and to skip some of the pulses of the drive control signals until the average power, current and/or voltage is below the relevant limit.


A further alternative, which is most effective when using the pulse skipping technique, is to remove the inductor 48 shown in FIG. 3 and therefore the drive circuit for the electrical mode of operation becomes a substantially parallel LC resonant circuit (it is not a pure parallel LC resonant circuit because the transformer leakage inductance appears in series with inductor 48 and cannot be entirely removed). The advantage of removing the inductor 48 is that the overall efficiency can be increased, because there are no longer any losses in the inductor. A further advantage is that the physical size of the circuit can be reduced, because often the inductor is a physically large component relative to the FETs, microprocessor, capacitors and other system components.


The microprocessor 23 controls the power delivery based on a desired power to be delivered to the circuitry 30 (which models the ultrasonic transducer 8 and the tissue/vessel gripped by the forceps 9) or to the forceps 9 and based on measurements of the load voltage (VL) and of the load current (iL) obtained from the voltage sensing circuitry 31 and the current sensing circuitry 33. The microprocessor 23 also selects the frequency of the drive signal (around 50 kHz or around 500 kHz) based on a user input received via the user interface 21 that selects either electrical operation or ultrasonic operation.


Microprocessor



FIG. 5 is a block diagram illustrating the main components of the microprocessor 23 that is used in this embodiment. As shown, the microprocessor 23 includes synchronous I,Q sampling circuitry 81 that receives the sensed voltage and current signals from the sensing circuitry 31 and 33 and obtains corresponding samples which are passed to a measured voltage and current processing module 83. The measured voltage and current processing module 83 uses the received samples to calculate the impedance of, and the RMS voltage applied to and the RMS current flowing through, the ultrasonic transducer 8 and/or directly to the tissue/vessel gripped by the forceps 9; and from them the power that is presently being supplied to the circuitry 30 or directly to the tissue/vessel gripped by the forceps 9. The determined values are then passed to a power controller 85 for further processing. The measured voltage and current processing module 83 can also process the received I and Q samples to calculate the phase difference between the load voltage (VL) and the load current (IL). During the ultrasonic mode of operation, at resonance, this phase difference should be around zero and so this phase measure can be used as a feedback parameter for the power controller 85.


The power controller 85 uses the received impedance value and the delivered power value to determine, in accordance with a predefined algorithm and a power set point value and a mode indication signal (received from a medical device control module 89 and indicating ultrasonic operation or electrical operation), a desired period/frequency (Δtnew) of the control signals (CTRL1 and CTRL2) that are used to control the gate drive circuit 25. This desired period/frequency is passed from the power controller 85 to the control signal generator 95, which changes the control signals CTRL1 and CTRL2 in order to change the waveform period to match the desired period. The CTRL control signals may comprise square wave signals having the desired period or they may comprise periodic pulses with the period corresponding to the desired period (Δtnew) and with the relative timing of the pulses of the control signals being set to minimise harmonic content of the waveform that is generated by the bridge signal generator 27 (such as to minimise the 3rd order harmonic). In this embodiment, the control signals CTRL1 are output to the FET gate drive 37-1 (shown in FIG. 2), which amplifies the control signals and then applies them to the FETs 41-1 and 41-2; and the control signals CTRL2 are output to the FET gate drive 37-2 (shown in FIG. 2), which amplifies the control signals and then applies them to the FETs 41-3 and 41-4, to thereby generate the desired waveform with the new period (Δtnew).


In order to drive the circuitry with the optimal RMS waveform, the MOSFETs 41 are driven as complementary, opposing pairs. Although the maximum output voltage is achieved when the MOSFET pairs are driven at a phase shift of 180 degrees, the resulting harmonic content of such a drive waveform, particularly the 3rd harmonic (which is poorly excluded by the output filter) is quite high. The inventors have found that the optimal phase shift between the control signals applied to the two pairs of MOSFETs 41, for 3rd harmonic reduction, is around 120°. This is illustrated in FIG. 6 which shows in the upper plot the output from the first MOSFET pair 41-1 and 41-2; in the middle plot the output from the second MOSFET pair 41-3 and 41-4 (shifted by 120° relative to the upper plot); and in the lower plot the resulting (normalised) output voltage applied across inputs A and B. The shape of this normalised output voltage has very low 3rd order harmonic content.


I & Q Signal Sampling


Both the load voltage and the load current will be substantially sinusoidal waveforms, although they may be out of phase, depending on the impedance of the load represented by the transducer 8 and/or the vessel/tissue gripped by the forceps 9. The load current and the load voltage will be at the same drive frequency (fd) corresponding to the presently defined waveform period (Δtnew). Normally, when sampling a signal, the sampling circuitry operates asynchronously with respect to the frequency of the signal that is being sampled. However, as the microprocessor 23 knows the frequency and phase of the switching signals, the synchronous sampling circuit 81 can sample the measured voltage/current signal at predefined points in time during the drive period. In this embodiment, during the ultrasonic mode of operation, the synchronous sampling circuit 81 oversamples the measured signal eight times per period to obtain four I samples and four Q samples. Oversampling allows for a reduction of errors caused by harmonic distortion and therefore allows for the more accurate determination of the measured current and voltage values. However, oversampling is not essential and indeed under sampling (less than two samples per period) is performed when the device is operating in the electrical mode of operation and is possible due to the synchronous nature of the sampling operation. The timing that the synchronous sampling circuit 81 makes these samples is controlled, in this embodiment, by the control signals CTRL1 and CTRL2. Thus when the period of these control signals is changed, the period of the sampling control signals CTRL1 and CTRL2 also changes (whilst their relative phases stay the same). In this way, the sampling circuitry 81 continuously changes the timing at which it samples the sensed voltage and current signals as the period of the drive waveform is changed so that the samples are always taken at the same time points within the period of the drive waveform. Therefore, the sampling circuit 81 is performing a “synchronous” sampling operation instead of a more conventional sampling operation that just samples the input signal at a fixed sampling rate defined by a fixed sampling clock. Of course, such a conventional sampling operation could be used instead.


Measurements


The samples obtained by the synchronous sampling circuitry 51 are passed to the measured voltage and current processing module 83 which can determine the magnitude and phase of the measured signal from just one “I” sample and one “Q” sample of the load current and load voltage. However, in this embodiment, to achieve some averaging, the processing module 83 averages consecutive “I” samples to provide an average “I” value and consecutive “Q” samples to provide an average “Q” value; and then uses the average I and Q values to determine the magnitude and phase of the measured signal. Of course, it should be recognised that some pre-processing of the data may be required to convert the actual measured I and Q samples into I and Q samples of the load voltage or the load current, for example, scaling, integration or differentiation of the sample values may be performed to convert the sampled values into true samples of the load voltage (VL) and the load current (iL). Where integration or differentiation is required, this can be achieved simply by swapping the order of the I and Q samples—as integrating/differentiating a sinusoidal signal simply involves a scaling and a 90 degree phase shift.


The RMS load voltage, the RMS load current and the delivered power, Pdelivered, can then be determined from:







V
RMS

=


1

2





(


V
I
2

+

V
Q
2


)










I
RMS

=


1

2





(


I
I
2

+

I
Q
2


)









Power
=


V
.

I
*


=



1

2




(


V
I

+

j






V
Q



)



(


I
I

-

j






I
Q



)


=


P
delivered

+

j






P
reactive












P
delivered

=


1

2




(



V
I



I
I


+


V
Q



I
Q



)









P
reactive

=


1

2




(



V
Q



I
I


-


V
I



I
Q



)










Power


=



V
RMS



I
RMS


=




P
delivered

+

j






P
reactive










The impedance of the load represented by the ultrasonic transducer 8 and the vessel/tissue gripped by the forceps 9 (or just the impedance of the forceps 9 and the vessel/tissue gripped by the forceps 9 if the electrical energy is directly applied to the forceps 9) can be determined from:







Z
Load

=



(


V
I

+

j






V
Q



)


(


I
I

+

j






I
Q



)


=




(


V
I

+

j






V
Q



)



(


I
I

-

j






I
Q



)




(


I
I

+

j






I
Q



)



(


I
I

-

j






I
Q



)



=



(



V
I



I
I


+


V
Q



I
Q


+

j






V
Q



I
I


-

j






V
I



I
Q



)



2



I
RMS
2



=


R
Load

+

j






X
Load










An alternative way of computing RLoad and XLoad is as follows:







R
Load

=




P
delivered



2



I
RMS
2









X
Load


=


P
reactive



2



I
RMS
2









and the phase difference between the load voltage and the load current can be determined from:

Phasemeasured=a tan 2(Preactive,Pdelivered)


A computationally efficient, approximation to the a tan 2 function can be made using look up tables and interpolation in fixed point arithmetic, or using a ‘CORDIC’ like algorithm,


Limits


As with any system, there are certain limits that can be placed on the power, current and voltage that can be delivered either to the ultrasonic transducer 8 or to the forceps 9. The limits used in this embodiment and how they are controlled will now be described.


In this embodiment, the drive circuitry 29 is designed to deliver ultrasonic energy into tissue or to deliver electrical energy into tissue with the following requirements:

  • 1) Supplied with a nominally 14V DC supply
  • 2) Substantially sinusoidal output waveform at approximately 50 kHz in the case of ultrasonic operation
  • 3) Substantially sinusoidal output waveform at approximately 500 kHz in the case of RF electrical operation
  • 4) Power limited output of 90 W in the case of ultrasonic operation
  • 5) Power limited output of 100 W in the case of electrical operation
  • 6) Current limited to 1.4 Arms and voltage limited to 130Vrms in the case of ultrasonic operation
  • 7) Current limited to 1.4 Arms and voltage limited to 100Vrms in the case of electrical operation
  • 8) In the case of ultrasonic operation, the measured phase is greater than a system defined phase limit


The power controller 85 maintains data defining these limits and uses them to control the decision about whether to increase or decrease the waveform period or whether to skip pulses of the control signals given the latest measured power, load impedance and/or measured phase. In this embodiment, when operating in the ultrasonic mode of operation, the phase limit that is used depends on the measured load impedance. In particular, the power controller 85 maintains a look up table (not shown) relating load impedance to the phase limit; and the values in this table limit the phase so that when the measured load impedance is low (indicating that the jaws of the forceps 9 are open and not gripping tissue or a vessel), the delivered power is reduced (preferably to zero).


As discussed above, one of the ways to control the operation of the device (when operating in the electrical mode of operation) is to maximise the drive efficiency. When controlling the device in this way, the power controller 85 tracks a maximum power delivery condition as the load changes. The way that this can be done will now be described.


Maximum Power Delivery Tracking Condition


The complex impedance of the circuitry shown in FIG. 3 (when operating in the electrical mode of operation and with inductor 48 removed) can be approximated by the following equation:






Z
=


j





2

π






fL
S
F


+

1

j





2

π






fC
S
F



+


j





2

π






fL
M
F



R
load_ref




j





2

π






fL
M
F


+

R
load_ref



+

R
s







Where:


Rload_ref is the load resistance referred to the primary (by the square of the turns ratio); and Rs represents the equivalent series resistance of the inductor, transformer capacitor and switching devices. This complex impedance may be rewritten as:






Z
=


j





2

π






fL
S
F


+

1

j





2

π






fC
S
F



+


4


π
2



f
2



L
M

F





2




R
load_ref




4


π
2



f
2



L
M

F





2



+

R
load_ref
2



+


j





2

π






fL
M
F



R
load_ref
2




4



π





2



f
2



L
M

F





2



+

R
load_ref
2



+

R
s






Therefore, the real part of this complex impedance is:









(
Z
)


=



4


π
2



f
2



L
M

F





2




R
load_ref




4


π
2



f
2



L
M

F





2



+

R
load_ref
2



+

R
s






And the imaginary part of this complex impedance is:









(
Z
)


=


2

π






fL
S
F


-

1

2

π






fC
S
F



+


2

π






fL
M
F



R
load_ref
2




4



π





2



f
2



L
M

F





2



+

R
load_ref
2








When the drive frequency (f) corresponds to the resonant frequency of this complex impedance, the imaginary part ℑ(Z)=0. Therefore, the power controller 85 can vary the drive frequency (f) to keep the imaginary part ℑ(Z) at or around zero using a phase locked loop. Indeed, it can be shown that when ℑ(Z)=0 the maximum power (for a given supply voltage) is delivered to the load.



FIG. 7 is a contour plot showing the power contours than can be delivered to the load versus the drive frequency and the load resistance (Rload). As shown in FIG. 7, the power that can be delivered varies with the load resistance and the drive frequency. FIG. 7 also shows the line 92 of maximum power delivery that can be achieved as the load resistance and drive frequency change. Therefore, the power controller 85 can use the measured value of Rload together with stored data defining the line 92 shown in FIG. 7 (which may be a look-up-table) to determine the corresponding drive frequency to be used. In this way, the microprocessor 23 will track along the line 92 shown in FIG. 7 as the load resistance changes during the cutting/cauterisation process.


One of the advantages of this approach is that it enables a useful operating condition at low values of Rload, in particular for values of Rload less than the critical value (i.e. when Rload_ref<2πfLFM), in which a maximum power will be delivered even if this is below the desired power level. However, operating along the line 92 of maximum power delivery can result in some of the above system limits being breached unless further control action is taken. In the preferred embodiment, this further control action is to use pulse skipping techniques until the average power, current and/or voltage is below the relevant limit. For example, as can be seen from the measurements described above, the measured voltage and current processing module 83 can determine the delivered power, the RMS voltage and the RMS current. The power controller 85 can therefore use these values to skip one or more pulses of the CTRL control signals until the measured voltage and current values are below the relevant system limits and the delivered power is at or below the power set-point defined by the medical device control module 89.


Pulses may be skipped, for example, by passing the pulses generated by the control signal generator 87 through a logic gate (not shown) and selectively suppressing pulses that are generated by the control signal generator 87 by controlling the logic level of another input to the logic gate. For example, the pulses of each control signal that is generated by the control signal generator 87 may be passed through an AND gate, with another input of the AND gate being generated by the power controller 85 and being a logic “1” when the pulses are to be output to the FET gate drives 37 as normal and being a logic “0” when the pulses are to be skipped or suppressed. Other pulse skipping techniques could of course be used.


Medical Device Control Module


As mentioned above, the medical device control module 89 controls the general operation of the cauterisation/cutting device 1. It receives user inputs via the user input module 91. These inputs may specify that the jaws of the forceps 9 are now gripping a vessel or tissue and that the user wishes to begin cutting/cauterisation and specify whether ultrasonic energy or electrical energy is to be applied to the vessel/tissue. In response, in this embodiment, the medical device control module 89 initiates a cutting/cauterisation control procedure. Initially, the medical device control module 89 sends an initiation signal to the power controller 85 and obtains the load impedance measurements determined by the measured voltage and current processing module 83. The medical device control module 89 then checks the obtained load impedance to make sure that the load is not open circuit or short circuit. If it is not, then the medical device control module 89 starts to vary the power set point to perform the desired cutting/cauterisation and sets the initial period/frequency of the drive signal to be generated. As discussed above, for ultrasonic operation, the initial frequency of the drive signal will be set around 50 kHz and for RF electrical operation, the initial frequency will be set around 500 kHz.


Voltage/Current Sensing Circuitry


As shown in FIG. 2, voltage sensing circuitry 31 is provided to sense the load voltage applied to the load and current sensing circuitry 33 is provided to sense the current applied to the load. The sensed signals are supplied to the microprocessor 23 for use in controlling the operation of the medical device. There are various ways of sensing the load voltage and the load current and some of these will now be described.



FIG. 8a illustrates the primary side of the first transformer circuit 42-1 and one way in which the current sensing circuitry 33 obtains a measure of the load current. As shown, the current sensing circuitry 33 comprises an additional inductor turn(s) 67 which link the flux present in inductor 47 (or inductor 49) and that consequently outputs a voltage across inductor 67 that varies with the rate of change of load current. The voltage across the inductor 67 is a bipolar voltage whose amplitude is directly proportional to the rate of change of load current and the number of turns in 67. This bipolar voltage is scaled and converted into a unipolar voltage suitable for input to the microprocessor 23 by the op-amp circuit 69-1 which outputs a measured voltage (Vmeas). This measured voltage will also depend on the current flowing in the inductor 47 and so will also depend on the current flowing on the secondary side of the transformer circuit 42-1 and thus the current flowing through the load. As the ratio of the number of turns of inductor 47 to inductor 67 is known, the measured voltage and current processing module 83 can use Vmeas to determine the voltage across inductor 47. The voltage across inductor 47 is related to the current flowing through the inductor 47 by V=Ldi/dt. As the inductance of inductor 47 is known, the measured voltage and current processing module 83 can determine the current flowing in the primary side of the transformer circuit 42-1 by integrating the voltage across the inductor 47 and by scaling the result to account for the inductance of the inductor 47 (and the scaling of the op-amp-circuit 69-1). This current measure can then be converted into a suitable measure of the load current (iL) by a further scaling to take into account the number of turns between inductor 49 and inductor 53. Of course, the measured voltage and current processing module 83 does not need to integrate the voltage across the inductor 47—as the measured signals are sinusoidal and so integration can be achieved by applying a suitable scaling factor and a 90 degree phase shift. Thus, the measured voltage and current processing module 83 can determine the load current by applying a suitable (pre-stored) scale factor to the measured voltage (Vmeas) and by applying a suitable 90 degree phase shift (which can be achieved simply by swapping the order of the I and Q samples as discussed above).



FIG. 8b illustrates the primary side of the first transformer circuit 42-1 and another way in which the current sensing circuitry 33 can obtain a measure of the load current. As shown, in this case, the current sensing circuitry 33 measures the voltage across the capacitor 45. The voltage across the capacitor 45 is a bipolar voltage. This bipolar voltage is scaled and converted into a unipolar voltage suitable for input to the microprocessor 23 by the op-amp circuit 69-2 which outputs a measured voltage (Vmeas). This voltage is related to the current flowing in the primary side of the transformer circuit 42 by I=CdVmeas/dt and thus the current flowing through the load. As the capacitance of the capacitor 45 is known, the measured voltage and current processing module 83 can determine the current flowing in the primary side of the transformer circuit 42-1 by differentiating the voltage across the capacitor 45 and by scaling the result to account for the capacitance of the capacitor 45 (and the scaling of the op-amp-circuit 69-2). This current measure can then be converted into a suitable measure of the load current (iL) by a further scaling to take into account the number of turns between inductor 49 and inductor 53. Of course, the measured voltage and current processing module 83 does not need to differentiate the voltage across the capacitor 45—as the measured signals are sinusoidal and so differentiation can be achieved by applying a suitable scaling factor and a 90 degree phase shift. Thus, the measured voltage and current processing module 83 can determine the load current by applying a suitable (pre-stored) scale factor to the measured voltage (Vmeas) and by applying a suitable 90 degree phase shift (which can be achieved simply by swapping the order of the I and Q samples as discussed above).



FIG. 8c schematically illustrates how a measure of the load voltage can be determined. FIG. 8c shows the secondary side of the first transformer circuit 42 and illustrates the use of a voltage divider circuit (in this case formed by resistors R1 and R2), with the voltage across resistor R2 being input to the op-amp circuit 69-3. Therefore, by applying an appropriate scale on the measured voltage from op-amp 69-3, the measured voltage and current processing module 83 can determine the load voltage.


The sensing circuits described above use op-amp circuits 69 to convert the bipolar drive signals into unipolar voltages that are suitable for input to the microprocessor 23. The use of such op-amp circuits has a number of disadvantages, including that they are costly, they consume power and they requires space within the electronics. These are important factors when the device is designed to be battery powered and the electronics are housed within the handle 5 of the device. FIG. 9 illustrates various sensing circuits that can be used without an op-amp. The circuit of FIG. 9a is suitable when the AC drive signal is unipolar. This may be achieved by replacing the full bridge signal generator 27 with a half bridge signal generator. This would mean removing, for example, the FETs 41-3 and 41-4 and connecting node B to ground. In this case, the microprocessor 23 only needs to generate one control signal (CTRL1) to control FETs 41-1 and 41-2. The circuit of FIG. 9b is suitable for both unipolar and bipolar drive signals.


In FIG. 9a, the capacitor 45 has been moved to be between the inductor 49 that forms the primary of the transformer circuit 42-1 and ground (GND). The current sensing circuitry 33 is arranged to measure the voltage across the capacitor 45 via a potential divider formed by resistors R1/R2 and R3. The resistor R1 connects the output of a DC blocking capacitor CB to a supply voltage rail of the microprocessor 23 (in this case at 3.3V) through the switch 121; and resistor R2 connects the output of the DC blocking capacitor CB to a reference potential (in this case ground). The resistors R1 and R2 therefore provide a divider circuit that applies a DC bias to the measured AC signal. The DC blocking capacitor prevents this DC bias from coupling to the drive circuit. Typically, the resistors R1 and R2 are equal so that the DC bias will be at 1.65V. Thus, the voltage output from the sensing circuit 33 will be an AC voltage having a mid-rail value of about 1.65 V and whose peak voltage will be a proportion of the voltage across the capacitor 45. The potential divider formed by resistors R1/R2 and R3 is such that the peak to peak amplitude of the AC signal passed to the microprocessor 23 is less than the 3.3V input range of the microprocessor 23. If the microprocessor 23 operates at a different voltage rail (for example 5V), then the values of the resistors R1, R2 and R3 can be adjusted accordingly. To minimise current drawn either from the 3.3V rail or from the transformer circuit 42-1, the resistors R1, R2 and R3 can have relatively large values and typical values for these resistors are: R1=R2=200Ω and R3=1000Ω. The values of R1 and R2 should be chosen to meet the input impedance requirements of the Analogue to digital converter used to sample the signals. The switch 121 allows the microprocessor 23 to disconnect the sensing circuit 33 from the 3.3V rail—so that when sensing is not required, the circuit 33 does not consume any power.



FIG. 9b illustrates the way in which similar circuits can be provided on the secondary side of the transformer circuit 42-1. In particular, FIG. 9b shows the voltage sensing circuit 31 used to obtain a measure of the load voltage VL via a voltage divider formed by capacitors C1 and C2. If the capacitors C1 and C2 were replaced with resistors, then a blocking capacitor CB should be provided before the divider circuit formed by resistors R1 and R2 in the manner shown in FIG. 9a. FIG. 9b also shows the current sensing circuit 33, which senses the load current by sensing the voltage across capacitor C3 via a potential divider formed by resistors R4/R5 and R6. As shown, a DC blocking capacitor CB is provided to enable a DC bias signal to be added to the output to the microprocessor via the divider circuit formed from resistors R4 and R5. As before, the switches 121-1 and 121-2 allow the microprocessor to switch off the sensing circuits 31 and 33 when sensor signals are not required. As those skilled in the art will appreciate, the “op-ampless” sensing circuits 31 and 33 illustrated in FIG. 9 are cheaper to manufacture, can be made to consume less power and take up less space on the circuit board than the op-amp circuits illustrated in FIG. 8.


The circuits illustrated in FIGS. 8 and 9 were used to obtain measurements from the first transformer circuit 42-1 of the drive circuit 29. As those skilled in the art will appreciate, the same or similar sensing circuits would be provided for sensing signals in the second transformer circuit 42-2. Further, although the sensing circuits illustrated in FIG. 9 sense the voltage across a capacitor, the circuits could also sense the voltage across another impedance element, such as across a resistor of the transformer circuit 42.


Active Battery Protection


Typically, with battery operated devices such as the medical device 1 described above, a fuse is provided between the batteries and the electric circuitry, to protect the battery from damage caused by short circuits and the like. However, standard fuses have a resistance of about 10 mOhms. With such a standard fuse, when 10 A is drawn from the batteries, approximately 1 W is dissipated through the fuse. An active fuse circuit 130 that is used in this embodiment will now be described with reference to FIG. 10 that reduces the power dissipation associated with such standard fuses.



FIG. 10 shows the batteries 15, which supply the 14V rail and the GND rail to the circuitry shown in FIG. 3. The active fuse circuit 130 comprises a differential amplifier 131 that measures the voltage drop across part of a PCB conductor trace 133 that is connected between the 14V rail and the positive terminal of the batteries (Vbat+). The conductor trace 133 has a resistance of approximately 1-2 mOhms and so the voltage drop is proportional to the current that is being drawn from the batteries 15. The measured voltage drop is low pass filtered by the low pass filter 135 to avoid transient spikes triggering the fuse circuit—so that it is just the voltage corresponding to the DC current drawn from the batteries 15 that will pass through the filter 135. In this embodiment, the low pass filter 135 has a cut-off frequency of about 10 Hz. The output from the low pass filter 135 is then compared with a reference voltage (Vref) using a latching comparator 137. The reference voltage is set in advance to correspond to a desired limit on the current drawn from the batteries. In this embodiment, Vref is set to correspond to a current limit of 15 A. When the voltage drop across the trace 133 is less than the reference voltage the output of the comparator 137 remains at a high value—which maintains the FET switch 139 on and so current can be drawn from the batteries 15 by the bridge signal generator 27. However, when the voltage drop across the trace 133 is greater than the reference voltage, then the output of the comparator 137 goes low and it is maintained low even if the current drawn from the batteries drops below the defined limit. When the comparator output is low the FET 139 is switched off, thereby disconnecting the batteries 15 from at least the bridge signal generator 27.


In this embodiment, the FET 139 is an N-channel enhanced mode switch having an on resistance of just 2 mOhms. This means that when the switch 139 is switched on and 10 A is being drawn from the batteries, just 0.2 W is dissipated through the switch 139.


In this embodiment, when the comparator 137 is triggered and the switch 139 is switched off (open circuit), the batteries 15 have to be removed to reset the active fuse circuitry 130—as the opening of the switch 139 disconnects all the electronics except the circuit components of the active fuse 130 from the batteries. Alternatively, if the microprocessor 23 (or some other control circuitry) is powered directly from the batteries, then the comparator 137 could be reset either in response to a user input (for example in response to the user pressing a reset button or the like) or in response to some other trigger event (such as after a predetermined time-out period).


Modifications and Alternatives


A medical cauterisation/cutting device has been described above. As those skilled in the art will appreciate, various modifications can be made and some of these will now be described. Other modifications will be apparent to those skilled in the art.


In the above embodiment, various operating frequencies, currents, voltages etc were described. As those skilled in the art will appreciate, the exact currents, voltages, frequencies, capacitor values, inductor values etc. can all be varied depending on the application and any values described above should not be considered as limiting in any way. However, in general terms, the circuit described above has been designed to provide a drive signal to a medical device, where the delivered power is desired to be at least 10 W and preferably between 10 W and 200 W; the delivered voltage is desired to be at least 20 VRMS and preferably between 30 VRMS and 120 VRMS; the delivered current is designed to be at least 0.5 ARMS and preferably between 1 ARMS and 2 ARMS; and the drive frequency for ultrasonic operation is desired to be at least 20 kHz and preferably between 30 kHz and 80 kHz; and the drive frequency for RF operation is desired to be at least 100 kHz and preferably between 250 kHz and 1 MHz.


In the above embodiment, the resonant circuits 43-1 and 43-2 were formed from capacitor-inductor-inductor elements. As those skilled in the art will appreciate, other resonant circuit designs with multiple capacitors and inductors in various series and parallel configurations or simpler LC resonant circuits may also be used. Also, in some applications there is no need for a transformer to step-up the drive voltage, as the FETs can deliver the required drive voltage.



FIG. 1 illustrates one way in which the batteries and the control electronics can be mounted within the handle of the medical device. As those skilled in the art will appreciate, the form factor of the handle may take many different designs. Indeed, it is not essential for the device to be battery powered, although this is preferred for some applications to avoid the need for power cords and the like.


The embodiment described above included a description of various novel features, including the novel ability to selectively apply ultrasonic energy or RF energy to the tissue gripped by the forceps, the novel way in which the microprocessor controlled the operation of the device in the electrical mode of operation; the way in which load current/voltage is measured and the way in which the batteries are protected using an active fuse circuit. As those skilled in the art will appreciate, these novel features do not need to be employed together. For example, the current/voltage sensing techniques described above can be used with other devices as can the active fuse circuit. Similarly, the way in which the electrical mode of operation is controlled by tracking the maximum power delivery condition and by using pulse skipping techniques can be used in a device that does not have an ultrasonic transducer.


In the above embodiment, an exemplary control algorithm for performing the cutting/cauterisation of the vessel or tissue gripped by the forceps was described. As those skilled in the art will appreciate, various different procedures may be used and the reader is referred to the literature describing the operation of such cutting/cauterisation devices for further details.


In the above embodiment, four FET switches were used to convert the DC voltage provided by the batteries into an alternating signal at the desired frequency. As those skilled in the art will appreciate, it is not necessary to use four switches—two switches may be used instead (using a half bridge circuit). Additionally, although FET switches were used, other switching devices, such as bipolar transistor switches may be used instead. However, MOSFETs are preferred due to their superior performance in terms of low losses when operating at the above described frequencies and current levels.


In the above embodiment, the I & Q sampling circuitry 81 oversampled the sensed voltage/current signal in the ultrasonic mode of operation and undersampled the sensed voltage/current signal in the electrical mode of operation. As those skilled in the art will appreciate, this is not essential. Because of the synchronous nature of the sampling, samples may be taken more than once per period or once every nth period if desired. The sampling rate used in the above embodiment was chosen to maximise the rate at which measurements were made available to the power controller 85 and the medical device control module 89 as this allows for better control of the applied power during the cauterisation process.


In the above embodiment, a 14V DC supply was provided. In other embodiments, lower (or higher) DC voltage sources may be provided. In this case, a larger (or smaller) transformer turns ratio may be provided to increase the load voltage to the desired level or lower operating voltages may be used.


In the above embodiment, the medical device was arranged to deliver a desired power (in the form of ultrasonic energy or electrical energy) to the tissue/vessel gripped by the forceps. In an alternative embodiment, the device may be arranged to deliver a desired current or a desired voltage level to the ultrasonic transducer or the forceps.


In the above embodiment the battery is shown integral to the medical device. In an alternative embodiment the battery may be packaged so as to clip on a belt on the surgeon or simply be placed on the Mayo stand. In this embodiment a relatively small two conductor cable would connect the battery pack to the medical device.


In the above embodiment, a microprocessor based control circuitry was provided. This is preferred due to the ease with which the microprocessor can be programmed to perform the above control actions using appropriate computer software. Such software can be provided on a tangible carrier, such as a CD-ROM or the like. Alternatively, hardware control circuitry can be used in place of the microprocessor based circuitry described above.


In the above embodiment, the user controlled whether the energy delivered to the vessel/tissue was ultrasonic energy or RF electrical energy. In alternative embodiments, the microprocessor may control the selection based on an internally generated control signal or in response to a control signal received from another device.


In the above embodiment, the active fuse circuit opened a switch that disconnected the bridge signal generator from the batteries. In an alternative embodiment, the active fuse circuit could instead switch in a large impedance between the batteries and the bridge signal generator to limit the current drawn from the batteries. Also, the switch could be used to disconnect the positive voltage supply from the signal generator instead of disconnecting the negative terminal of the batteries.

Claims
  • 1. A medical device comprising: an end effector for gripping a vessel/tissue;an ultrasonic transducer coupled to the end effector;a drive circuit coupled to the end effector and to the ultrasonic transducer and operable to generate a periodic drive signal comprising a drive frequency and to provide the drive signal either to the ultrasonic transducer or to the end effector; anda controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector;wherein the drive circuit comprise a first resonant circuit having a first resonant frequency and a second resonant circuit having a second resonant frequency that is different to the first resonant frequency;wherein the controller is arranged to vary a period of the drive signal about the first resonant frequency or the second resonant frequency to vary energy supplied to the vessel or tissue gripped by the end effector; andwherein the controller is arranged to vary the period of the drive signal to move the drive frequency away from the first or second resonant frequency to lower the energy supplied to the vessel or tissue gripped by the end effector.
  • 2. The medical device according to claim 1, wherein the first resonant frequency corresponds to a resonant characteristic of the ultrasonic transducer and wherein the controller is operable to control the drive circuit so that the drive circuit generates a drive signal having a frequency corresponding to the first resonant frequency when the drive signal is to be applied to the ultrasonic transducer and so that the drive circuit generates a drive signal having a frequency corresponding to the second resonant frequency when the drive signal is to be applied to the end effector.
  • 3. The medical device according to claim 2, comprising a signal generator coupled between the controller and the drive circuit for generating a cyclically varying voltage from a DC voltage supply in dependence upon control signals from the controller and for supplying the cyclically varying voltage to the first and second resonant circuits of the drive circuit.
  • 4. The medical device according to claim 1, further comprising an ultrasonic waveguide coupled to the ultrasonic transducer for guiding ultrasonic energy generated by the ultrasonic transducer towards the end effector; wherein the end effector comprises first and second jaws and wherein the second resonant circuit is electrically coupled to the first and second jaws of the end effector.
  • 5. The medical device according to claim 4, wherein the first jaw of the end effector is electrically coupled to the ultrasonic waveguide and wherein the second resonant circuit is electrically coupled to the first jaw of the end effector via the ultrasonic waveguide.
  • 6. The medical device according to claim 4, wherein the first resonant circuit is electrically coupled to the ultrasonic transducer and to the ultrasonic waveguide.
  • 7. The medical device according to claim 1, further comprising sensing circuitry for sensing a drive signal applied to the ultrasonic transducer or to the end effector.
  • 8. The medical device according to claim 7, wherein one or both of the first and second resonant circuits comprises at least one of an inductor coil, a capacitor and a resistor and wherein the sensing circuitry comprises an op-amp circuit for sensing the voltage across the inductor coil or the capacitor or the resistor and for converting the sensed voltage to a sensor signal suitable for inputting to the controller.
  • 9. The medical device according to claim 1, further comprising one or more batteries for powering the medical device and further comprising an active fuse circuit for protecting the one or more batteries.
  • 10. The medical device according to claim 9, wherein the active fuse circuit comprises a switch electrically coupled between a terminal of the one or more batteries and the drive circuit and control circuitry configured to open the switch to isolate a supply terminal from the drive circuit.
  • 11. A method of operating a medical device comprising generating, via a drive circuit, a periodic drive signal comprising a drive frequency, applying the drive signal to an ultrasonic transducer or to an end effector of the medical device and controlling the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector, varying a period of the drive signal about a first resonant frequency or a second resonant frequency to vary energy supplied, and varying a period of the drive signal to move the drive frequency away from the first or second resonant frequency to lower the energy supplied.
  • 12. A method of cauterising or cutting a vessel or tissue, the method comprising: gripping the vessel or tissue with an end effector of a medical device;using a drive circuit to apply a periodic drive signal comprising a drive frequency either to an ultrasonic transducer or to the end effector; andcontrolling the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector;varying a period of the drive signal about a first resonant frequency or a second resonant frequency to vary energy supplied; andvarying the period of the drive signal to move the drive frequency away from the first or second resonant frequency to lower the enemy supplied to the vessel or tissue.
  • 13. An electronic apparatus for use in a medical device having an ultrasonic transducer and an end effector, the electronic apparatus comprising: a drive circuit for generating a periodic drive signal comprising a drive frequency; anda controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector;wherein the drive circuit comprise a first resonant circuit having a first resonant frequency and a second resonant circuit having a second resonant frequency that is different to the first resonant frequency, and wherein the controller is operable to control the drive circuit so that the drive circuit generates a drive signal having a frequency corresponding to the first resonant frequency when the drive signal is to be applied to the ultrasonic transducer and so that the drive circuit generates a drive signal having a frequency corresponding to the second resonant frequency when the drive signal is to be applied to the end effector;wherein the controller is arranged to vary a period of the drive signal about the first resonant frequency or the second resonant frequency to vary energy supplied to a vessel or a tissue gripped by the end effector; andwherein the controller is arranged to vary the period of the drive signal to move the drive frequency away from the first or second resonant frequency to lower the energy supplied to the vessel or tissue gripped by the end effector.
  • 14. A medical device comprising: an end effector for gripping a vessel/tissue;an ultrasonic transducer coupled to the end effector;a drive circuit coupled to the end effector and to the ultrasonic transducer and operable to generate a periodic drive signal and to provide the drive signal either to the ultrasonic transducer or to the end effector, wherein the drive circuit comprise a first resonant circuit and a second resonant circuit;a controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector; andsensing circuitry for sensing a drive signal applied to the ultrasonic transducer or to the end effector;wherein one or both of the first and second resonant circuits comprises a resonant circuit and an impedance element, wherein the impedance element is connected between the resonant circuit and a reference potential, and wherein the sensing circuitry comprises a divider circuit for obtaining a measure of voltage across the impedance element and a bias signal generator for applying a DC bias signal to the voltage measure.
  • 15. The medical device according to claim 14, wherein the first resonant circuit has a first resonant frequency and the second resonant circuit has a second resonant frequency that is different to the first resonant frequency, wherein the first resonant frequency corresponds to a resonant characteristic of the ultrasonic transducer and wherein the controller is operable to control the drive circuit so that the drive circuit generates a drive signal having a frequency corresponding to the first resonant frequency when the drive signal is to be applied to the ultrasonic transducer and so that the drive circuit generates a drive signal having a frequency corresponding to the second resonant frequency when the drive signal is to be applied to the end effector.
  • 16. The medical device according to claim 15, comprising a signal generator coupled between the controller and the drive circuit for generating a cyclically varying voltage from a DC voltage supply in dependence upon control signals from the controller and for supplying the cyclically varying voltage to the first and second resonant circuits of the drive circuit.
  • 17. The medical device according to claim 15, wherein the controller is arranged to vary a period of the drive signal about the first resonant frequency or the second resonant frequency to vary energy supplied to the vessel or tissue gripped by the end effector.
  • 18. The medical device according to claim 14, wherein the controller is configured to vary a period of the drive signal so that a frequency of the drive signal varies around a first resonant frequency of the first resonant circuit within 0.1% to 1% of the first resonant frequency or so that the frequency of the drive signal varies around a second resonant frequency of the second resonant circuit within 40% to 60% of the second resonant frequency.
  • 19. The medical device according to claim 14, wherein resonant characteristics of the first and second resonant circuits vary with the tissue or vessel gripped by the end effector and wherein the controller is configured to vary a period of the drive signal to track changes in a respective resonant characteristic of the first and second resonant circuits.
  • 20. The medical device according to claim 14, further comprising an ultrasonic waveguide coupled to the ultrasonic transducer for guiding ultrasonic energy generated by the ultrasonic transducer towards the end effector; wherein the end effector comprises first and second jaws and wherein the second resonant circuit is electrically coupled to the first and second jaws of the end effector.
  • 21. The medical device according to claim 20, wherein the first jaw of the end effector is electrically coupled to the ultrasonic waveguide and wherein the second resonant circuit is electrically coupled to the first jaw of the end effector via the ultrasonic waveguide.
  • 22. The medical device according to claim 20, wherein the first resonant circuit is electrically coupled to the ultrasonic transducer and to the ultrasonic waveguide.
  • 23. The medical device according to claim 14, wherein one or both of the first and second resonant circuits comprises at least one of an inductor coil, a capacitor and a resistor and wherein the sensing circuitry comprises an op-amp circuit for sensing voltage across the inductor coil or the capacitor or the resistor and for converting the sensed voltage to a sensor signal suitable for inputting to the controller.
  • 24. The medical device according to claim 14, wherein the impedance element comprises a capacitor or a resistor.
  • 25. The medical device according to claim 14, wherein the sensing circuitry comprises DC blocking circuitry for preventing the DC bias signal from the bias signal generator from coupling with the drive circuit.
  • 26. The medical device according to claim 14, wherein the bias signal generator comprises a voltage divider circuit connected between a reference voltage and a supply voltage of the controller.
  • 27. A medical device comprising: an end effector for gripping a vessel/tissue;an ultrasonic transducer coupled to the end effector;a drive circuit coupled to the end effector and to the ultrasonic transducer and operable to generate a periodic drive signal and to provide the drive signal either to the ultrasonic transducer or to the end effector; anda controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector;wherein the drive circuit comprise a first resonant circuit having a first resonant frequency and a second resonant circuit having a second resonant frequency that is different to the first resonant frequency;wherein the controller is arranged to vary a period of the drive signal about the first resonant frequency or the second resonant frequency to vary energy supplied to the vessel or tissue gripped by the end effector; andwherein the controller is configured to vary the period of the drive signal so that a frequency of the drive signal varies around the first resonant frequency within 0.1% to 1% of the first resonant frequency or so that the frequency of the drive signal varies around the second resonant frequency within 40% to 60% of the second resonant frequency.
  • 28. A medical device comprising: an end effector for gripping a vessel/tissue;an ultrasonic transducer coupled to the end effector;a drive circuit coupled to the end effector and to the ultrasonic transducer and operable to generate a periodic drive signal and to provide the drive signal either to the ultrasonic transducer or to the end effector; anda controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector;wherein the drive circuit comprise a first resonant circuit having a first resonant frequency and a second resonant circuit having a second resonant frequency that is different to the first resonant frequency;wherein the controller is arranged to vary a period of the drive signal about the first resonant frequency or the second resonant frequency to vary energy supplied to the vessel or tissue gripped by the end effector; andwherein resonant characteristics of the first and second resonant circuits vary with the tissue or vessel gripped by the end effector and wherein the controller is configured to vary the period of the drive signal to track changes in a respective resonant characteristic of the first and second resonant circuits.
  • 29. A medical device comprising: an end effector for gripping a vessel/tissue;an ultrasonic transducer coupled to the end effector;a drive circuit coupled to the end effector and to the ultrasonic transducer and operable to generate a periodic drive signal and to provide the drive signal either to the ultrasonic transducer or to the end effector;a controller operable to control the drive circuit so that the drive signal is applied to a desired one of the ultrasonic transducer and the end effector; andsensing circuitry for sensing a drive signal applied to the ultrasonic transducer or to the end effectorwherein the drive circuit comprise a first resonant circuit having a first resonant frequency and a second resonant circuit having a second resonant frequency that is different to the first resonant frequency;wherein the controller is arranged to vary a period of the drive signal about the first resonant frequency or the second resonant frequency to vary energy supplied to the vessel or tissue gripped by the end effector; andwherein one or both of the first and second resonant circuits comprises a resonant circuit and an impedance element, wherein the impedance element is connected between the resonant circuit and a reference potential, and wherein the sensing circuitry comprises a divider circuit for obtaining a measure of voltage across the impedance element and a bias signal generator for applying a DC bias signal to the voltage measure.
  • 30. The medical device according to claim 29, wherein the impedance element comprises a capacitor or a resistor.
  • 31. The medical device according to claim 29, wherein the sensing circuitry comprises DC blocking circuitry for preventing the DC bias signal from the bias signal generator from coupling with the drive circuit.
  • 32. The medical device according to claim 29, wherein the bias signal generator comprises a voltage divider circuit connected between a reference voltage and a supply voltage of the controller.
Priority Claims (1)
Number Date Country Kind
1322210.4 Dec 2013 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/069039 12/8/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/094749 6/25/2015 WO A
US Referenced Citations (2603)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3989952 Hohmann Nov 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4244371 Farin Jan 1981 A
4281785 Brooks Aug 1981 A
4300083 Heiges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4353371 Cosman Oct 1982 A
4409981 Lundberg Oct 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4549147 Kondo Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4593691 Lindstrom et al. Jun 1986 A
4608981 Rothfuss et al. Sep 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4694835 Strand Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5001649 Lo et al. Mar 1991 A
5009661 Michelson Apr 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042461 Inoue et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5075839 Fisher et al. Dec 1991 A
5084052 Jacobs Jan 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5113139 Furukawa May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190517 Zieve et al. Mar 1993 A
5190518 Takasu Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5231989 Middleman et al. Aug 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242339 Thornton Sep 1993 A
5242460 Klein et al. Sep 1993 A
5246003 DeLonzor Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5269297 Weng et al. Dec 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5318525 West et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5339723 Huitema Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5406503 Williams, Jr. et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451053 Garrido Sep 1995 A
5451161 Sharp Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 MacKool Apr 1996 A
5507297 Slater et al. Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522832 Kugo et al. Jun 1996 A
5522839 Pilling Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5548286 Craven Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5562703 Desai Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5573534 Stone Nov 1996 A
5577654 Bishop Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5600526 Russell et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5626608 Cuny et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649955 Hashimoto et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5655100 Ebrahim et al. Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704791 Gillio Jan 1998 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722980 Schulz et al. Mar 1998 A
5723970 Bell Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5776155 Beaupre et al. Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810828 Lightman et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5854590 Dalstein Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911699 Anis et al. Jun 1999 A
5913823 Hedberg et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5987344 West Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080149 Huang et al. Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6117152 Huitema Sep 2000 A
H001904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6126658 Baker Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132429 Baker Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6156029 Mueller Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205383 Hermann Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6232899 Craven May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6356224 Wohlfarth Mar 2002 B1
6358246 Behl et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6390973 Ouchi May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405184 Bohme et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H002037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6459363 Walker et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6590733 Wilson et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6632221 Edwards et al. Oct 2003 B1
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6730080 Harano et al. May 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6819027 Saraf Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6898536 Wiener et al. May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6988295 Tillim Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Lida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7018389 Camerlengo Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083613 Treat Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7113831 Hooven Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7119516 Denning Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160259 Tardy et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7166103 Carmel et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226447 Uchida et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7264618 Murakami et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7318832 Young et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357802 Palanker et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7412008 Lliev Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
7422582 Malackowski et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431694 Stefanchik et al. Oct 2008 B2
7431704 Babaev Oct 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455641 Yamada et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473145 Ehr et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507239 Shadduck Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520865 Radley Young et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
7535233 Kojovic et al. May 2009 B2
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7563259 Takahashi Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7601136 Akahoshi Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7617961 Viola Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645240 Thompson et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7649410 Andersen et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7667592 Ohyama et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678105 McGreevy et al. Mar 2010 B2
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7713267 Pozzato May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7731717 Odom et al. Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7744615 Couture Jun 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751115 Song Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7768510 Tsai et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815238 Cao Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7862561 Swanson et al. Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883475 Dupont et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Likura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931611 Novak et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8002732 Visconti Aug 2011 B2
8002770 Swanson et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8034049 Odom et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8055208 Lilla et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057468 Konesky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105230 Honda et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8118276 Sanders et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8170717 Sutherland et al. May 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8211100 Podhajsky et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8221306 Okada et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8221418 Prakash et al. Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226665 Cohen Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246616 Amoah et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8246642 Houser et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292905 Taylor et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303579 Shibata Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8357149 Govari et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398394 Sauter et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stahler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430874 Newton et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8437832 Govari et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444663 Houser et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8460284 Aronow et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8471685 Shingai Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Homer Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512337 Francischelli et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535308 Govari et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8556929 Harper et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562600 Kirkpatrick et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568397 Horner et al. Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8585727 Polo Nov 2013 B2
8588371 Ogawa et al. Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597193 Grunwald et al. Dec 2013 B2
8597287 Benamou et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617152 Werneth et al. Dec 2013 B2
8617194 Beaupre Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8628534 Jones et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641663 Kirschenman et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657489 Ladurner et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663214 Weinberg et al. Mar 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8733613 Huitema et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8771293 Surti et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8777945 Floume et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808204 Irisawa et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8874220 Draghici et al. Oct 2014 B2
8876726 Amit et al. Nov 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8926620 Chasmawala et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8932282 Gilbert Jan 2015 B2
8932299 Bono et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968296 McPherson Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8974932 McGahan Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986297 Daniel et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
8998891 Garito et al. Apr 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9023070 Levine et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028478 Mueller May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9037259 Mathur May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066720 Ballakur et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072538 Suzuki et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107684 Ma Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113907 Allen, IV et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9144453 Rencher et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9165114 Jain et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9173656 Schurr et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186199 Strauss et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9186796 Ogawa Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192428 Houser et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198718 Marczyk et al. Dec 2015 B2
9198776 Young Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216051 Fischer et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9265973 Akagane Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9305497 Seo et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9333034 Hancock May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364171 Harris et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9385831 Marr et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9393070 Gelfand et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9427279 Muniz-Medina et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9442288 Tanimura Sep 2016 B2
9445784 O'Keeffe Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9474542 Slipszenko et al. Oct 2016 B2
9474568 Akagane Oct 2016 B2
9486236 Price et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9498275 Wham et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9522032 Behnke Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9545497 Wenderow et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9560995 Addison et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9592072 Akagane Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603669 Govari et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9636165 Larson et al. May 2017 B2
9636167 Gregg May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9649173 Choi et al. May 2017 B2
9655670 Larson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9671860 Ogawa et al. Jun 2017 B2
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9705456 Gilbert Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9717548 Couture Aug 2017 B2
9717552 Cosman et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724120 Faller et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770285 Zoran et al. Sep 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861381 Johnson Jan 2018 B2
9861428 Trees et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867670 Brannan et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9872726 Morisaki Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9878184 Beaupre Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9901383 Hassler, Jr. Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10004526 Dycus et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10039588 Harper et al. Aug 2018 B2
10045794 Witt et al. Aug 2018 B2
10045810 Schall et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080609 Hancock et al. Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10085792 Johnson et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10111703 Cosman, Jr. et al. Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10123835 Keller et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130412 Wham Nov 2018 B2
10154848 Chernov et al. Dec 2018 B2
10154852 Conlon et al. Dec 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172665 Heckel et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10179022 Yates et al. Jan 2019 B2
10188455 Hancock et al. Jan 2019 B2
10194972 Yates et al. Feb 2019 B2
10194973 Wiener et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10194999 Bacher et al. Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201382 Wiener et al. Feb 2019 B2
10226273 Messerly et al. Mar 2019 B2
10231747 Stulen et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10245104 McKenna et al. Apr 2019 B2
10251664 Shelton, IV et al. Apr 2019 B2
10263171 Wiener et al. Apr 2019 B2
10265117 Wiener et al. Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10271840 Sapre Apr 2019 B2
10278721 Dietz et al. May 2019 B2
10285724 Faller et al. May 2019 B2
10285750 Coulson et al. May 2019 B2
10299810 Robertson et al. May 2019 B2
10299821 Shelton, IV et al. May 2019 B2
10314638 Gee et al. Jun 2019 B2
10321950 Yates et al. Jun 2019 B2
10335182 Stulen et al. Jul 2019 B2
10335183 Worrell et al. Jul 2019 B2
10335614 Messerly et al. Jul 2019 B2
10342602 Strobl et al. Jul 2019 B2
10342606 Cosman et al. Jul 2019 B2
10349999 Yates et al. Jul 2019 B2
10357303 Conlon et al. Jul 2019 B2
10363084 Friedrichs Jul 2019 B2
10376305 Yates et al. Aug 2019 B2
10398466 Stulen et al. Sep 2019 B2
10398497 Batross et al. Sep 2019 B2
10413352 Thomas et al. Sep 2019 B2
10420579 Wiener et al. Sep 2019 B2
10420607 Woloszko et al. Sep 2019 B2
10426507 Wiener et al. Oct 2019 B2
10426978 Akagane Oct 2019 B2
10433865 Witt et al. Oct 2019 B2
10433866 Witt et al. Oct 2019 B2
10433900 Harris et al. Oct 2019 B2
10441308 Robertson Oct 2019 B2
10441310 Olson et al. Oct 2019 B2
10448986 Zikorus et al. Oct 2019 B2
10456193 Yates et al. Oct 2019 B2
10463421 Boudreaux et al. Nov 2019 B2
10463887 Witt et al. Nov 2019 B2
10485607 Strobl et al. Nov 2019 B2
10492849 Juergens et al. Dec 2019 B2
10512795 Voegele et al. Dec 2019 B2
10517627 Timm et al. Dec 2019 B2
10524854 Woodruff et al. Jan 2020 B2
10524872 Stewart et al. Jan 2020 B2
10537351 Shelton, IV et al. Jan 2020 B2
10543008 Vakharia et al. Jan 2020 B2
10548655 Scheib et al. Feb 2020 B2
10555769 Worrell et al. Feb 2020 B2
10575892 Danziger et al. Mar 2020 B2
10595929 Boudreaux et al. Mar 2020 B2
10595930 Scheib et al. Mar 2020 B2
10610286 Wiener et al. Apr 2020 B2
10617420 Shelton, IV et al. Apr 2020 B2
10617464 Duppuis Apr 2020 B2
10624691 Wiener et al. Apr 2020 B2
RE47996 Turner et al. May 2020 E
10639092 Corbett et al. May 2020 B2
10639098 Cosman et al. May 2020 B2
10646269 Worrell et al. May 2020 B2
10687884 Wiener et al. Jun 2020 B2
10688321 Wiener et al. Jun 2020 B2
10695119 Smith Jun 2020 B2
10702329 Strobl et al. Jul 2020 B2
10709469 Shelton, IV et al. Jul 2020 B2
10709906 Nield Jul 2020 B2
10716615 Shelton, IV et al. Jul 2020 B2
10729458 Stoddard et al. Aug 2020 B2
10729494 Parihar et al. Aug 2020 B2
10736685 Wiener et al. Aug 2020 B2
10751108 Yates et al. Aug 2020 B2
10758294 Jones Sep 2020 B2
10765470 Yates et al. Sep 2020 B2
10779845 Timm et al. Sep 2020 B2
10779849 Shelton, IV et al. Sep 2020 B2
10779879 Yates et al. Sep 2020 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002380 Bishop Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20020165577 Witt et al. Nov 2002 A1
20020177862 Aranyi et al. Nov 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040758 Wang et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030109778 Rashidi Jun 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040142667 Lochhead et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040267311 Viola et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050080427 Govari et al. Apr 2005 A1
20050088285 Jei Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050107777 West et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050262175 Lino et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050271807 Iljima et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060025757 Heim Feb 2006 A1
20060030797 Zhou et al. Feb 2006 A1
20060030848 Craig et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060109061 Dobson et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060259026 Godara et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060264995 Fanton et al. Nov 2006 A1
20060265035 Yachi et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070066971 Podhajsky Mar 2007 A1
20070067123 Jungerman Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20070299895 Johnson et al. Dec 2007 A1
20080005213 Holtzman Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033465 Schmitz et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080122496 Wagner May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080275440 Kratoska et al. Nov 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090131929 Shimizu May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090204114 Odom Aug 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090259149 Tahara et al. Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100034605 Huckins et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100109480 Forslund et al. May 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100181966 Sakakibara Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110015650 Choi et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110071523 Dickhans Mar 2011 A1
20110106141 Nakamura May 2011 A1
20110112400 Emery et al. May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110238010 Kirschenman et al. Sep 2011 A1
20110257650 Deville et al. Oct 2011 A1
20110273465 Konishi et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120078278 Bales, Jr. et al. Mar 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120116391 Houser et al. May 2012 A1
20120136279 Tanaka et al. May 2012 A1
20120136386 Kishida et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120150049 Zielinski et al. Jun 2012 A1
20120150169 Zielinksi et al. Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120191091 Allen Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296325 Takashino Nov 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130085510 Stefanchik et al. Apr 2013 A1
20130103023 Monson et al. Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20130331874 Ross et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140180274 Kabaya Jun 2014 A1
20140194868 Sanai et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140276754 Gilbert et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080887 Sobajima et al. Mar 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150238260 Nau, Jr. Aug 2015 A1
20150257780 Houser Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150282879 Ruelas Oct 2015 A1
20150313667 Allen, IV Nov 2015 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160324537 Green et al. Nov 2016 A1
20160367281 Gee et al. Dec 2016 A1
20170000516 Stulen et al. Jan 2017 A1
20170000541 Yates et al. Jan 2017 A1
20170000542 Yates et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170086876 Wiener et al. Mar 2017 A1
20170086908 Wiener et al. Mar 2017 A1
20170086909 Yates et al. Mar 2017 A1
20170105757 Weir et al. Apr 2017 A1
20170119426 Akagane May 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170196586 Witt et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202594 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202597 Shelton, IV et al. Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20170202599 Shelton, IV et al. Jul 2017 A1
20170202605 Shelton, IV et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170202608 Shelton, IV et al. Jul 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170325874 Noack et al. Nov 2017 A1
20170360468 Eichmann et al. Dec 2017 A1
20180014872 Dickerson Jan 2018 A1
20180028257 Yates et al. Feb 2018 A1
20180042658 Shelton, IV et al. Feb 2018 A1
20180078277 Illizaliturri-Sanchez et al. Mar 2018 A1
20180098785 Price et al. Apr 2018 A1
20180098808 Yates et al. Apr 2018 A1
20180146976 Clauda et al. May 2018 A1
20180161112 Weir et al. Jun 2018 A1
20180177545 Boudreaux et al. Jun 2018 A1
20180235691 Voegele et al. Aug 2018 A1
20190021783 Asher et al. Jan 2019 A1
20190105067 Boudreaux et al. Apr 2019 A1
20190201048 Stulen et al. Jul 2019 A1
20190209201 Boudreaux et al. Jul 2019 A1
20190262030 Faller et al. Aug 2019 A1
20190274700 Robertson et al. Sep 2019 A1
20190282288 Boudreaux Sep 2019 A1
20190282292 Wiener et al. Sep 2019 A1
20200015883 Batross et al. Jan 2020 A1
20200022724 Worrell et al. Jan 2020 A1
20200030021 Yates et al. Jan 2020 A1
20200054382 Yates et al. Feb 2020 A1
20200078085 Yates et al. Mar 2020 A1
20200078609 Messerly et al. Mar 2020 A1
20200085465 Timm et al. Mar 2020 A1
20200113624 Worrell et al. Apr 2020 A1
20200138473 Shelton, IV et al. May 2020 A1
20200222135 Stulen et al. Jul 2020 A1
20200229833 Vakharia et al. Jul 2020 A1
20200229834 Olson et al. Jul 2020 A1
20200237434 Scheib et al. Jul 2020 A1
20200261141 Wiener et al. Aug 2020 A1
20200268433 Wiener et al. Aug 2020 A1
Foreign Referenced Citations (148)
Number Date Country
2535467 Apr 1993 CA
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
101474081 Jul 2009 CN
102100582 Jun 2011 CN
202027624 Nov 2011 CN
103281982 Sep 2013 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
102012109037 Apr 2014 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0705571 Apr 1996 EP
1698289 Sep 2006 EP
1862133 Dec 2007 EP
1964530 Feb 2008 EP
1972264 Sep 2008 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
2131760 Dec 2009 EP
1214913 Jul 2010 EP
1946708 Jun 2011 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2668922 Dec 2013 EP
2076195 Dec 2015 EP
2510891 Jun 2016 EP
2032221 Apr 1980 GB
2317566 Apr 1998 GB
2480498 Nov 2011 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
S62227343 Oct 1987 JP
S62292153 Dec 1987 JP
S62292154 Dec 1987 JP
S63109386 May 1988 JP
S63315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Nov 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0425707 Feb 1992 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H04152942 May 1992 JP
H 0541716 Feb 1993 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336545 Dec 1996 JP
H09130655 May 1997 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105237 Jan 1998 JP
10127654 May 1998 JP
H10295700 Nov 1998 JP
H11128238 May 1999 JP
2000210299 Aug 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2001029353 Feb 2001 JP
2002059380 Feb 2002 JP
2002186901 Jul 2002 JP
2002263579 Sep 2002 JP
2002330977 Nov 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2005003496 Jan 2005 JP
2005027026 Jan 2005 JP
2005074088 Mar 2005 JP
2005337119 Dec 2005 JP
2006068396 Mar 2006 JP
2006081664 Mar 2006 JP
2006114072 Apr 2006 JP
2006217716 Aug 2006 JP
2006288431 Oct 2006 JP
2007037568 Feb 2007 JP
200801876 Jan 2008 JP
200833644 Feb 2008 JP
2008188160 Aug 2008 JP
D1339835 Aug 2008 JP
2010009686 Jan 2010 JP
2010121865 Jun 2010 JP
2012071186 Apr 2012 JP
2012235658 Nov 2012 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2405603 Dec 2010 RU
2013119977 Nov 2014 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9639086 Dec 1996 WO
WO-9800069 Jan 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-0024330 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0128444 Apr 2001 WO
WO-0167970 Sep 2001 WO
WO-0172251 Oct 2001 WO
WO-0195810 Dec 2001 WO
WO-03095028 Nov 2003 WO
WO-2004037095 May 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2007008710 Jan 2007 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2010104755 Sep 2010 WO
WO 2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012150567 Nov 2012 WO
WO 2013161624 Dec 2015 WO
Non-Patent Literature Citations (55)
Entry
Great Britain Search Report dated Jun. 30, 2014; Application No. GB1322210.4.
International Preliminary Report dated Jun. 21, 2016; International Application No. PCT/US2014/069039.
International Search Report dated Jun. 5, 2015; International Application No. PCT/US2014/069039.
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Erbe Electrosurgery Vio® 200 S, (2012), page 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med.com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=Ml&sp=1 . . ., accessed Aug. 25, 2009.
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990).
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pgs. 13-89, 199-293, 335-393, 453-496, 535-549.
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Moraleda et al., A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend, Sensors 2013, 13, 13076-13089, doi: 10.3390/s131013076, ISSN 1424-8220.
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number In a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb., 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Related Publications (1)
Number Date Country
20160324537 A1 Nov 2016 US