Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents

Information

  • Patent Grant
  • 8187620
  • Patent Number
    8,187,620
  • Date Filed
    Monday, March 27, 2006
    18 years ago
  • Date Issued
    Tuesday, May 29, 2012
    12 years ago
Abstract
The invention relates generally to a medical device, such as an intravascular stent, for delivering a therapeutic agent to the body tissue of a patient, and a method for making such a medical device. More particularly, the invention pertains to a medical device having a metal oxide or metal material with a plurality of pores therein disposed on the surface of the medical device and a polymer disposed on the metal oxide or metal material. The invention also relates to medical devices having a surface and an outer region comprising a metal oxide or metal material having a plurality of pores therein and a polymer disposed on the metal oxide or metal material.
Description
FIELD OF THE INVENTION

The invention relates generally to a medical device for delivering a therapeutic agent to the body tissue of a patient, and a method for making such a medical device. More particularly, the invention pertains to a medical device having a metal oxide or metal material with a plurality of pores therein disposed on the surface of the medical device and a polymer disposed on the metal oxide or metal material. The invention also relates to medical devices having a surface and an outer region comprising a metal oxide or metal material having a plurality of pores therein and a polymer disposed on the metal oxide or metal material.


BACKGROUND OF THE INVENTION

Medical devices, such as implantable stents, have been used to deliver therapeutic agents directly to body tissue of a patient, particularly for treating restenosis. In particular, therapeutic agents can be incorporated into the medical device structure itself or incorporated into a coating that is disposed on the surface of the medical device.


In some instances it is desirable to increase the amount of therapeutic agent to be delivered by the medical device. However, the surface area of the medical device may limit the amount of therapeutic agent that can be delivered or incorporated into or onto the medical device. Thus, it may be desirable to have a medical device or a coating for a medical device with a greater surface area so that a greater amount of therapeutic agent can be incorporated into or onto the medical device.


Furthermore, in some instances, it is desirable to control the rate of release of the therapeutic agent from the medical device. For example, it may be desirable to have a constant rate of release of a therapeutic agent for an extended period of time. To ensure a constant rate of release, the amount of therapeutic agent that is loaded on to the implantable medical device must be above a certain amount and, at the same time, be able to be released from the medical device. In addition to ensuring an adequate amount of therapeutic agent is disposed on the medical device in order to achieve a constant release rate, it also desirable to prevent the therapeutic agent from being released from the medical device to the targeted tissue too rapidly, e.g., to avoid a burst effect.


Accordingly, there is a need for a medical device that can deliver the desired amount or dosage of a therapeutic agent. Furthermore, there is a need for a method of making a medical device with a greater surface area that can incorporate a desired amount of a therapeutic agent that will release from the medical device. Also, there is also a need for a medical device that can deliver the desired amount of a therapeutic agent at a desired rate or in a controlled manner over time.


SUMMARY OF THE INVENTION

These and other objectives are accomplished by the present invention. The present invention is directed towards an implantable medical device such as a stent, which has increased surface area and a controllable release rate of a therapeutic agent.


The medical device of the present invention comprises a porous surface which increases the surface area of the medical device, allowing a greater amount of therapeutic agent to be loaded onto the medical device. In addition, by controlling the amount or concentration of the therapeutic agent within the pores or disposed on the surface of the medical device, as well as, controlling the size, depth, location and number of the pores, the release rate of the therapeutic agent can be controlled.


Additionally, the medical device of the present invention can comprise a porous coating, over the surface of the medical device. The release rate of the therapeutic agent can further be controlled by controlling the thickness and porosity of the coating.


The present invention, in one embodiment, provides an implantable medical device comprising: (a) a surface; (b) a coating disposed on the surface comprising: (i) a first material comprising a metal oxide or a metal having a plurality of pores therein disposed on at least a portion of the surface, wherein a first therapeutic agent is disposed in at least some of the pores of the first metal oxide or metal material; and (ii) a first polymer disposed on at least a portion of the first metal oxide or metal material, wherein the first polymer has a plurality of pores therein.


The medical device, of the present invention, can further comprise an outer region adjacent to the surface, wherein the outer region comprises a second material comprising a metal oxide or a metal having a plurality of pores therein, and a second therapeutic agent disposed in at least some of the pores of the second metal oxide or metal material. The first metal oxide or metal material and the second metal oxide or metal material can be the same.


Additionally, the medical device, of the present invention can further comprise an inner region adjacent to the outer region, wherein the inner region is substantially non-porous.


Also, the medical device, of the present invention, can further comprise a second polymer disposed in at least some of the pores of the first metal oxide or metal material. Additionally, the first and second polymers can be the same.


Suitable polymers include, but are not limited to, ethylene-vinylacetate copolymers, such as, polyethylene-co-vinyl acetate; polymethacrylates, such as, poly(n-butyl methacrylate); styrene-isobutylene copolymers, such as, poly(styrene-b-. isobutylene-b-styrene); and polylactic acids, such as, polylactic-glycolic acid.


In accordance with the present invention, the first metal oxide or metal material can be in the form of a layer. Also, the first polymer can be in the form of a layer.


Suitable metal materials include, but are not limited to, gold, platinum, stainless steel, titanium, tantalum, iridium, molybdenum, niobium, palladium or chromium.


Suitable metal oxide materials comprise an oxide of a transitional metal. Suitable metal oxides include, but are not limited to, tantalum oxide, titanium oxide, iridium oxide, niobium oxide, zirconium oxide, tungsten oxide, or rhodium oxide. Additionally, the metal oxide or metal material can be radiopaque.


The pores in the first metal oxide or metal material can be micropores, nanopores or a combination thereof. The pores in the first metal oxide or metal material can have an average width or diameter of between about 1 nm and about 10 μm. Additionally, the pore size can be designed or engineered to suit the size of the therapeutic agent that is disposed in the pores.


The first therapeutic agent can comprise an anti-restenosis agent, anti-thrombogenic agent, anti-angiogenesis agent, anti-proliferative agent, antibiotic agent, growth factor, immunosuppressant or radiochemical. Preferably, the therapeutic agent comprises an anti-restenosis agent. Suitable therapeutic agents include, but are not limited to, paclitaxel, sirolimus, tacrolimus, pimecrolimus or everolimus. Additionally, the first therapeutic agent and the second therapeutic agent can be the same.


In another embodiment, the present invention provides an implantable medical device comprising: (a) a surface and an outer region adjacent to the surface, wherein the surface and the outer region comprise a material comprising a metal oxide or a metal having a plurality of pores therein, and a therapeutic agent disposed in at least some of the pores in the metal oxide or metal material; (b) an inner region adjacent to the outer region, wherein the inner region is substantially non-porous; and (c) a first polymer disposed on at least a portion of the surface, wherein the first polymer has a plurality of pores therein. The first polymer can also be in the form of a layer.


The first polymer can also comprise a second therapeutic agent dispersed in the pores of the first polymer, and wherein the first therapeutic agent and the second therapeutic agent are the same.


The medical device can further comprise a second polymer disposed in at least some of the pores of the metal oxide or metal material. Additionally, the first and second polymers can be the same. Suitable polymers include, but are not limited to, ethylene-vinylacetate copolymers, such as, polyethylene-co-vinyl acetate; polymethacrylates, such as, poly(n-butyl methacrylate); styrene-isobutylene copolymers, such as, poly(styrene-b-. isobutylene-b-styrene); and polylactic acids, such as, polylactic-glycolic acid.


Suitable metal materials include but are not limited to, gold, platinum, stainless steel, titanium, tantalum, iridium, molybdenum, niobium, palladium or chromium.


The metal oxide material can comprise an oxide of a transitional metal. Suitable metal oxide materials include, but are not limited to, tantalum oxide, titanium oxide, iridium oxide, niobium oxide, zirconium oxide, tungsten oxide, or rhodium oxide. Additionally, the metal oxide or metal material can be radiopaque.


The pores in the metal oxide or metal material can be micropores, nanopores or a combination thereof. The pores in the metal oxide or metal material have an average width or diameter of between about 1 nm and about 10 μm.


The therapeutic agent can comprise an anti-restenosis agent, anti-thrombogenic agent, anti-angiogenesis agent, anti-proliferative agent, antibiotic agent, growth factor, immunosuppressant or radiochemical. Preferably, the therapeutic agent comprises an anti-restenosis agent. Suitable therapeutic agent, include but are not limited to, paclitaxel, sirolimus, tacrolimus, pimecrolimus or everolimus.


In yet another embodiment, the present invention provides an intravascular stent comprising: (a) a metallic sidewall stent structure designed for implantation into a blood vessel of a patient, wherein the sidewall stent structure comprises a plurality of struts and openings in the sidewall stent structure, wherein at least one strut has a surface; (b) a coating disposed on the surface comprising: (i) a first material comprising a metal oxide or a metal having a plurality of pores therein disposed on at least a portion of the surface of the strut, wherein a first therapeutic agent disposed in at least some of the pores of the first metal oxide or metal material; and (ii) a first polymer disposed on at least a portion of the first metal oxide or metal material, wherein the first polymer has a plurality of pores therein.


The first metal oxide or metal material and the first polymer can conform to the surface to preserve the openings in the sidewall stent structure. Also, the sidewall stent structure can be balloon-expandable.


The therapeutic agent can comprise an antibiotic and the polymer can comprise an ethylene vinyl acetate copolymer.


In yet another embodiment, the present invention also provides an intravascular stent comprising: (a) a metallic open lattice sidewall stent structure designed for implantation into a blood vessel of a patient, wherein the sidewall stent structure comprises a plurality of struts and openings in the sidewall stent structure, and wherein at least one strut has (i) a surface and an outer region adjacent to the surface, wherein the surface and the outer region comprise a material comprising a metal oxide or a metal having a plurality of pores therein, and a therapeutic agent disposed in at least some of the pores in the metal oxide or metal material; and (ii) an inner region adjacent to the outer region, wherein the inner region is substantially non-porous; and (b) a first polymer disposed on at least a portion of the first metal oxide or metal material, wherein the first polymer has a plurality of pores therein.


The first polymer can conform to the surface to preserve the openings in the sidewall stent structure. Also, the sidewall stent structure can be balloon-expandable.


The therapeutic agent can comprise an antibiotic and the polymer can comprise an ethylene vinyl acetate copolymer.


The present invention is also directed to methods for making the medical device of the present invention. In one embodiment the present invention provides a method of making an implantable medical device comprising: (a) providing a medical device having a surface; (b) forming a coating comprising a first material comprising a metal oxide or a metal having a plurality of pores therein on at least a portion of the surface, (c) depositing a first therapeutic agent in at least some of the pores of the first metal oxide or metal material; and (d) forming a coating of a first polymer disposed on at least a portion of the first metal oxide or metal material, wherein the first polymer has a plurality of pores therein.


The forming of the coating of the first metal oxide or metal material having a plurality of pores therein can comprise the steps of (i) applying a composition comprising the first metal oxide or metal material and a secondary phase material to at least a portion of the surface and (ii) removing the secondary phase material to form the plurality of pores in the first metal oxide or metal material.


Suitable secondary phase materials include, but are not limited to, carbon, aluminum, nickel or a combination thereof. Other suitable secondary phase materials include polymers. Preferably, the polymers can be leached out.


The secondary phase material can be removed by annealing or chemical etching.


Additionally, the forming of the coating of the first metal oxide or metal material having a plurality of pores therein can comprise applying a composition comprising the first metal oxide or metal material to at least a portion of the surface by sputtering, electroplating, e-beam evaporation or thermal evaporation.


The first therapeutic agent can be deposited in at least some of the pores of the first metal oxide or metal material by vacuum impregnation or electrophoretic transport.


The forming of the first polymer coating having a plurality of pores can comprise the steps of (i) applying a composition comprising the first polymer and a secondary phase material to the coating of the first metal oxide or metal material and (ii) removing the secondary phase material to form the plurality of pores in the first polymer.


Suitable secondary phase materials include, but are not limited to polymers or metals that can be removed by dissolution or leaching. Suitable polymers include, but are not limited to, polymers containing styrene, such as, polystyrene. Suitable metals include, but are not limited, aluminum, nickel or a combination thereof.


The secondary phase material can be removed by selectively dissolving or leaching out the second phase material.


In another embodiment, the present invention also provides a method of making an implantable medical device comprising: (a) providing a medical device having (i) a surface and an outer region adjacent to the surface, wherein the surface and the outer region comprise a material comprising a metal oxide or a metal having a plurality of pores therein, and (ii) an inner region adjacent to the outer region, wherein the inner region is substantially non-porous; (b) depositing a therapeutic agent in at least some of the pores in the metal oxide or metal material; (c) forming a coating of a first polymer disposed on at least a portion of the surface, wherein the first polymer has a plurality of pores.


The method, of the present invention can also comprise the step of forming the pores in the metal oxide or metal material of the surface and outer region. The pores can be formed by micro-roughening the medical device.


The therapeutic agent can be deposited in at least some of the pores of the metal oxide or metal material by vacuum impregnation or electrophoretic transport.


Additionally, the forming of the polymer coating having a plurality of pores can comprise the steps of (i) applying a composition comprising the first polymer and a secondary phase material to the surface and (ii) removing the secondary phase material to form the plurality of pores in the first polymer.


Suitable secondary phase materials include, but are not limited to polymers or metals that can be dissolved or leached out. Suitable polymers include, but are not limited to, polystyrene. Suitable metals include, but are not limited, aluminum, nickel or a combination thereof.


The secondary phase material can be removed by selectively dissolving or leaching out the second phase material.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be explained with reference to the following drawings.



FIG. 1 is a cross-sectional view of an embodiment of the present invention that includes a material comprising a metal oxide or metal disposed on the surface of the medical device.



FIG. 2 is a cross-sectional view of another embodiment of the present invention that includes a material comprising a metal oxide or metal disposed on the surface of the medical device.



FIG. 3 is a cross-sectional view of an embodiment of the present invention in which the medical device has a surface and an outer region that comprises a material comprising a metal oxide or metal.



FIG. 4 is a cross-sectional view of a strut of a stent in which a material comprising a metal oxide or metal has been disposed on the surface of the strut.



FIG. 5 is a perspective view of a portion of an intravascular stent.





DETAILED DESCRIPTION

In one embodiment of the present invention, a material comprising a metal oxide or metal having a plurality of pores therein is disposed on at least a portion of the surface of the medical device. FIG. 1 shows an example of such an embodiment of the invention. In this embodiment, a medical device 10 has a surface 20 that is adjacent to an outer region 30 of the medical device 10. The outer region 30 is adjacent to an inner region (not shown) of the medical device 10. A material that comprises a metal oxide or metal 35 is disposed on at least a portion of the surface 20. This material can be in the form of a layer. A plurality of pores 40 are present in the metal oxide or metal material 35. Preferably, at least some of the pores 40 are interconnected. Also, at least some of the pores 40 contain a first therapeutic agent 50. The first therapeutic agent 50 can be in particulate form. In addition, the first therapeutic agent 50 can partially or entirely fill a pore 40.


Disposed on the first metal oxide or metal material 35 of FIG. 1 is a first polymer 60, which forms a coating thereon. The polymer can be in the form of a layer. The polymer 60 has a plurality of pores 70 therein. In this embodiment, the pores in the polymer 60 include a second therapeutic agent 80, which can be the same as or different from the first therapeutic agent 50. In other embodiments, the pores 70 in the polymer 60 can be free of a therapeutic agent or substantially free of a therapeutic agent, i.e. a therapeutic agent occupies less than 5% of the volume of the pores.


In some embodiments, the pores 40 of the metal oxide or metal material 35 can also include a second polymer 65 in addition to the polymer 60. The second polymer 65 can be the same as or different from the first polymer 60.


Another embodiment of the present invention is shown in FIG. 2. Like the embodiment shown in FIG. 1, this embodiment comprises a first material that comprises a metal oxide or metal material 35 that is disposed on at least a portion of the surface 20 of a medical device 10. A plurality of pores 40 are present in the first metal oxide or metal material 35. A therapeutic agent 50 and optionally a second polymer 65 is present in at least some of the pores 40. A first polymer 60 having a plurality of pores 70 therein is disposed on the first metal oxide or metal material 35. The pores 70 in the first polymer 60 can include a second therapeutic agent 80.


In this embodiment of FIG. 2, the surface 20 is adjacent to an outer portion 30 of the medical device 10, which in turn is adjacent to an inner portion 32 of the medical device 10. The outer portion 30 is comprised of a second material that comprises a metal oxide or metal 90 having a plurality of pores 95 therein. This second material 90 can be the same as or different from the first metal oxide or metal material 35. A therapeutic agent 100 that can be the same as or different from the first therapeutic agent 50 or second therapeutic agent 80 can be deposited in the pores 95 of the second metal oxide or metal material 90. The inner portion 32 of the medical device 10 is substantially non-porous, i.e. less than 5% of the volume of the inner portion 32 is occupied by pores. Although the inner portion 32 is substantially non-porous, it can be made of the same metal oxide or metal material that is used to form the outer portion 30.



FIG. 3 shows a cross-sectional view of another embodiment of the present invention. In this embodiment, a medical device 10 comprises a surface 20, an outer region 30 that is adjacent to the surface 20, and an inner region 32 that is adjacent to the outer region 30. The outer region 30 is comprised of a material comprising a metal oxide or metal 90 having a plurality of pores 95 therein. The pores 95 in the metal oxide or metal material 90 contain a therapeutic agent 100 and optionally a polymer 105. The inner portion 32 of the medical device 10 is substantially non-porous, i.e. less than 5% of the volume of the inner portion 32 is occupied by pores. Disposed on the surface 20 is a quantity of another polymer 60, which can be the same as or different from the polymer 105 disposed in the pores 95. The quantity of polymer 60 can include pores 70 therein. The pores 70 in the quantity of polymer 60 can include a second therapeutic agent 80.



FIG. 4 shows a cross-sectional view of a stent strut 150 having an inner region 32 that is adjacent to an outer region 30. The strut 150 also has a surface 20 that is adjacent to the outer region 30. Similar to the embodiment shown in FIG. 1, a material that comprises a metal oxide or metal 35 having a plurality of pores 40 therein is disposed on at least a portion of the surface 20. At least some of the pores 40 contain a first therapeutic agent 50. Disposed on the first metal oxide or metal material 35 is a first polymer 60, which forms a coating thereon. The polymer 60 comprises a plurality of pores 70 therein. In this embodiment, the pores in the polymer 60 include a second therapeutic agent 80, which can be the same as or different from the first therapeutic agent 50.


Preferably the metal oxide or metal material having a plurality of pores is biocompatible. Suitable metal oxides include transition metal oxides. These include, but are not limited to, tantalum oxide, titanium oxide, iridium oxide, niobium oxide, zirconium oxide, tungsten oxide, rhodium oxide and combinations thereof. Suitable metals include but are not limited to, gold, platinum, stainless steel, tantalum, titanium, iridium, molybdenum, niobium, palladium, or chromium.


Also, it may be preferably that the metal oxide or metal material be radiopaque so that the medical device is visible under x-ray or fluoroscopy. Suitable radiopaque materials include without limitation gold, tantalum, platinum, bismuth, iridium, zirconium, iodine, titanium, barium, silver, tin, or alloys of these metals.


Some or all of the pores in the metal oxide or metal material can be interconnected to other pores. In some embodiments, the pores may be discrete or disposed in a pattern. Also, some or all of the pores in the metal oxide or metal material may be in communication with the outer surface of the metal oxide or metal material. For example, in FIGS. 1-2, the pores 40a are in communication with the outer surface 37 of the metal oxide or metal material. Such communication with the outer surface can facilitate release of the therapeutic agent from the medical device. Additionally, once drug elution is complete, having the pores in communication with the outer surface can aid in vascularization and cell coverage for long term non-inflammation.


In addition, the pores in the metal oxide or metal material may have any shape. For example, the pores can be shaped like channels, void pathways or microscopic conduits. Additionally, the pores in the metal oxide or metal material may have any size or range of sizes. In some instances, the pores can be micropores or nanopores. Also, in some embodiments, it may be preferable that the average width or diameter of the pores is between about 1 nm and about 10 μm.


The size of the pores can also be used to control the release rate of the therapeutic agent. For example, pores having larger average width will allow the therapeutic agent to be released more quickly than pores with a smaller average width. Also, the number of pores in the metal oxide or metal material can be adjusted to better control the release rate of the therapeutic agent. For example, the presence of more pores per unit volume or weight of the metal oxide or metal material can allow for a higher release rate of the therapeutic agent than a material having fewer pores therein.


The metal oxide or metal material having pores therein applied to the surface can be any thickness. In some embodiments, it is preferable that the average thickness of the material be about 1.0 to about 50 microns. Similarly, the outer region of the medical device that comprises the metal oxide or metal material having pores therein can be of any thickness. In some embodiments, it is preferable that this outer region be about 1 to about 10 percent of the thickness of the portion of the medical device that includes this outer region. In the instance where the portion of the medical device is a strut of a stent, it is preferable that the outer region of the strut that comprises the porous metal oxide or metal material be about 1 to about 10 percent of the thickness of the strut.


The polymer disposed on the metal oxide or metal material can be any thickness needed to achieve the desired release rate of the therapeutic agent. A thicker or thinner coating of the polymer may be preferred to affect the rate at which the therapeutic agent is released. In some cases, the polymer preferably has a thickness of about 1 to about 20 microns.


Also the polymer may have a plurality of pores therein. The polymer may also comprise a therapeutic agent in the pores that may be the same or a different from that in the pores of the metal oxide or metal material. The size and number of the pores can be adjusted in order to control the release rate of the therapeutic agent that may be dispersed in the pores of the polymer.


A. Medical Devices

Suitable medical devices for the present invention include, but are not limited to, stents, surgical staples, catheters, such as central venous catheters and arterial catheters, guide wires, cannulas, cardiac pacemaker leads or lead tips, cardiac defibrillator leads or lead tips, implantable vascular access ports, blood storage bags, blood tubing, vascular or other grafts, intra-aortic balloon pumps, heart valves, cardiovascular sutures, total artificial hearts and ventricular assist pumps, extra-corporeal devices such as blood oxygenators, blood filters, hemodialysis units, hemoperfusion units or plasmapheresis units.


Medical devices which are particularly suitable for the present invention include any stent for medical purposes, which are known to the skilled artisan. Suitable stents include, for example, vascular stents such as self-expanding stents and balloon expandable stents. Examples of self-expanding stents are illustrated in U.S. Pat. Nos. 4,655,771 and 4,954,126 issued to Wallsten and 5,061,275 issued to Wallsten et al. Examples of appropriate balloon-expandable stents are shown in U.S. Pat. No. 5,449,373 issued to Pinchasik et al. In preferred embodiments, the stent suitable for the present invention is an Express stent. More preferably, the Express stent is an Express™ stent or an Express2™ stent (Boston Scientific, Inc. Natick, Mass.).



FIG. 5 shows an example of a medical device that is suitable for use in the present invention. This figure shows a portion of an implantable intravascular stent 200 comprising a sidewall 210 which comprises a plurality of struts 230 and at least one opening 250 in the sidewall 210. Generally, the opening 250 is disposed between adjacent struts 230. This embodiment is an example of a stent where the struts and openings of the stent define an open lattice sidewall stent structure. Also, the sidewall 210 may have a first sidewall surface 260 and an opposing second sidewall surface, which is not shown in FIG. 5. The first sidewall surface 260 can be an outer sidewall surface, which faces the body lumen wall when the stent is implanted, or an inner sidewall surface, which faces away from the body lumen wall. Likewise, the second sidewall surface can be an outer sidewall surface or an inner sidewall surface. In a stent having a sidewall stent structure with openings therein, in certain embodiments, it is preferable that the coating applied to the stent conforms to the surface of the stent so that the openings in the sidewall stent structure is preserved, e.g. the openings are not entirely or partially occluded with coating material.


The framework of the suitable stents may be formed through various methods as known in the art. The framework may be welded, molded, laser cut, electro-formed, or consist of filaments or fibers which are wound or braided together in order to form a continuous structure.


Medical devices that are suitable for the present invention may be fabricated from metallic, ceramic, or polymeric materials, or a combination thereof. Preferably, the materials are biocompatible. Metallic material is more preferable. Suitable metallic materials include metals and alloys based on titanium (such as nitinol, nickel titanium alloys, thermo-memory alloy materials), stainless steel, tantalum, nickel-chrome, or certain cobalt alloys including cobalt-chromium-nickel alloys such as Elgiloy® and Phynox®. Metallic materials also include clad composite filaments, such as those disclosed in WO 94/16646.


Suitable ceramic materials include, but are not limited to, oxides, carbides, or nitrides of the transition elements such as titanium oxides, hafnium oxides, iridium oxides, chromium oxides, aluminum oxides, and zirconium oxides. Silicon based materials, such as silica, may also be used.


Suitable polymeric materials for forming the medical devices may be biostable. Also, the polymeric material may be biodegradable. Suitable polymeric materials include, but are not limited to, styrene isobutylene styrene, polyetheroxides, polyvinyl alcohol, polyglycolic acid, polylactic acid, polyamides, poly-2-hydroxy-butyrate, polycaprolactone, poly(lactic-co-clycolic) acid, and Teflon.


Polymeric materials may be used for forming the medical device in the present invention include without limitation isobutylene-based polymers, polystyrene-based polymers, polyacrylates, and polyacrylate derivatives, vinyl acetate-based polymers and its copolymers, polyurethane and its copolymers, silicone and its copolymers, ethylene vinyl-acetate, polyethylene terephtalate, thermoplastic elastomers, polyvinyl chloride, polyolefins, cellulosics, polyamides, polyesters, polysulfones, polytetrafluorethylenes, polycarbonates, acrylonitrile butadiene styrene copolymers, acrylics, polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid-polyethylene oxide copolymers, cellulose, collagens, and chitins.


Other polymers that are useful as materials for medical devices include without limitation dacron polyester, poly(ethylene terephthalate), polycarbonate, polymethylmethacrylate, polypropylene, polyalkylene oxalates, polyvinylchloride, polyurethanes, polysiloxanes, nylons, poly(dimethyl siloxane), polycyanoacrylates, polyphosphazenes, poly(amino acids), ethylene glycol I dimethacrylate, poly(methyl methacrylate), poly(2-hydroxyethyl methacrylate), polytetrafluoroethylene poly(HEMA), polyhydroxyalkanoates, polytetrafluorethylene, polycarbonate, poly(glycolide-lactide) co-polymer, polylactic acid, poly(γ-caprolactone), poly(γ-hydroxybutyrate), polydioxanone, poly(γ-ethyl glutamate), polyiminocarbonates, poly(ortho ester), polyanhydrides, alginate, dextran, chitin, cotton, polyglycolic acid, polyurethane, or derivatized versions thereof, i.e., polymers which have been modified to include, for example, attachment sites or cross-linking groups, e.g., RGD, in which the polymers retain their structural integrity while allowing for attachment of cells and molecules, such as proteins, nucleic acids, and the like.


Medical devices may also be made with non-polymeric materials. Examples of useful non-polymeric materials include sterols such as cholesterol, stigmasterol, β-sitosterol, and estradiol; cholesteryl esters such as cholesteryl stearate; C12-C24 fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid; C18-C36 mono-, di- and triacylglycerides such as glyceryl monooleate, glyceryl monolinoleate, glyceryl monolaurate, glyceryl monodocosanoate, glyceryl monomyristate, glyceryl monodicenoate, glyceryl dipalmitate, glyceryl didocosanoate, glyceryl dimyristate, glyceryl didecenoate, glyceryl tridocosanoate, glyceryl trimyristate, glyceryl tridecenoate, glycerol tristearate and mixtures thereof; sucrose fatty acid esters such as sucrose distearate and sucrose palmitate; sorbitan fatty acid esters such as sorbitan monostearate, sorbitan monopalmitate and sorbitan tristearate; C16-C18 fatty alcohols such as cetyl alcohol, myristyl alcohol, stearyl alcohol, and cetostearyl alcohol; esters of fatty alcohols and fatty acids such as cetyl palmitate and cetearyl palmitate; anhydrides of fatty acids such as stearic anhydride; phospholipids including phosphatidylcholine (lecithin), phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and lysoderivatives thereof; sphingosine and derivatives thereof; sphingomyelins such as stearyl, palmitoyl, and tricosanyl sphingomyelins; ceramides such as stearyl and palmitoyl ceramides; glycosphingolipids; lanolin and lanolin alcohols; and combinations and mixtures thereof. Preferred non-polymeric materials include cholesterol, glyceryl monostearate, glycerol tristearate, stearic acid, stearic anhydride, glyceryl monooleate, glyceryl monolinoleate, and acetylated monoglycerides.


B. Therapeutic Agents

The term “therapeutic agent” as used in the present invention encompasses drugs, genetic materials, and biological materials and can be used interchangeably with “biologically active material”. In one embodiment, the therapeutic agent is an anti-restenotic agent. In other embodiments, the therapeutic agent inhibits smooth muscle cell proliferation, contraction, migration or hyperactivity. Non-limiting examples of suitable therapeutic agent include heparin, heparin derivatives, urokinase, dextrophenylalanine proline arginine chloromethylketone (PPack), enoxaprin, angiopeptin, hirudin, acetylsalicylic acid, tacrolimus, everolimus, rapamycin (sirolimus), pimecrolimus, amlodipine, doxazosin, glucocorticoids, betamethasone, dexamethasone, prednisolone, corticosterone, budesonide, sulfasalazine, rosiglitazone, mycophenolic acid, mesalamine, paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, methotrexate, azathioprine, adriamycin, mutamycin, endostatin, angiostatin, thymidine kinase inhibitors, cladribine, lidocaine, bupivacaine, ropivacaine, D-Phe-Pro-Arg chloromethyl ketone, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, dipyridamole, protamine, hirudin, prostaglandin inhibitors, platelet inhibitors, trapidil, liprostin, tick antiplatelet peptides, 5-azacytidine, vascular endothelial growth factors, growth factor receptors, transcriptional activators, translational promoters, antiproliferative agents, growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin, cholesterol lowering agents, vasodilating agents, agents which interfere with endogenous vasoactive mechanisms, antioxidants, probucol, antibiotic agents, penicillin, cefoxitin, oxacillin, tobranycin, angiogenic substances, fibroblast growth factors, estrogen, estradiol (E2), estriol (E3), 17-beta estradiol, digoxin, beta blockers, captopril, enalopril, statins, steroids, vitamins, paclitaxel (as well as its derivatives, analogs or paclitaxel bound to proteins, e.g. Abraxane™) 2′-succinyl-taxol, 2′-succinyl-taxol triethanolamine, 2′-glutaryl-taxol, 2′-glutaryl-taxol triethanolamine salt, 2′-O-ester with N-(dimethylaminoethyl) glutamine, 2′-O-ester with N-(dimethylaminoethyl) glutamide hydrochloride salt, nitroglycerin, nitrous oxides, nitric oxides, antibiotics, aspirins, digitalis, estrogen, estradiol and glycosides. In one embodiment, the therapeutic agent is a smooth muscle cell inhibitor or antibiotic. In a preferred embodiment, the therapeutic agent is taxol (e.g., Taxol®), or its analogs or derivatives. In another preferred embodiment, the therapeutic agent is paclitaxel, or its analogs or derivatives. In yet another preferred embodiment, the therapeutic agent is an antibiotic such as erythromycin, amphotericin, rapamycin, adriamycin, etc.


The term “genetic materials” means DNA or RNA, including, without limitation, of DNA/RNA encoding a useful protein stated below, intended to be inserted into a human body including viral vectors and non-viral vectors.


The term “biological materials” include cells, yeasts, bacteria, proteins, peptides, cytokines and hormones. Examples for peptides and proteins include vascular endothelial growth factor (VEGF), transforming growth factor (TGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), cartilage growth factor (CGF), nerve growth factor (NGF), keratinocyte growth factor (KGF), skeletal growth factor (SGF), osteoblast-derived growth factor (BDGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), cytokine growth factors (CGF), platelet-derived growth factor (PDGF), hypoxia inducible factor-1 (HIF-1), stem cell derived factor (SDF), stem cell factor (SCF), endothelial cell growth supplement (ECGS), granulocyte macrophage colony stimulating factor (GM-CSF), growth differentiation factor (GDF), integrin modulating factor (IMF), calmodulin (CaM), thymidine kinase (TK), tumor necrosis factor (TNF), growth hormone (GH), bone morphogenic protein (BMP) (e.g., BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (PO-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-14, BMP-15, BMP-16, etc.), matrix metalloproteinase (MMP), tissue inhibitor of matrix metalloproteinase (TIMP), cytokines, interleukin (e.g., IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-15, etc.), lymphokines, interferon, integrin, collagen (all types), elastin, fibrillins, fibronectin, vitronectin, laminin, glycosaminoglycans, proteoglycans, transferrin, cytotactin, cell binding domains (e.g., RGD), and tenascin. Currently preferred BMP's are BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Cells can be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), genetically engineered, if desired, to deliver proteins of interest at the transplant site. The delivery media can be formulated as needed to maintain cell function and viability. Cells include progenitor cells (e.g., endothelial progenitor cells), stem cells (e.g., mesenchymal, hematopoietic, neuronal), stromal cells, parenchymal cells, undifferentiated cells, fibroblasts, macrophage, and satellite cells.


Other non-genetic therapeutic agents include:

    • anti-thrombogenic agents such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone);
    • anti-proliferative agents such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, acetylsalicylic acid, tacrolimus, everolimus, amlodipine and doxazosin;
    • anti-inflammatory agents such as glucocorticoids, betamethasone, dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, rosiglitazone, mycophenolic acid and mesalamine;
    • anti-neoplastic/anti-proliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, methotrexate, azathioprine, adriamycin and mutamycin; endostatin, angiostatin and thymidine kinase inhibitors, cladribine, taxol and its analogs or derivatives;
    • anesthetic agents such as lidocaine, bupivacaine, and ropivacaine;
    • anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin (aspirin is also classified as an analgesic, antipyretic and anti-inflammatory drug), dipyridamole, protamine, hirudin, prostaglandin inhibitors, platelet inhibitors, antiplatelet agents such as trapidil or liprostin and tick antiplatelet peptides;
    • DNA demethylating drugs such as 5-azacytidine, which is also categorized as a RNA or DNA metabolite that inhibit cell growth and induce apoptosis in certain cancer cells;
    • vascular cell growth promoters such as growth factors, vascular endothelial growth factors (VEGF, all types including VEGF-2), growth factor receptors, transcriptional activators, and translational promoters;
    • vascular cell growth inhibitors such as anti-proliferative agents, growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin;
    • cholesterol-lowering agents, vasodilating agents, and agents which interfere with endogenous vasoactive mechanisms;
    • anti-oxidants, such as probucol;
    • antibiotic agents, such as penicillin, cefoxitin, oxacillin, tobranycin, rapamycin (sirolimus);
    • Angiogenic substances, such as acidic and basic fibroblast growth factors, estrogen including estradiol (E2), estriol (E3) and 17-beta estradiol;
    • drugs for heart failure, such as digoxin, beta-blockers, angiotensin-converting enzyme (ACE) inhibitors including captopril and enalopril, statins and related compounds; and
    • macrolides such as sirolimus or everolimus.


Preferred biological materials include anti-proliferative drugs such as steroids, vitamins, and restenosis-inhibiting agents. Preferred restenosis-inhibiting agents include microtubule stabilizing agents such as Taxol®, paclitaxel (i.e., paclitaxel, paclitaxel analogs, or paclitaxel derivatives, and mixtures thereof). For example, derivatives suitable for use in the present invention include 2′-succinyl-taxol, 2′-succinyl-taxol triethanolamine, 2′-glutaryl-taxol, 2′-glutaryl-taxol triethanolamine salt, 2′-O-ester with N-(dimethylaminoethyl) glutamine, and 2′-O-ester with N-(dimethylaminoethyl) glutamide hydrochloride salt.


Other suitable therapeutic agents include tacrolimus; halofuginone; inhibitors of HSP90 heat shock proteins such as geldanamycin; microtubule stabilizing agents such as epothilone D; phosphodiesterase inhibitors such as cliostazole; Barkct inhibitors; phospholamban inhibitors; and Serca 2 gene/proteins.


Other preferred therapeutic agents include nitroglycerin, nitrous oxides, nitric oxides, aspirins, digitalis, estrogen derivatives such as estradiol and glycosides.


In one embodiment, the therapeutic agent is capable of altering the cellular metabolism or inhibiting a cell activity, such as protein synthesis, DNA synthesis, spindle fiber formation, cellular proliferation, cell migration, microtubule formation, microfilament formation, extracellular matrix synthesis, extracellular matrix secretion, or increase in cell volume. In another embodiment, the therapeutic agent is capable of inhibiting cell proliferation and/or migration.


In certain embodiments, the therapeutic agents for use in the medical devices of the present invention can be synthesized by methods well known to one skilled in the art. Alternatively, the therapeutic agents can be purchased from chemical and pharmaceutical companies.


In some embodiments, the therapeutic agent comprises at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, at least 99% or more by weight of the porous metal oxide or metal material. Preferably, the therapeutic agent is about 0.1 to about 10 percent by weight of the porous metal oxide or metal material that contains the therapeutic agent. More preferably, the therapeutic agent is about 0.5 to about 10 percent by weight of the porous metal oxide or metal material that contains the therapeutic agent.


C. Polymers

Polymers useful as the quantity of polymer disposed on the porous metal oxide or metal material to form a coating thereon should be ones that are biocompatible, particularly during insertion or implantation of the device into the body and avoids irritation to body tissue. Examples of such polymers include, but not limited to, polyurethanes, polyisobutylene and its copolymers, silicones, and polyesters. Other suitable polymers include polyolefins, polyisobutylene, ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers such as polyvinyl chloride, polyvinyl ethers such as polyvinyl methyl ether, polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics such as polystyrene, polyvinyl esters such as polyvinyl acetate; copolymers of vinyl monomers, copolymers of vinyl monomers and olefins such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, ethylene-vinyl acetate copolymers, polyamides such as Nylon 66 and polycaprolactone, alkyd resins, polycarbonates, polyoxyethylenes, polyimides, polyethers, epoxy resins, polyurethanes, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, collagens, chitins, polylactic acid, polyglycolic acid, and polylactic acid-polyethylene oxide copolymers.


When the polymer is being applied to a part of the medical device, such as a stent, which undergoes mechanical challenges, e.g. expansion and contraction, the polymers are preferably selected from elastomeric polymers such as silicones (e.g. polysiloxanes and substituted polysiloxanes), polyurethanes, thermoplastic elastomers, ethylene vinyl acetate copolymers, polyolefin elastomers, and EPDM rubbers. The polymer is selected to allow the coating to better adhere to the surface of the strut when the stent is subjected to forces or stress. Furthermore, although the coating can be formed by using a single type of polymer, various combinations of polymers can be employed.


Generally, when a hydrophilic therapeutic agent is used then a hydrophilic polymer having a greater affinity for the therapeutic agent than another material that is less hydrophilic is preferred. When a hydrophobic therapeutic agent is used then a hydrophobic polymer having a greater affinity for the therapeutic agent is preferred. However, in some embodiments, a hydrophilic therapeutic agent can be used with a hydrophobic polymer and a hydrophobic therapeutic agent can be used with a hydrophilic polymer.


Examples of suitable hydrophobic polymers or monomers include, but not limited to, polyolefins, such as polyethylene, polypropylene, poly(1-butene), poly(2-butene), poly(1-pentene), poly(2-pentene), poly(3-methyl-1-pentene), poly(4-methyl-1-pentene), poly(isoprene), poly(4-methyl-1-pentene), ethylene-propylene copolymers, ethylene-propylene-hexadiene copolymers, ethylene-vinyl acetate copolymers, blends of two or more polyolefins and random and block copolymers prepared from two or more different unsaturated monomers; styrene polymers, such as poly(styrene), poly(2-methylstyrene), styrene-acrylonitrile copolymers having less than about 20 mole-percent acrylonitrile, and styrene-2,2,3,3,-tetrafluoropropyl methacrylate copolymers; halogenated hydrocarbon polymers, such as poly(chlorotrifluoroethylene), chlorotrifluoroethylene-tetrafluoroethylene copolymers, poly(hexafluoropropylene), poly(tetrafluoroethylene), tetrafluoroethylene, tetrafluoroethylene-ethylene copolymers, poly(trifluoroethylene), poly(vinyl fluoride), and poly(vinylidene fluoride); vinyl polymers, such as poly(vinyl butyrate), poly(vinyl decanoate), poly(vinyl dodecanoate), poly(vinyl hexadecanoate), poly(vinyl hexanoate), poly(vinyl propionate), poly(vinyl octanoate), poly(heptafluoroisopropoxyethylene), poly(heptafluoroisopropoxypropylene), and poly(methacrylonitrile); acrylic polymers, such as poly(n-butyl acetate), poly(ethyl acrylate), poly(1-chlorodifluoromethyl)tetrafluoroethyl acrylate, poly di(chlorofluoromethyl)fluoromethyl acrylate, poly(1,1-dihydroheptafluorobutyl acrylate), poly(1,1-dihydropentafluoroisopropyl acrylate), poly(1,1-dihydropentadecafluorooctyl acrylate), poly(heptafluoroisopropyl acrylate), poly 5-(heptafluoroisopropoxy)pentyl acrylate, poly 11-(heptafluoroisopropoxy)undecyl acrylate, poly 2-(heptafluoropropoxy)ethyl acrylate, and poly(nonafluoroisobutyl acrylate); methacrylic polymers, such as poly(benzyl methacrylate), poly(n-butyl methacrylate), poly(isobutyl methacrylate), poly(t-butyl methacrylate), poly(t-butylaminoethyl methacrylate), poly(dodecyl methacrylate), poly(ethyl methacrylate), poly(2-ethylhexyl methacrylate), poly(n-hexyl methacrylate), poly(phenyl methacrylate), poly(n-propyl methacrylate), poly(octadecyl methacrylate), poly(1,1-dihydropentadecafluorooctyl methacrylate), poly(heptafluoroisopropyl methacrylate), poly(heptadecafluorooctyl methacrylate), poly(1-hydrotetrafluoroethyl methacrylate), poly(1,1-dihydrotetrafluoropropyl methacrylate), poly(1-hydrohexafluoroisopropyl methacrylate), and poly(t-nonafluorobutyl methacrylate); polyesters, such a poly(ethylene terephthalate) and poly(butylene terephthalate); condensation type polymers such as and polyurethanes and siloxane-urethane copolymers; polyorganosiloxanes, i.e., polymeric materials characterized by repeating siloxane groups, represented by Ra SiO 4-a/2, where R is a monovalent substituted or unsubstituted hydrocarbon radical and the value of a is 1 or 2; and naturally occurring hydrophobic polymers such as rubber.


Examples of suitable hydrophilic polymers or monomers include, but not limited to; (meth)acrylic acid, or alkaline metal or ammonium salts thereof; (meth)acrylamide; (meth)acrylonitrile; those polymers to which unsaturated dibasic, such as maleic acid and fumaric acid or half esters of these unsaturated dibasic acids, or alkaline metal or ammonium salts of these dibasic adds or half esters, is added; those polymers to which unsaturated sulfonic, such as 2-acrylamido-2-methylpropanesulfonic, 2-(meth)acryloylethanesulfonic acid, or alkaline metal or ammonium salts thereof, is added; and 2-hydroxyethyl(meth)acrylate and 2-hydroxypropyl(meth)acrylate.


Polyvinyl alcohol is also an example of hydrophilic polymer. Polyvinyl alcohol may contain a plurality of hydrophilic groups such as hydroxyl, amido, carboxyl, amino, ammonium or sulfonyl (—SO3). Hydrophilic polymers also include, but are not limited to, starch, polysaccharides and related cellulosic polymers; polyalkylene glycols and oxides such as the polyethylene oxides; polymerized ethylenically unsaturated carboxylic acids such as acrylic, mathacrylic and maleic acids and partial esters derived from these acids and polyhydric alcohols such as the alkylene glycols; homopolymers and copolymers derived from acrylamide; and homopolymers and copolymers of vinylpyrrolidone.


Other suitable polymers include without limitation: polyurethanes, silicones (e.g., polysiloxanes and substituted polysiloxanes), and polyesters, styrene-isobutylene-copolymers. Other polymers which can be used include ones that can be dissolved and cured or polymerized on the medical device or polymers having relatively low melting points that can be blended with biologically active materials. Additional suitable polymers include, but are not limited to, thermoplastic elastomers in general, polyolefins, polyisobutylene, ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers such as polyvinyl chloride, polyvinyl ethers such as polyvinyl methyl ether, polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics such as polystyrene, polyvinyl esters such as polyvinyl acetate, copolymers of vinyl monomers, copolymers of vinyl monomers and olefins such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS (acrylonitrile-butadiene-styrene) resins, ethylene-vinyl acetate copolymers, polyamides such as Nylon 66 and polycaprolactone, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, polyether block amides, epoxy resins, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, collagens, chitins, polylactic acid, polyglycolic acid, polylactic acid-polyethylene oxide copolymers, EPDM (ethylene-propylene-diene) rubbers, fluoropolymers, fluorosilicones, polyethylene glycol, polysaccharides, phospholipids, and combinations of the foregoing.


D. Methods of Making Coatings

In embodiments of the medical device of the present invention where the surface and outer region of the medical device comprises a metal oxide or metal material having a plurality of pores (such as those in FIGS. 2 and 3), the pores in some instances can be created by micro-roughing techniques involving the use of reactive plasmas or ion bombardment electrolyte etching. The pores can also be created by other methods such as sand blasting, laser etching or chemical etching.


In embodiments where the medical device comprises a coating of a metal oxide or metal material having a plurality of pores (such as in FIGS. 1 and 2), such a coating can be formed in a number of ways. In some instances, the coating can be formed by depositing the material in a particular manner so that pores form in the material. For example, the metal oxide or metal material can be made porous by a deposition process such as sputtering and adjusting the deposition condition. Deposition conditions that can be adjusted or varied include, but are not limited to, chamber pressure, substrate temperature, substrate bias, substrate orientation, sputter rate, or a combination thereof.


In an alternative method, the coating having a plurality of pores may be formed on the surface of the medical device using vacuum plasma spraying of a spray composition comprising a metal oxide or metal under certain process parameters that promote the formation of pores.


In addition, the porous coating of metal oxide or metal material can be formed by a co-deposition technique. In such a technique the metal oxide or metal material is combined with a secondary phase material to form a composition. The secondary phase material can be a metal, such as carbon, aluminum, nickel or a non-metal. Preferably non-metal secondary materials include polymers that are capable of being leached off, such as polystyrene. The secondary phase material can be in the form of particles such as hollow spheres or chopped tubes of various sizes. The size of the pores formed will be determined by the size of the secondary phase material used. For example, if a hollow sphere of a second metal used as the secondary phase material, the size of the spheres will determine the size of the pores formed.


In some embodiments, the composition can contain a metal used to form the porous coating and a metal that is used as the secondary phase material. The two metals can form an alloy such as a gold/silver alloy, where gold is the metal used to form the porous coating and silver is the secondary phase material. Also, the two metals can be in the form of a mixture or a composite. As discussed below, the secondary phase material is removed to form the pores in the coating. Thus, if two metals are used in the composition, the metals should have different chemical or physical properties to facilitate removal of the metal that is used as the secondary phase material. For example, the metal that will be removed should be more electrochemically active, e.g., less corrosion-resistant than the metal used to form the porous coating. In some embodiments, the metal that will be removed should have a lower melting point than the metal used to form the porous coating. In yet another embodiment, the metal that will be removed should have a higher vapor pressure than the metal used to form the coating. Also, in another embodiment, the metal that is removed is more susceptible to being dissolved in a chosen solvent than the metal used to form the coating.


The composition containing the metal oxide or metal material is combined with a secondary phase material is applied to the surface of the medical device. Suitable application methods include but are not limited to, dipping, spraying, painting, electroplating, evaporation, plasma-vapor deposition, cathodic-arc deposition, sputtering, ion implantation, electrostatically, electroplating, electrochemically, a combination of the above, or the like.


Afterwards, the secondary phase material is removed from the composition to form a porous coating. For example, the secondary phase material may be removed from the composition by a dealloying process such as selective dissolution of the secondary phase material. In this method, the composition is exposed to an acid which removes the secondary phase material. Thus, the metal oxide or metal used to form the coating is preferably one that will not dissolve when exposed to the acid, while the secondary phase material is one that will dissolve in the acid. Any suitable acid can be used to remove the secondary phase material. One of ordinary skill in the art would recognize the appropriate concentration and reaction conditions to use. For example, if the secondary phase material is silver, nitric acid may be used at a concentration of up to 35% and a temperature up to 120° F. Also, a nitric acid and sulfuric acid mixture (95%/5%) immersion process at 80° F. may be used. The reaction conditions may be varied to vary the geometry, distribution, and depth of the coating.


Alternatively, the second metal can be removed anodically. For example, when silver is used as the secondary phase material, the silver may be removed from the composition applied to the surface anodically using a dilute nitric acid bath comprising up to 15% nitric acid, wherein the anode is the medical device, and the cathode comprises platinum. Voltages up to 10V DC can be applied across the electrodes. The bath chemistry, temperature, applied voltage, and process time may be varied to vary the geometry, distribution, and depth of the coating.


Furthermore, if the secondary phase material has a lower melting point than the metal oxide or metal used in the porous coating, the device coated with the composition containing the metal oxide or metal and the secondary phase material can be heated to a temperature such that the secondary phase material becomes a liquid and is removable from the metal oxide or metal. Examples of suitable metals for the porous coating include one of the higher melting point first metals: platinum, gold, stainless steel, titanium, tantalum, and iridium, in combination with a lower melting point secondary phase material such as: aluminum, barium, and bismuth.


In another embodiment, the secondary phase material has a higher vapor pressure than the metal oxide or metal used to form the porous coating. When the composition applied to the surface of the medical device is heated under vacuum the secondary phase material becomes vaporized and is removed from the metal oxide or metal.


A therapeutic agent is deposited in the pores of the metal oxide or metal material by any suitable method, such as, but not limited to dip coating, spray coating, spin coating, plasma deposition, condensation, electrochemically, electrostatically, evaporation, plasma vapor deposition, cathodic arc deposition, sputtering, ion implantation, or use of a fluidized bed. In order to dispose the molecules of the therapeutic agent in the pores, it may be necessary to modify the size of the pores in the coating or in the surface and outer region of the medical device. The pore size may be modified by any suitable method, such as heat treatment. If a polymer is also deposited in the pores, the polymer can be combined with the therapeutic agent and optionally a solvent. A composition containing the polymer and therapeutic agent can be deposited in the pores. Alternatively, the polymer and therapeutic agent can be deposited in the pores separately.


The polymer can be applied to the porous metal oxide or metal material by any method. Examples of suitable methods include, but are not limited to, spraying such as by conventional nozzle or ultrasonic nozzle, dipping, rolling, electrostatic deposition, and a batch process such as air suspension, pan coating or ultrasonic mist spraying. Also, more than one coating method can be used. To facilitate the application of the polymer to the porous metal oxide or metal material, the polymer can be dispersed or dissolved in a solvent. After the composition comprising the solvent and the polymer is applied, the solvent is removed. Pores can be formed in the polymer by bubbling gas through the polymer, or by adding a second phase material to the solvent and polymer composition and dissolving the second phase material. In addition, a therapeutic agent can be loaded into the pores of the polymer by methods described above for loading a therapeutic agent into the pores of the metal oxide or metal material.


The description contained herein is for purposes of illustration and not for purposes of limitation. Changes and modifications may be made to the embodiments of the description and still be within the scope of the invention. Furthermore, obvious changes, modifications or variations will occur to those skilled in the art. Also, all references cited above are incorporated herein, in their entirety, for all purposes related to this disclosure.

Claims
  • 1. An implantable medical device comprising: (a) a surface;(b) a coating disposed on the surface comprising: (i) a first material comprising a first transition metal oxide material in the form of a layer having a plurality of pores therein disposed on at least a portion of the surface, wherein a first therapeutic agent is disposed in at least some of the pores of the first transition metal oxide material;(ii) a first polymer in the form of a layer disposed on at least a portion of the first transition metal oxide material, wherein the first polymer has a plurality of pores therein; and(c) an outer region adjacent to the surface, wherein the outer region comprises a second material comprising a second transition metal oxide material different from the first transition metal oxide material, the second transition metal oxide material having a plurality of pores therein, and a second therapeutic agent disposed in at least some of the pores of the second transition metal oxide material; wherein the first and second therapeutic agents are the same or different.
  • 2. The device of claim 1 further comprising an inner region adjacent to the outer region, wherein the inner region is substantially non-porous.
  • 3. The device of claim 1 further comprising a second polymer disposed in at least some of the pores of the first transition metal oxide material.
  • 4. The device of claim 1, wherein the first polymer comprises ethylene-vinylacetate copolymers, polymethacrylates, styrene-isobutylene copolymers and polylactic acids.
  • 5. The device of claim 1, wherein the first and second transition metal oxide materials each independently comprises tantalum oxide, titanium oxide, iridium oxide, niobium oxide, zirconium oxide, tungsten oxide, or rhodium oxide.
  • 6. The device of claim 1, wherein the pores in the first transition_metal oxide material have an average width of between about 1 nm and about 10 μm.
  • 7. The device of claim 1, wherein the first and second therapeutic agents each independently comprises an anti-restenosis agent, anti-thrombogenic agent, anti-angiogenesis agent, anti-proliferative agent, antibiotic agent, growth factor, immunosuppressant or radiochemical.
  • 8. The device of claim 1, wherein the first therapeutic agent, the second therapeutic agent, or both, comprises an anti-restenosis agent.
  • 9. The device of claim 1, wherein the first therapeutic agent, the second therapeutic agent, or both, comprises paclitaxel.
  • 10. The device of claim 1, wherein the first therapeutic agent, the second therapeutic agent, or both, comprises sirolimus, tacrolimus, pimecrolimus or everolimus.
  • 11. The device of claim 1, wherein the first polymer comprises polyethylene-co-vinyl acetate, poly(n-butyl methacrylate), poly(styrene-b-isobutylene-b-styrene) and polylactic-glycolic acid.
  • 12. The device of claim 1, wherein the first polymer comprises a third therapeutic agent dispersed in the pores of the first polymer, and wherein the first therapeutic agent and the third therapeutic agent are the same.
  • 13. An implantable medical device comprising: (a) an inner region having at least two surfaces, wherein the inner region is substantially non-porous;(b) an outer region adjacent to each surface of the inner region, wherein the outer region comprises a second material comprising a second transition metal oxide material in the form of a layer having a plurality of pores therein, and a second therapeutic agent disposed in at least some of the pores in the second transition metal oxide material;(c) a coating disposed on each of the outer regions comprising: (i) a first material comprising a first transition metal oxide material different from the second transition metal oxide material, the first transition metal oxide material in the form of a layer having a plurality of pores therein disposed on at least a portion of the surface, wherein a first therapeutic agent is disposed in at least some of the pores of the first transition metal oxide material; and(ii) a first polymer in the form of a layer disposed on at least a portion of the first transition metal oxide material, wherein the first polymer has a plurality of pores therein.
  • 14. The device of claim 1, wherein the first polymer comprises a second therapeutic agent included in the pores of the first polymer.
  • 15. The device of claim 14, wherein the second therapeutic agent is the same as the first therapeutic agent.
  • 16. The device of claim 14, wherein the second therapeutic agent is different from the first therapeutic agent.
US Referenced Citations (1010)
Number Name Date Kind
3751283 Dawson Aug 1973 A
3758396 Vieth et al. Sep 1973 A
3910819 Rembaum et al. Oct 1975 A
3948254 Zaffaroni Apr 1976 A
3952334 Bokros et al. Apr 1976 A
3970445 Gale et al. Jul 1976 A
3993072 Zaffaroni Nov 1976 A
4044404 Martin et al. Aug 1977 A
4101984 MacGregor Jul 1978 A
4143661 LaForge et al. Mar 1979 A
4202055 Reiner et al. May 1980 A
4237559 Borom Dec 1980 A
4308868 Jhabvala Jan 1982 A
4309996 Theeuwes Jan 1982 A
4321311 Strangman Mar 1982 A
4330891 Branemark et al. May 1982 A
4334327 Lyman et al. Jun 1982 A
4401546 Nakamura et al. Aug 1983 A
4407695 Deckman et al. Oct 1983 A
4475972 Wong Oct 1984 A
4565744 Walter et al. Jan 1986 A
4585652 Miller et al. Apr 1986 A
4655771 Wallsten Apr 1987 A
4657544 Pinchuk Apr 1987 A
4665896 LaForge et al. May 1987 A
4705502 Patel Nov 1987 A
4733665 Palmaz Mar 1988 A
4738740 Pinchuk et al. Apr 1988 A
4743252 Martin et al. May 1988 A
4784659 Fleckenstein et al. Nov 1988 A
4800882 Gianturco Jan 1989 A
4842505 Annis et al. Jun 1989 A
4886062 Wiktor Dec 1989 A
4902290 Fleckenstein et al. Feb 1990 A
4954126 Wallsten Sep 1990 A
4976692 Atad Dec 1990 A
4994071 MacGregor Feb 1991 A
5061275 Wallsten et al. Oct 1991 A
5061914 Busch et al. Oct 1991 A
5073365 Katz et al. Dec 1991 A
5091205 Fan Feb 1992 A
5102403 Alt Apr 1992 A
5120322 Davis et al. Jun 1992 A
5125971 Nonami et al. Jun 1992 A
5147370 McNamara et al. Sep 1992 A
5163958 Pinchuk Nov 1992 A
5171607 Cumbo Dec 1992 A
5195969 Wang et al. Mar 1993 A
5205921 Shirkanzadeh Apr 1993 A
5219611 Giannelis et al. Jun 1993 A
5232444 Just et al. Aug 1993 A
5236413 Feiring Aug 1993 A
5242706 Cotell et al. Sep 1993 A
5250242 Nishio et al. Oct 1993 A
5270086 Hamlin Dec 1993 A
5279292 Baumann et al. Jan 1994 A
5290585 Elton Mar 1994 A
5302414 Alkhimov et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5314453 Jeutter May 1994 A
5322520 Milder Jun 1994 A
5326354 Kwarteng Jul 1994 A
5348553 Whitney Sep 1994 A
5366504 Andersen et al. Nov 1994 A
5368881 Kelman et al. Nov 1994 A
5378146 Sterrett Jan 1995 A
5380298 Zabetakis et al. Jan 1995 A
5383935 Shirkhanzadeh Jan 1995 A
5397307 Goodin Mar 1995 A
5405367 Schulman et al. Apr 1995 A
5439446 Barry Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5447724 Helmus et al. Sep 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5464450 Buscemi et al. Nov 1995 A
5464650 Berg et al. Nov 1995 A
5474797 Sioshansi et al. Dec 1995 A
5500013 Buscemi et al. Mar 1996 A
5527337 Stack et al. Jun 1996 A
5545208 Wolff et al. Aug 1996 A
5551954 Buscemi et al. Sep 1996 A
5569463 Helmus et al. Oct 1996 A
5578075 Dayton Nov 1996 A
5587507 Kohn et al. Dec 1996 A
5591224 Schwartz et al. Jan 1997 A
5603556 Klink Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607463 Schwartz et al. Mar 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5614549 Greenwald et al. Mar 1997 A
5624411 Tuch Apr 1997 A
5649951 Davidson Jul 1997 A
5649977 Campbell Jul 1997 A
5672242 Jen Sep 1997 A
5674192 Sahatjian et al. Oct 1997 A
5674242 Phan et al. Oct 1997 A
5679440 Kubota Oct 1997 A
5681196 Jin et al. Oct 1997 A
5690670 Davidson Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5693928 Egitto et al. Dec 1997 A
5711866 Lashmore et al. Jan 1998 A
5733924 Kanda et al. Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741331 Pinchuk Apr 1998 A
5744515 Clapper Apr 1998 A
5749809 Lin May 1998 A
5758562 Thompson Jun 1998 A
5761775 Legome et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5772864 Moller et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5780807 Saunders Jul 1998 A
5788687 Batich et al. Aug 1998 A
5788979 Alt et al. Aug 1998 A
5795626 Gabel et al. Aug 1998 A
5797898 Santini, Jr. et al. Aug 1998 A
5807407 England et al. Sep 1998 A
5817046 Glickman Oct 1998 A
5824045 Alt Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5824077 Mayer Oct 1998 A
5830480 Ducheyne et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843172 Yan Dec 1998 A
5852088 Dismukes et al. Dec 1998 A
5858556 Eckert et al. Jan 1999 A
5873904 Ragheb et al. Feb 1999 A
5874134 Rao et al. Feb 1999 A
5879697 Ding et al. Mar 1999 A
5882335 Leone et al. Mar 1999 A
5888591 Gleason et al. Mar 1999 A
5891108 Leone et al. Apr 1999 A
5891192 Murayama et al. Apr 1999 A
5902266 Leone et al. May 1999 A
5922021 Jang Jul 1999 A
5928247 Barry et al. Jul 1999 A
5951881 Rogers et al. Sep 1999 A
5954706 Sahatjian Sep 1999 A
5962136 Dewez et al. Oct 1999 A
5968091 Pinchuk et al. Oct 1999 A
5968092 Buscemi et al. Oct 1999 A
5968640 Lubowitz et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5977204 Boyan et al. Nov 1999 A
5980551 Summers et al. Nov 1999 A
5980564 Stinson Nov 1999 A
5980566 Alt et al. Nov 1999 A
6013591 Ying et al. Jan 2000 A
6017577 Hostettler et al. Jan 2000 A
6022812 Smith et al. Feb 2000 A
6025036 McGill et al. Feb 2000 A
6034295 Rehberg et al. Mar 2000 A
6045877 Gleason et al. Apr 2000 A
6063101 Jacobsen et al. May 2000 A
6071305 Brown et al. Jun 2000 A
6074135 Tapphorn et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099561 Alt Aug 2000 A
6099562 Ding et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6110204 Lazarov et al. Aug 2000 A
6120536 Ding et al. Sep 2000 A
6120660 Chu et al. Sep 2000 A
6122564 Koch et al. Sep 2000 A
6139573 Sogard et al. Oct 2000 A
6139913 Van Steenkiste et al. Oct 2000 A
6153252 Hossainy et al. Nov 2000 A
6156435 Gleason et al. Dec 2000 A
6159142 Alt Dec 2000 A
6171609 Kunz Jan 2001 B1
6174329 Callol et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6180184 Gray et al. Jan 2001 B1
6187037 Satz Feb 2001 B1
6190404 Palmaz et al. Feb 2001 B1
6193761 Treacy Feb 2001 B1
6200685 Davidson Mar 2001 B1
6203536 Berg et al. Mar 2001 B1
6206915 Fagan et al. Mar 2001 B1
6206916 Furst Mar 2001 B1
6210715 Starling et al. Apr 2001 B1
6212434 Scheiner et al. Apr 2001 B1
6214042 Jacobsen et al. Apr 2001 B1
6217607 Alt Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6241762 Shanley Jun 2001 B1
6245104 Alt Jun 2001 B1
6249952 Ding Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6253443 Johnson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273908 Ndondo-Lay Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6280411 Lennox Aug 2001 B1
6283386 Van Steenkiste et al. Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287331 Heath Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306144 Sydney et al. Oct 2001 B1
6315708 Salmon et al. Nov 2001 B1
6315794 Richter Nov 2001 B1
6323146 Pugh et al. Nov 2001 B1
6325825 Kula et al. Dec 2001 B1
6327504 Dolgin et al. Dec 2001 B1
6331330 Choy et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6337076 Studin Jan 2002 B1
6342507 Naicker et al. Jan 2002 B1
6348960 Etori et al. Feb 2002 B1
6358532 Starling et al. Mar 2002 B2
6358556 Ding et al. Mar 2002 B1
6361780 Ley et al. Mar 2002 B1
6364856 Ding et al. Apr 2002 B1
6365222 Wagner et al. Apr 2002 B1
6367412 Ramaswamy et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6387121 Alt May 2002 B1
6387124 Buscemi et al. May 2002 B1
6390967 Forman et al. May 2002 B1
6391052 Bulrge et al. May 2002 B2
6395325 Hedge et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6398806 You Jun 2002 B1
6413271 Hafeli et al. Jul 2002 B1
6416820 Yamada et al. Jul 2002 B1
6419692 Yang et al. Jul 2002 B1
6436133 Furst et al. Aug 2002 B1
6440503 Merdan et al. Aug 2002 B1
6458153 Bailey et al. Oct 2002 B1
6465052 Wu Oct 2002 B1
6468304 Dubois-Rande et al. Oct 2002 B1
6471721 Dang Oct 2002 B1
6471980 Sirhan et al. Oct 2002 B2
6475477 Kohn et al. Nov 2002 B1
6478815 Alt Nov 2002 B1
6479418 Li et al. Nov 2002 B2
6488715 Pope et al. Dec 2002 B1
6491666 Santini, Jr. et al. Dec 2002 B1
6491720 Vallana et al. Dec 2002 B1
6503921 Naicker et al. Jan 2003 B2
6504292 Choi et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6506972 Wang Jan 2003 B1
6514283 DiMatteo et al. Feb 2003 B2
6514289 Pope et al. Feb 2003 B1
6517888 Weber Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527938 Bales et al. Mar 2003 B2
6530951 Bates et al. Mar 2003 B1
6537310 Palmaz et al. Mar 2003 B1
6544582 Yoe Apr 2003 B1
6545097 Pinchuk et al. Apr 2003 B2
6558422 Baker et al. May 2003 B1
6558733 Hossainy et al. May 2003 B1
6565602 Rolando et al. May 2003 B2
6569489 Li May 2003 B1
6585765 Hossainy et al. Jul 2003 B1
6599558 Al-Lamee et al. Jul 2003 B1
6607598 Schwarz et al. Aug 2003 B2
6613083 Alt Sep 2003 B2
6613432 Zamora et al. Sep 2003 B2
6616765 Castro et al. Sep 2003 B1
6620194 Ding et al. Sep 2003 B2
6635082 Hossainy et al. Oct 2003 B1
6638302 Curcio et al. Oct 2003 B1
6641607 Hossainy et al. Nov 2003 B1
6652575 Wang Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6652581 Ding Nov 2003 B1
6652582 Stinson Nov 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6660343 McGill et al. Dec 2003 B2
6663662 Pacetti et al. Dec 2003 B2
6663664 Pacetti Dec 2003 B1
6669980 Hansen Dec 2003 B2
6673105 Chen Jan 2004 B1
6673999 Wang et al. Jan 2004 B1
6676987 Zhong et al. Jan 2004 B2
6676989 Kirkpatrick et al. Jan 2004 B2
6689803 Hunter Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6699281 Vallana et al. Mar 2004 B2
6699282 Sceusa Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709397 Taylor Mar 2004 B2
6709451 Noble et al. Mar 2004 B1
6710053 Naicker et al. Mar 2004 B2
6712844 Pacetti Mar 2004 B2
6712845 Hossainy Mar 2004 B2
6713671 Wang et al. Mar 2004 B1
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6725901 Kramer et al. Apr 2004 B1
6726712 Raeder-Devens et al. Apr 2004 B1
6730120 Berg et al. May 2004 B2
6730699 Li et al. May 2004 B2
6733513 Boyle et al. May 2004 B2
6736849 Li et al. May 2004 B2
6740077 Brandau et al. May 2004 B1
6752826 Holloway et al. Jun 2004 B2
6752829 Kocur et al. Jun 2004 B2
6753071 Pacetti Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6761736 Woo et al. Jul 2004 B1
6764505 Hossainy et al. Jul 2004 B1
6764579 Veerasamy et al. Jul 2004 B2
6764709 Flanagan Jul 2004 B2
6765144 Wang et al. Jul 2004 B1
6767360 Alt et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6776022 Kula et al. Aug 2004 B2
6776094 Whitesides et al. Aug 2004 B1
6780424 Claude Aug 2004 B2
6780491 Cathey et al. Aug 2004 B1
6783543 Jang Aug 2004 B2
6790228 Hossainy et al. Sep 2004 B2
6803070 Weber Oct 2004 B2
6805709 Schaldach et al. Oct 2004 B1
6805898 Wu et al. Oct 2004 B1
6807440 Weber Oct 2004 B2
6815609 Wang et al. Nov 2004 B1
6820676 Palmaz et al. Nov 2004 B2
6827737 Hill et al. Dec 2004 B2
6830598 Sung Dec 2004 B1
6833004 Ishii et al. Dec 2004 B2
6846323 Yip et al. Jan 2005 B2
6846841 Hunter et al. Jan 2005 B2
6849085 Marton Feb 2005 B2
6849089 Stoll Feb 2005 B2
6852122 Rush Feb 2005 B2
6861088 Weber et al. Mar 2005 B2
6866805 Hong et al. Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6869701 Aita et al. Mar 2005 B1
6875227 Yoon Apr 2005 B2
6878249 Kouyama et al. Apr 2005 B2
6884429 Koziak et al. Apr 2005 B2
6896697 Yip et al. May 2005 B1
6899914 Schaldach et al. May 2005 B2
6904658 Hines Jun 2005 B2
6908622 Barry et al. Jun 2005 B2
6908624 Hossainy et al. Jun 2005 B2
6913617 Reiss Jul 2005 B1
6915796 Sung Jul 2005 B2
6918927 Bates et al. Jul 2005 B2
6918929 Udipi et al. Jul 2005 B2
6923829 Boyle et al. Aug 2005 B2
6924004 Rao et al. Aug 2005 B2
6932930 DeSimone et al. Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6939320 Lennox Sep 2005 B2
6951053 Padilla et al. Oct 2005 B2
6953560 Castro et al. Oct 2005 B1
6955661 Herweck et al. Oct 2005 B1
6955685 Escamilla et al. Oct 2005 B2
6962822 Hart et al. Nov 2005 B2
6971813 Shekalim et al. Dec 2005 B2
6973718 Sheppard, Jr. et al. Dec 2005 B2
6979346 Hossainy et al. Dec 2005 B1
6979348 Sundar Dec 2005 B2
6984404 Talton et al. Jan 2006 B1
6991804 Helmus et al. Jan 2006 B2
7001421 Cheng et al. Feb 2006 B2
7011680 Alt Mar 2006 B2
7014654 Welsh et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7041130 Santini, Jr. et al. May 2006 B2
7048939 Elkins et al. May 2006 B2
7052488 Uhland May 2006 B2
7056338 Shanley et al. Jun 2006 B2
7056339 Elkins et al. Jun 2006 B2
7056591 Pacetti et al. Jun 2006 B1
7060051 Palasis Jun 2006 B2
7063748 Talton Jun 2006 B2
7066234 Sawitowski Jun 2006 B2
7077859 Sirhan et al. Jul 2006 B2
7078108 Zhang et al. Jul 2006 B2
7083642 Sirhan et al. Aug 2006 B2
7087661 Alberte et al. Aug 2006 B1
7099091 Taniguchi et al. Aug 2006 B2
7101391 Scheuermann et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7105018 Yip et al. Sep 2006 B1
7105199 Blinn et al. Sep 2006 B2
7144840 Yeung et al. Dec 2006 B2
7160592 Rypacek et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7169177 Obara Jan 2007 B2
7169178 Santos et al. Jan 2007 B1
7195640 Falotico et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198675 Fox et al. Apr 2007 B2
7208011 Shanley et al. Apr 2007 B2
7208172 Birdsall et al. Apr 2007 B2
7208190 Verlee et al. Apr 2007 B2
7229471 Gale et al. Jun 2007 B2
7235096 Van Tassel et al. Jun 2007 B1
7235098 Palmaz Jun 2007 B2
7238199 Feldman et al. Jul 2007 B2
7244272 Dubson et al. Jul 2007 B2
7247166 Pienknagura Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7261735 Llanos et al. Aug 2007 B2
7261752 Sung Aug 2007 B2
7273493 Ledergerber Sep 2007 B2
7294409 Lye et al. Nov 2007 B2
7311727 Mazumder et al. Dec 2007 B2
7344563 Vallana et al. Mar 2008 B2
7368065 Yang et al. May 2008 B2
7393589 Aharonov et al. Jul 2008 B2
7396538 Granada et al. Jul 2008 B2
7402173 Scheuermann et al. Jul 2008 B2
7416558 Yip et al. Aug 2008 B2
7435256 Stenzel Oct 2008 B2
7482034 Boulais Jan 2009 B2
7494950 Armitage et al. Feb 2009 B2
7497876 Tuke et al. Mar 2009 B2
7547445 Chudzik et al. Jun 2009 B2
7563324 Chen et al. Jul 2009 B1
7575593 Rea et al. Aug 2009 B2
7575632 Sundar Aug 2009 B2
7635515 Sherman Dec 2009 B1
7638156 Hossainy et al. Dec 2009 B1
7643885 Maschke Jan 2010 B2
7691461 Prabhu Apr 2010 B1
7713297 Alt May 2010 B2
7727275 Betts et al. Jun 2010 B2
7749264 Gregorich et al. Jul 2010 B2
7758636 Shanley et al. Jul 2010 B2
7771773 Namavar Aug 2010 B2
7837726 Von Oepen et al. Nov 2010 B2
7901452 Gale et al. Mar 2011 B2
7914809 Atanasoska et al. Mar 2011 B2
7922756 Lenz et al. Apr 2011 B2
7981441 Pantelidis et al. Jul 2011 B2
8029816 Hossainy et al. Oct 2011 B2
20010001834 Palmaz et al. May 2001 A1
20010002000 Kumar et al. May 2001 A1
20010002435 Berg et al. May 2001 A1
20010013166 Yan Aug 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010014821 Juman et al. Aug 2001 A1
20010027299 Yang et al. Oct 2001 A1
20010029660 Johnson Oct 2001 A1
20010032011 Stanford Oct 2001 A1
20010032013 Marton Oct 2001 A1
20010044651 Steinke et al. Nov 2001 A1
20020000175 Hintermaier et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020007102 Salmon et al. Jan 2002 A1
20020007209 Schearder et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020010505 Richter Jan 2002 A1
20020016623 Kula et al. Feb 2002 A1
20020016624 Patterson et al. Feb 2002 A1
20020028827 Naicker et al. Mar 2002 A1
20020032477 Helmus et al. Mar 2002 A1
20020038146 Harry Mar 2002 A1
20020042039 Kim et al. Apr 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020051846 Kirkpatrick et al. May 2002 A1
20020052288 Krell et al. May 2002 A1
20020065553 Weber May 2002 A1
20020072734 Liedtke et al. Jun 2002 A1
20020077520 Segal et al. Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091375 Sahatjian et al. Jul 2002 A1
20020095871 McArdle et al. Jul 2002 A1
20020098278 Bates et al. Jul 2002 A1
20020099359 Santini, Jr. et al. Jul 2002 A1
20020099438 Furst Jul 2002 A1
20020103527 Kocur et al. Aug 2002 A1
20020103528 Schaldach et al. Aug 2002 A1
20020104599 Tillotson et al. Aug 2002 A1
20020121497 Tomonto Sep 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020133222 Das Sep 2002 A1
20020133225 Gordon Sep 2002 A1
20020138100 Stoll et al. Sep 2002 A1
20020138136 Chandresekaran et al. Sep 2002 A1
20020140137 Sapieszko et al. Oct 2002 A1
20020142579 Vincent et al. Oct 2002 A1
20020144757 Craig et al. Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165265 Hunter et al. Nov 2002 A1
20020165600 Banas et al. Nov 2002 A1
20020165607 Alt Nov 2002 A1
20020167118 Billiet et al. Nov 2002 A1
20020168466 Tapphorn et al. Nov 2002 A1
20020169493 Widenhouse et al. Nov 2002 A1
20020178570 Sogard et al. Dec 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20020187260 Sheppard, Jr. et al. Dec 2002 A1
20020193336 Elkins et al. Dec 2002 A1
20020193869 Dang Dec 2002 A1
20020197178 Yan Dec 2002 A1
20020198601 Bales et al. Dec 2002 A1
20030003160 Pugh et al. Jan 2003 A1
20030003220 Zhong et al. Jan 2003 A1
20030004563 Jackson et al. Jan 2003 A1
20030004564 Elkins et al. Jan 2003 A1
20030006250 Tapphorn et al. Jan 2003 A1
20030009214 Shanley Jan 2003 A1
20030009233 Blinn et al. Jan 2003 A1
20030018380 Craig et al. Jan 2003 A1
20030018381 Whitcher et al. Jan 2003 A1
20030021820 Ahola et al. Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030028242 Vallana et al. Feb 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030032892 Erlach et al. Feb 2003 A1
20030033007 Sirhan et al. Feb 2003 A1
20030044446 Moro et al. Mar 2003 A1
20030047028 Kunitake et al. Mar 2003 A1
20030047505 Grimes et al. Mar 2003 A1
20030050687 Schwade et al. Mar 2003 A1
20030059640 Marton et al. Mar 2003 A1
20030060871 Hill et al. Mar 2003 A1
20030060873 Gertner et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030064095 Martin et al. Apr 2003 A1
20030069631 Stoll Apr 2003 A1
20030074053 Palmaz et al. Apr 2003 A1
20030074075 Thomas et al. Apr 2003 A1
20030074081 Ayers Apr 2003 A1
20030077200 Craig et al. Apr 2003 A1
20030083614 Eisert May 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083731 Kramer et al. May 2003 A1
20030087024 Flanagan May 2003 A1
20030088307 Shulze et al. May 2003 A1
20030088312 Kopia et al. May 2003 A1
20030100865 Santini, Jr. et al. May 2003 A1
20030104028 Hossainy et al. Jun 2003 A1
20030105511 Welsh et al. Jun 2003 A1
20030108659 Bales et al. Jun 2003 A1
20030114917 Holloway et al. Jun 2003 A1
20030114921 Yoon Jun 2003 A1
20030118649 Gao et al. Jun 2003 A1
20030125803 Vallana et al. Jul 2003 A1
20030130206 Koziak et al. Jul 2003 A1
20030130718 Palmas et al. Jul 2003 A1
20030138645 Gleason et al. Jul 2003 A1
20030139799 Ley et al. Jul 2003 A1
20030144728 Scheuermann et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030153901 Herweck et al. Aug 2003 A1
20030153971 Chandresekaran Aug 2003 A1
20030158598 Ashton et al. Aug 2003 A1
20030167878 Al-Salim et al. Sep 2003 A1
20030170605 Long et al. Sep 2003 A1
20030181975 Ishii et al. Sep 2003 A1
20030185895 Lanphere et al. Oct 2003 A1
20030185964 Weber et al. Oct 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030195613 Curcio et al. Oct 2003 A1
20030203991 Schottman et al. Oct 2003 A1
20030204168 Bosma et al. Oct 2003 A1
20030208256 DiMatteo et al. Nov 2003 A1
20030211135 Greenhalgh et al. Nov 2003 A1
20030216803 Ledergerber Nov 2003 A1
20030216806 Togawa et al. Nov 2003 A1
20030219562 Rypacek et al. Nov 2003 A1
20030225450 Shulze et al. Dec 2003 A1
20030236323 Ratner et al. Dec 2003 A1
20030236514 Schwarz Dec 2003 A1
20040000540 Soboyejo et al. Jan 2004 A1
20040002755 Fischell et al. Jan 2004 A1
20040006382 Sohier Jan 2004 A1
20040013873 Wendorff et al. Jan 2004 A1
20040016651 Windler Jan 2004 A1
20040018296 Castro et al. Jan 2004 A1
20040019376 Alt Jan 2004 A1
20040022824 Li et al. Feb 2004 A1
20040026811 Murphy et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040029303 Hart et al. Feb 2004 A1
20040029706 Barrera et al. Feb 2004 A1
20040030218 Kocur et al. Feb 2004 A1
20040030377 Dubson et al. Feb 2004 A1
20040039438 Alt Feb 2004 A1
20040039441 Rowland et al. Feb 2004 A1
20040044397 Stinson Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052861 Hatcher et al. Mar 2004 A1
20040058858 Hu Mar 2004 A1
20040059290 Palasis Mar 2004 A1
20040059407 Escamilla et al. Mar 2004 A1
20040059409 Stenzel Mar 2004 A1
20040067301 Ding Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040073284 Bates et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040078071 Escamilla et al. Apr 2004 A1
20040086674 Holman May 2004 A1
20040088038 Dehnad et al. May 2004 A1
20040088041 Stanford May 2004 A1
20040092653 Ruberti et al. May 2004 A1
20040093071 Jang May 2004 A1
20040093076 White et al. May 2004 A1
20040098089 Weber May 2004 A1
20040098119 Wang May 2004 A1
20040102758 Davila et al. May 2004 A1
20040106984 Stinson Jun 2004 A1
20040106985 Jang Jun 2004 A1
20040106987 Palasis et al. Jun 2004 A1
20040106994 De Maeztus Martinez et al. Jun 2004 A1
20040111150 Berg et al. Jun 2004 A1
20040116999 Ledergerber Jun 2004 A1
20040117005 Gadde et al. Jun 2004 A1
20040117008 Wnendt et al. Jun 2004 A1
20040122504 Hogendijk Jun 2004 A1
20040126566 Axen et al. Jul 2004 A1
20040133270 Grandt Jul 2004 A1
20040134886 Wagner et al. Jul 2004 A1
20040142014 Litvack et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040143321 Litvack et al. Jul 2004 A1
20040148010 Rush Jul 2004 A1
20040148015 Lye et al. Jul 2004 A1
20040158308 Hogendijk et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040167612 Grignani et al. Aug 2004 A1
20040171978 Shalaby Sep 2004 A1
20040172124 Vallana et al. Sep 2004 A1
20040178523 Kim et al. Sep 2004 A1
20040181252 Boyle et al. Sep 2004 A1
20040181275 Noble et al. Sep 2004 A1
20040181276 Brown et al. Sep 2004 A1
20040185168 Weber et al. Sep 2004 A1
20040191293 Claude Sep 2004 A1
20040191404 Hossainy et al. Sep 2004 A1
20040202692 Shanley et al. Oct 2004 A1
20040204750 Dinh Oct 2004 A1
20040211362 Castro et al. Oct 2004 A1
20040215169 Li Oct 2004 A1
20040215313 Cheng Oct 2004 A1
20040219214 Gravett et al. Nov 2004 A1
20040220510 Koullick et al. Nov 2004 A1
20040220662 Dang et al. Nov 2004 A1
20040224001 Pacetti et al. Nov 2004 A1
20040225346 Mazumder et al. Nov 2004 A1
20040225347 Lang Nov 2004 A1
20040228905 Greenspan et al. Nov 2004 A1
20040230176 Shanahan et al. Nov 2004 A1
20040230290 Weber et al. Nov 2004 A1
20040230293 Yip et al. Nov 2004 A1
20040234737 Pacetti Nov 2004 A1
20040234748 Stenzel Nov 2004 A1
20040236399 Sundar Nov 2004 A1
20040236415 Thomas Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040237282 Hines Dec 2004 A1
20040242106 Rabasco et al. Dec 2004 A1
20040243217 Andersen et al. Dec 2004 A1
20040243241 Istephanous Dec 2004 A1
20040247671 Prescott et al. Dec 2004 A1
20040249444 Reiss Dec 2004 A1
20040249449 Shanley et al. Dec 2004 A1
20040254635 Shanley et al. Dec 2004 A1
20040261702 Grabowy et al. Dec 2004 A1
20050002865 Klaveness et al. Jan 2005 A1
20050004663 Llanos et al. Jan 2005 A1
20050010275 Sahatjian et al. Jan 2005 A1
20050015142 Austin et al. Jan 2005 A1
20050019265 Hammer et al. Jan 2005 A1
20050019371 Anderson et al. Jan 2005 A1
20050020614 Prescott et al. Jan 2005 A1
20050021127 Kawula Jan 2005 A1
20050021128 Nakahama et al. Jan 2005 A1
20050027350 Momma et al. Feb 2005 A1
20050033411 Wu et al. Feb 2005 A1
20050033412 Wu et al. Feb 2005 A1
20050033417 Borges et al. Feb 2005 A1
20050037047 Song Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050042288 Koblish et al. Feb 2005 A1
20050055080 Istephanous et al. Mar 2005 A1
20050055085 Rivron et al. Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050060021 O'Brien et al. Mar 2005 A1
20050069630 Fox et al. Mar 2005 A1
20050070989 Lye et al. Mar 2005 A1
20050070990 Stinson Mar 2005 A1
20050070996 Dinh et al. Mar 2005 A1
20050072544 Palmaz et al. Apr 2005 A1
20050074479 Weber et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050077305 Guevara Apr 2005 A1
20050079199 Heruth et al. Apr 2005 A1
20050079201 Rathenow et al. Apr 2005 A1
20050079356 Rathenow et al. Apr 2005 A1
20050087520 Wang et al. Apr 2005 A1
20050092615 Birdsall et al. May 2005 A1
20050096731 Looi et al. May 2005 A1
20050100577 Parker et al. May 2005 A1
20050100609 Claude May 2005 A1
20050102025 Laroche et al. May 2005 A1
20050106212 Gertner et al. May 2005 A1
20050107869 Sirhan et al. May 2005 A1
20050107870 Wang et al. May 2005 A1
20050110214 Shank et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113936 Brustad et al. May 2005 A1
20050118229 Boiarski Jun 2005 A1
20050119723 Peacock Jun 2005 A1
20050129727 Weber et al. Jun 2005 A1
20050131509 Atanasoska et al. Jun 2005 A1
20050131521 Marton Jun 2005 A1
20050131522 Stinson et al. Jun 2005 A1
20050136090 Falotico et al. Jun 2005 A1
20050137677 Rush Jun 2005 A1
20050137679 Changelian et al. Jun 2005 A1
20050137684 Changelian et al. Jun 2005 A1
20050149102 Radisch et al. Jul 2005 A1
20050149170 Tassel et al. Jul 2005 A1
20050159804 Lad et al. Jul 2005 A1
20050159805 Weber et al. Jul 2005 A1
20050160600 Bien et al. Jul 2005 A1
20050163954 Shaw Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165468 Marton Jul 2005 A1
20050165476 Furst et al. Jul 2005 A1
20050171595 Feldman et al. Aug 2005 A1
20050180919 Tedeschi Aug 2005 A1
20050182478 Holman et al. Aug 2005 A1
20050186250 Gertner et al. Aug 2005 A1
20050187608 O'Hara Aug 2005 A1
20050192657 Colen et al. Sep 2005 A1
20050192664 Eisert Sep 2005 A1
20050196424 Chappa Sep 2005 A1
20050196518 Stenzel Sep 2005 A1
20050197687 Molaei et al. Sep 2005 A1
20050197689 Molaei Sep 2005 A1
20050203606 Vancamp Sep 2005 A1
20050208098 Castro et al. Sep 2005 A1
20050208100 Weber et al. Sep 2005 A1
20050209681 Curcio et al. Sep 2005 A1
20050211680 Li et al. Sep 2005 A1
20050214951 Nahm et al. Sep 2005 A1
20050216074 Sahatjian et al. Sep 2005 A1
20050216075 Wang et al. Sep 2005 A1
20050220853 Dao et al. Oct 2005 A1
20050221072 Dubrow et al. Oct 2005 A1
20050228477 Grainger et al. Oct 2005 A1
20050228491 Snyder et al. Oct 2005 A1
20050232968 Palmaz et al. Oct 2005 A1
20050233965 Schwartz et al. Oct 2005 A1
20050244459 DeWitt et al. Nov 2005 A1
20050251245 Sieradzki et al. Nov 2005 A1
20050251249 Sahatjian et al. Nov 2005 A1
20050255707 Hart et al. Nov 2005 A1
20050261760 Weber Nov 2005 A1
20050266039 Weber Dec 2005 A1
20050266040 Gerberding Dec 2005 A1
20050267561 Jones et al. Dec 2005 A1
20050271703 Anderson et al. Dec 2005 A1
20050271706 Anderson et al. Dec 2005 A1
20050276837 Anderson et al. Dec 2005 A1
20050278016 Welsh et al. Dec 2005 A1
20050278021 Bates et al. Dec 2005 A1
20050281863 Anderson et al. Dec 2005 A1
20050285073 Singh et al. Dec 2005 A1
20050287188 Anderson et al. Dec 2005 A1
20060013850 Domb Jan 2006 A1
20060015175 Palmaz et al. Jan 2006 A1
20060015361 Sattler et al. Jan 2006 A1
20060020742 Au et al. Jan 2006 A1
20060025848 Weber et al. Feb 2006 A1
20060034884 Stenzel Feb 2006 A1
20060035026 Atanassoska et al. Feb 2006 A1
20060038027 O'Connor et al. Feb 2006 A1
20060051397 Maier et al. Mar 2006 A1
20060052744 Weber Mar 2006 A1
20060052863 Harder et al. Mar 2006 A1
20060052864 Harder et al. Mar 2006 A1
20060062820 Gertner et al. Mar 2006 A1
20060069427 Savage et al. Mar 2006 A1
20060075044 Fox et al. Apr 2006 A1
20060075092 Kidokoro Apr 2006 A1
20060079863 Burgmeier et al. Apr 2006 A1
20060085062 Lee et al. Apr 2006 A1
20060085065 Krause et al. Apr 2006 A1
20060088561 Eini et al. Apr 2006 A1
20060088566 Parsonage et al. Apr 2006 A1
20060088567 Warner et al. Apr 2006 A1
20060088666 Kobrin et al. Apr 2006 A1
20060093643 Stenzel May 2006 A1
20060093646 Cima et al. May 2006 A1
20060095123 Flanagan May 2006 A1
20060100696 Atanasoska et al. May 2006 A1
20060115512 Peacock et al. Jun 2006 A1
20060121080 Lye et al. Jun 2006 A1
20060122694 Stinson et al. Jun 2006 A1
20060125144 Weber et al. Jun 2006 A1
20060127442 Helmus Jun 2006 A1
20060127443 Helmus Jun 2006 A1
20060129215 Helmus et al. Jun 2006 A1
20060129225 Kopia et al. Jun 2006 A1
20060136048 Pacetti et al. Jun 2006 A1
20060140867 Helfer et al. Jun 2006 A1
20060141156 Viel et al. Jun 2006 A1
20060142853 Wang et al. Jun 2006 A1
20060149365 Fifer et al. Jul 2006 A1
20060153729 Stinson et al. Jul 2006 A1
20060155361 Schomig et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060171985 Richard et al. Aug 2006 A1
20060171990 Asgari Aug 2006 A1
20060178727 Richter Aug 2006 A1
20060184235 Rivron et al. Aug 2006 A1
20060193886 Owens et al. Aug 2006 A1
20060193887 Owens et al. Aug 2006 A1
20060193888 Lye et al. Aug 2006 A1
20060193889 Spradlin et al. Aug 2006 A1
20060193890 Owens et al. Aug 2006 A1
20060199876 Troczynski et al. Sep 2006 A1
20060200229 Burgermeister et al. Sep 2006 A1
20060200231 O'Brien et al. Sep 2006 A1
20060210595 Singhvi et al. Sep 2006 A1
20060212109 Sirhan et al. Sep 2006 A1
20060222679 Shanley et al. Oct 2006 A1
20060222844 Stinson Oct 2006 A1
20060224234 Jayaraman Oct 2006 A1
20060229711 Yan et al. Oct 2006 A1
20060229713 Shanley et al. Oct 2006 A1
20060229715 Istephanous et al. Oct 2006 A1
20060230476 Atanasoska et al. Oct 2006 A1
20060233941 Olson Oct 2006 A1
20060251701 Lynn et al. Nov 2006 A1
20060263512 Glocker Nov 2006 A1
20060263515 Rieck et al. Nov 2006 A1
20060264138 Sowinski et al. Nov 2006 A1
20060271169 Lye et al. Nov 2006 A1
20060275554 Zhao et al. Dec 2006 A1
20060276877 Owens et al. Dec 2006 A1
20060276878 Owens et al. Dec 2006 A1
20060276879 Lye et al. Dec 2006 A1
20060276884 Lye et al. Dec 2006 A1
20060276885 Lye et al. Dec 2006 A1
20060276910 Weber Dec 2006 A1
20060280770 Hossainy et al. Dec 2006 A1
20060292388 Palumbo et al. Dec 2006 A1
20070003589 Astafieva et al. Jan 2007 A1
20070003817 Umeda et al. Jan 2007 A1
20070032858 Santos et al. Feb 2007 A1
20070032864 Furst et al. Feb 2007 A1
20070036905 Kramer Feb 2007 A1
20070038176 Weber et al. Feb 2007 A1
20070038289 Nishide et al. Feb 2007 A1
20070048452 Feng et al. Mar 2007 A1
20070052497 Tada Mar 2007 A1
20070055349 Santos et al. Mar 2007 A1
20070055354 Santos et al. Mar 2007 A1
20070059435 Santos et al. Mar 2007 A1
20070065418 Vallana et al. Mar 2007 A1
20070071789 Pantelidis et al. Mar 2007 A1
20070072978 Zoromski et al. Mar 2007 A1
20070073385 Schaeffer et al. Mar 2007 A1
20070073390 Lee Mar 2007 A1
20070106347 Lin May 2007 A1
20070110888 Radhakrishnan et al. May 2007 A1
20070112421 O'Brien May 2007 A1
20070123973 Roth et al. May 2007 A1
20070128245 Rosenberg et al. Jun 2007 A1
20070129789 Cottone et al. Jun 2007 A1
20070134288 Parsonage et al. Jun 2007 A1
20070135908 Zhao Jun 2007 A1
20070148251 Hossainy et al. Jun 2007 A1
20070151093 Curcio et al. Jul 2007 A1
20070154513 Atanasoska et al. Jul 2007 A1
20070156231 Weber Jul 2007 A1
20070173923 Savage et al. Jul 2007 A1
20070181433 Birdsall et al. Aug 2007 A1
20070190104 Kamath et al. Aug 2007 A1
20070191923 Weber et al. Aug 2007 A1
20070191928 Rolando et al. Aug 2007 A1
20070191931 Weber et al. Aug 2007 A1
20070191943 Shrivastava et al. Aug 2007 A1
20070198081 Castro et al. Aug 2007 A1
20070202466 Schwarz et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208412 Elmaleh Sep 2007 A1
20070212547 Fredrickson et al. Sep 2007 A1
20070213827 Arramon Sep 2007 A1
20070219626 Rolando et al. Sep 2007 A1
20070219642 Richter Sep 2007 A1
20070224116 Chandrasekaran et al. Sep 2007 A1
20070224224 Cordeira Da Silva et al. Sep 2007 A1
20070224235 Tenney et al. Sep 2007 A1
20070224244 Weber et al. Sep 2007 A1
20070244569 Weber et al. Oct 2007 A1
20070254091 Fredrickson et al. Nov 2007 A1
20070255392 Johnson Nov 2007 A1
20070264303 Atanasoska et al. Nov 2007 A1
20070269480 Richard et al. Nov 2007 A1
20070299509 Ding Dec 2007 A1
20080003251 Zhou Jan 2008 A1
20080004691 Weber et al. Jan 2008 A1
20080008654 Clarke et al. Jan 2008 A1
20080038146 Wachter et al. Feb 2008 A1
20080050413 Horvers et al. Feb 2008 A1
20080050415 Atanasoska et al. Feb 2008 A1
20080051881 Feng et al. Feb 2008 A1
20080057103 Roorda Mar 2008 A1
20080058921 Lindquist Mar 2008 A1
20080069854 Xiao et al. Mar 2008 A1
20080071348 Boismier et al. Mar 2008 A1
20080071349 Atanasoska et al. Mar 2008 A1
20080071350 Stinson Mar 2008 A1
20080071351 Flanagan et al. Mar 2008 A1
20080071352 Weber et al. Mar 2008 A1
20080071353 Weber et al. Mar 2008 A1
20080071355 Weber et al. Mar 2008 A1
20080071358 Weber et al. Mar 2008 A1
20080086198 Owens et al. Apr 2008 A1
20080086199 Dave et al. Apr 2008 A1
20080086201 Weber et al. Apr 2008 A1
20080097577 Atanasoska et al. Apr 2008 A1
20080107890 Bureau et al. May 2008 A1
20080124373 Xiao et al. May 2008 A1
20080140186 Grignani et al. Jun 2008 A1
20080145400 Weber et al. Jun 2008 A1
20080147177 Scheuermann et al. Jun 2008 A1
20080152929 Zhao Jun 2008 A1
20080160259 Nielson et al. Jul 2008 A1
20080171929 Katims Jul 2008 A1
20080188836 Weber et al. Aug 2008 A1
20080241218 McMorrow et al. Oct 2008 A1
20080243231 Flanagan et al. Oct 2008 A1
20080243240 Doty et al. Oct 2008 A1
20080249600 Atanasoska et al. Oct 2008 A1
20080249615 Weber Oct 2008 A1
20080255508 Wang Oct 2008 A1
20080255657 Gregorich et al. Oct 2008 A1
20080262607 Fricke Oct 2008 A1
20080275543 Lenz et al. Nov 2008 A1
20080288048 Rolando et al. Nov 2008 A1
20080290467 Shue et al. Nov 2008 A1
20080294236 Anand et al. Nov 2008 A1
20080294246 Scheuermann et al. Nov 2008 A1
20080306584 Kramer-Brown Dec 2008 A1
20090012603 Xu et al. Jan 2009 A1
20090018639 Kuehling Jan 2009 A1
20090018642 Benco Jan 2009 A1
20090018644 Weber et al. Jan 2009 A1
20090018647 Benco et al. Jan 2009 A1
20090028785 Clarke Jan 2009 A1
20090030504 Weber et al. Jan 2009 A1
20090076588 Weber Mar 2009 A1
20090076595 Lindquist et al. Mar 2009 A1
20090081450 Ascher et al. Mar 2009 A1
20090112310 Zhang Apr 2009 A1
20090118809 Scheuermann et al. May 2009 A1
20090118812 Kokate et al. May 2009 A1
20090118813 Scheuermann et al. May 2009 A1
20090118814 Schoenle et al. May 2009 A1
20090118815 Arcand et al. May 2009 A1
20090118818 Foss et al. May 2009 A1
20090118820 Gregorich et al. May 2009 A1
20090118821 Scheuermann et al. May 2009 A1
20090118822 Holman et al. May 2009 A1
20090118823 Atanasoska et al. May 2009 A1
20090123517 Flanagan et al. May 2009 A1
20090123521 Weber et al. May 2009 A1
20090138077 Weber et al. May 2009 A1
20090149942 Edelman et al. Jun 2009 A1
20090157165 Miller et al. Jun 2009 A1
20090157166 Singhal et al. Jun 2009 A1
20090157172 Kokate et al. Jun 2009 A1
20090177273 Piveteau et al. Jul 2009 A1
20090186068 Miller et al. Jul 2009 A1
20090192593 Meyer et al. Jul 2009 A1
20090202610 Wilson Aug 2009 A1
20090208428 Hill et al. Aug 2009 A1
20090220612 Perera Sep 2009 A1
20090259300 Dorogy, Jr. et al. Oct 2009 A1
20090264975 Flanagan et al. Oct 2009 A1
20090281613 Atanasoska et al. Nov 2009 A1
20090287301 Weber Nov 2009 A1
20090306765 Weber Dec 2009 A1
20090317766 Heidenau et al. Dec 2009 A1
20090319032 Weber et al. Dec 2009 A1
20100003904 Duescher Jan 2010 A1
20100008970 O'Brien et al. Jan 2010 A1
20100028403 Scheuermann et al. Feb 2010 A1
20100030326 Radhakrishnan et al. Feb 2010 A1
20100042206 Yadav et al. Feb 2010 A1
20100057197 Weber et al. Mar 2010 A1
20100070022 Kuehling Mar 2010 A1
20100070026 Ito et al. Mar 2010 A1
20100130346 Laine et al. May 2010 A1
20100131050 Zhao May 2010 A1
20110034752 Kessler et al. Feb 2011 A1
Foreign Referenced Citations (522)
Number Date Country
232704 Mar 2003 AT
288234 Feb 2005 AT
4825696 Oct 1996 AU
5588896 Dec 1996 AU
5266698 Jun 1998 AU
6663298 Sep 1998 AU
716005 Feb 2000 AU
5686499 Mar 2000 AU
2587100 May 2000 AU
2153600 Jun 2000 AU
1616201 May 2001 AU
737252 Aug 2001 AU
2317701 Aug 2001 AU
5215401 Sep 2001 AU
5890401 Dec 2001 AU
3597401 Jun 2002 AU
2002353068 Mar 2003 AU
2002365875 Jun 2003 AU
2003220153 Sep 2003 AU
2003250913 Jan 2004 AU
770395 Feb 2004 AU
2003249017 Feb 2004 AU
2003256499 Feb 2004 AU
771367 Mar 2004 AU
2003271633 Apr 2004 AU
2003272710 Apr 2004 AU
2003285195 Jun 2004 AU
2003287633 Jun 2004 AU
2003290675 Jun 2004 AU
2003290676 Jun 2004 AU
2003291470 Jun 2004 AU
2003295419 Jun 2004 AU
2003295535 Jun 2004 AU
2003295763 Jun 2004 AU
2004202073 Jun 2004 AU
2003300323 Jul 2004 AU
2004213021 Sep 2004 AU
2003293557 Jan 2005 AU
780539 Mar 2005 AU
8701135 Jan 1988 BR
0207321 Feb 2004 BR
0016957 Jun 2004 BR
0316065 Sep 2005 BR
0316102 Sep 2005 BR
1283505 Apr 1991 CA
2172187 Oct 1996 CA
2178541 Dec 1996 CA
2234787 Oct 1998 CA
2235031 Oct 1998 CA
2238837 Feb 1999 CA
2340652 Mar 2000 CA
2392006 May 2001 CA
2337565 Aug 2001 CA
2409862 Nov 2001 CA
2353197 Jan 2002 CA
2429356 Aug 2002 CA
2435306 Aug 2002 CA
2436241 Aug 2002 CA
2438095 Aug 2002 CA
2460334 Mar 2003 CA
2425665 Apr 2003 CA
2465704 Apr 2003 CA
2464906 May 2003 CA
2468677 Jun 2003 CA
2469744 Jun 2003 CA
2484383 Jan 2004 CA
2497602 Apr 2004 CA
2499976 Apr 2004 CA
2503625 May 2004 CA
2504524 May 2004 CA
2505576 May 2004 CA
2513721 May 2004 CA
2505080 Jun 2004 CA
2506622 Jun 2004 CA
2455670 Jul 2004 CA
2508247 Jul 2004 CA
2458172 Aug 2004 CA
2467797 Nov 2004 CA
2258898 Jan 2005 CA
2308177 Jan 2005 CA
2475968 Jan 2005 CA
2489668 Jun 2005 CA
2490170 Jun 2005 CA
2474367 Jan 2006 CA
2374090 May 2007 CA
2282748 Nov 2007 CA
2336650 Jan 2008 CA
2304325 May 2008 CA
1430491 Jul 2003 CN
1547490 Nov 2004 CN
1575154 Feb 2005 CN
1585627 Feb 2005 CN
1669537 Sep 2005 CN
3516411 Nov 1986 DE
3608158 Sep 1987 DE
19916086 Oct 1999 DE
19855421 May 2000 DE
19916315 Sep 2000 DE
9422438 Apr 2002 DE
1096902 May 2002 DE
10064596 Jun 2002 DE
10107339 Sep 2002 DE
69712063 Oct 2002 DE
10127011 Dec 2002 DE
10150995 Apr 2003 DE
69807634 May 2003 DE
69431457 Jun 2003 DE
10200387 Aug 2003 DE
69719161 Oct 2003 DE
02704283 Apr 2004 DE
60106962 Apr 2005 DE
60018318 Dec 2005 DE
69732439 Jan 2006 DE
69828798 Jan 2006 DE
102004044738 Mar 2006 DE
69830605 May 2006 DE
102005010100 Sep 2006 DE
602005001867 May 2008 DE
69829015 Mar 2009 DE
127987 Sep 1987 DK
914092 Aug 2002 DK
0222853 May 1987 EP
0129147 Jan 1990 EP
0734721 Oct 1996 EP
0650604 Sep 1998 EP
0865762 Sep 1998 EP
0875217 Nov 1998 EP
0633840 Nov 1999 EP
0953320 Nov 1999 EP
0971644 Jan 2000 EP
0982041 Mar 2000 EP
1105169 Jun 2001 EP
1124594 Aug 2001 EP
1127582 Aug 2001 EP
1131127 Sep 2001 EP
1132058 Sep 2001 EP
1150738 Nov 2001 EP
1172074 Jan 2002 EP
1181943 Feb 2002 EP
0914092 Apr 2002 EP
1216665 Jun 2002 EP
0747069 Sep 2002 EP
0920342 Sep 2002 EP
1242130 Sep 2002 EP
0623354 Oct 2002 EP
0806211 Oct 2002 EP
1275352 Jan 2003 EP
0850604 Feb 2003 EP
1280512 Feb 2003 EP
1280568 Feb 2003 EP
1280569 Feb 2003 EP
1294309 Mar 2003 EP
0824900 Apr 2003 EP
1308179 May 2003 EP
1310242 May 2003 EP
1314405 May 2003 EP
1316323 Jun 2003 EP
1339448 Sep 2003 EP
1347791 Oct 2003 EP
1347792 Oct 2003 EP
1348402 Oct 2003 EP
1348405 Oct 2003 EP
1359864 Nov 2003 EP
1365710 Dec 2003 EP
1379290 Jan 2004 EP
0902666 Feb 2004 EP
1460972 Feb 2004 EP
0815806 Mar 2004 EP
1400219 Mar 2004 EP
0950386 Apr 2004 EP
1461165 Apr 2004 EP
1416884 May 2004 EP
1424957 Jun 2004 EP
1429816 Jun 2004 EP
1448116 Aug 2004 EP
1448118 Aug 2004 EP
1449545 Aug 2004 EP
1449546 Aug 2004 EP
1254674 Sep 2004 EP
1453557 Sep 2004 EP
1457214 Sep 2004 EP
0975340 Oct 2004 EP
1319416 Nov 2004 EP
1476882 Nov 2004 EP
1479402 Nov 2004 EP
1482867 Dec 2004 EP
1011529 Jan 2005 EP
0875218 Feb 2005 EP
1181903 Feb 2005 EP
1504775 Feb 2005 EP
1042997 Mar 2005 EP
1754684 Mar 2005 EP
1520594 Apr 2005 EP
1521603 Apr 2005 EP
1028672 Jun 2005 EP
1539041 Jun 2005 EP
1543798 Jun 2005 EP
1550472 Jun 2005 EP
1328213 Jul 2005 EP
1551569 Jul 2005 EP
1554992 Jul 2005 EP
1560613 Aug 2005 EP
1562519 Aug 2005 EP
1562654 Aug 2005 EP
1570808 Sep 2005 EP
1575631 Sep 2005 EP
1575638 Sep 2005 EP
1575642 Sep 2005 EP
0900059 Oct 2005 EP
1581147 Oct 2005 EP
1586286 Oct 2005 EP
1254673 Nov 2005 EP
1261297 Nov 2005 EP
0927006 Jan 2006 EP
1621603 Feb 2006 EP
1218665 May 2006 EP
1222941 May 2006 EP
1359867 May 2006 EP
1656961 May 2006 EP
1277449 Jun 2006 EP
0836839 Jul 2006 EP
1684817 Aug 2006 EP
1687042 Aug 2006 EP
0907339 Nov 2006 EP
1359865 Nov 2006 EP
1214108 Jan 2007 EP
1416885 Jan 2007 EP
1441667 Jan 2007 EP
1192957 Feb 2007 EP
1236447 Feb 2007 EP
1764116 Mar 2007 EP
1185215 Apr 2007 EP
1442757 Apr 2007 EP
1786363 May 2007 EP
1787602 May 2007 EP
1788973 May 2007 EP
1796754 Jun 2007 EP
1330273 Jul 2007 EP
0900060 Aug 2007 EP
1355588 Aug 2007 EP
1355589 Aug 2007 EP
1561436 Aug 2007 EP
1863408 Dec 2007 EP
1071490 Jan 2008 EP
1096902 Jan 2008 EP
0895762 Feb 2008 EP
0916317 Feb 2008 EP
1891988 Feb 2008 EP
1402849 Apr 2008 EP
1466634 Jul 2008 EP
1572032 Jul 2008 EP
1527754 Aug 2008 EP
1968662 Sep 2008 EP
1980223 Oct 2008 EP
1988943 Nov 2008 EP
1490125 Jan 2009 EP
1829626 Feb 2009 EP
1229901 Mar 2009 EP
1128785 Apr 2009 EP
2051750 Apr 2009 EP
1427353 May 2009 EP
2169012 Jul 2002 ES
2867059 Sep 2005 FR
2397233 Jul 2004 GB
7002180 Jan 1995 JP
3673973 Feb 1996 JP
3249383 Oct 1996 JP
3614652 Nov 1998 JP
10295824 Nov 1998 JP
11188109 Jul 1999 JP
200312721 Nov 2000 JP
2001098308 Apr 2001 JP
2001522640 Nov 2001 JP
2002065862 Mar 2002 JP
2002519139 Jul 2002 JP
2002523147 Jul 2002 JP
2003024449 Jan 2003 JP
2003521274 Jul 2003 JP
2003290361 Oct 2003 JP
2003533333 Nov 2003 JP
2004500925 Jan 2004 JP
2004522559 Jul 2004 JP
2004223264 Aug 2004 JP
2004267750 Sep 2004 JP
2004275748 Oct 2004 JP
2004305753 Nov 2004 JP
2005501654 Jan 2005 JP
2005502426 Jan 2005 JP
2005040584 Feb 2005 JP
2005503184 Feb 2005 JP
2005503240 Feb 2005 JP
2005507285 Mar 2005 JP
2005511139 Apr 2005 JP
2005511242 Apr 2005 JP
2005131364 May 2005 JP
2005152526 Jun 2005 JP
2005152527 Jun 2005 JP
2005199054 Jul 2005 JP
2005199058 Jul 2005 JP
2008516726 May 2008 JP
20020066996 Aug 2002 KR
20040066409 Jul 2004 KR
20050117361 Dec 2005 KR
331388 Jan 2000 NZ
393044 Dec 1973 SU
WO8606617 Nov 1986 WO
WO9306792 Apr 1993 WO
WO9307934 Apr 1993 WO
WO9316656 Sep 1993 WO
WO9416646 Aug 1994 WO
WO9503083 Feb 1995 WO
WO9604952 Feb 1996 WO
WO9609086 Mar 1996 WO
WO9632907 Oct 1996 WO
WO9741916 Nov 1997 WO
WO9817331 Apr 1998 WO
WO9818408 May 1998 WO
WO9823228 Jun 1998 WO
WO9836784 Aug 1998 WO
WO9838946 Sep 1998 WO
WO9838947 Sep 1998 WO
WO9840033 Sep 1998 WO
WO9857680 Dec 1998 WO
WO9916386 Apr 1999 WO
WO9923977 May 1999 WO
WO9942631 Aug 1999 WO
WO9949928 Oct 1999 WO
WO9952471 Oct 1999 WO
WO9962432 Dec 1999 WO
WO0001322 Jan 2000 WO
WO0010622 Mar 2000 WO
WO0025841 May 2000 WO
WO0027303 May 2000 WO
WO0030710 Jun 2000 WO
WO0048660 Aug 2000 WO
WO0064506 Nov 2000 WO
WO0135928 May 2001 WO
WO0141827 Jun 2001 WO
WO0145862 Jun 2001 WO
WO0145763 Jul 2001 WO
WO0166036 Sep 2001 WO
WO0180920 Nov 2001 WO
WO0187263 Nov 2001 WO
WO0187342 Nov 2001 WO
WO0187374 Nov 2001 WO
WO0189417 Nov 2001 WO
WO0189420 Nov 2001 WO
WO0226162 Apr 2002 WO
WO0230487 Apr 2002 WO
WO0238827 May 2002 WO
WO0242521 May 2002 WO
WO0243796 Jun 2002 WO
WO0247581 Jun 2002 WO
WO02058753 Aug 2002 WO
WO02060349 Aug 2002 WO
WO02060350 Aug 2002 WO
WO02060506 Aug 2002 WO
WO02064019 Aug 2002 WO
WO02065947 Aug 2002 WO
WO02069848 Sep 2002 WO
WO02074431 Sep 2002 WO
WO02076525 Oct 2002 WO
WO02078668 Oct 2002 WO
WO02083039 Oct 2002 WO
WO02085253 Oct 2002 WO
WO02085424 Oct 2002 WO
WO02085532 Oct 2002 WO
WO02096389 Dec 2002 WO
WO03009779 Feb 2003 WO
WO03022178 Mar 2003 WO
WO03024357 Mar 2003 WO
WO03026713 Apr 2003 WO
WO03035131 May 2003 WO
WO03037220 May 2003 WO
WO03037221 May 2003 WO
WO03037223 May 2003 WO
WO03037398 May 2003 WO
WO03039407 May 2003 WO
WO03045582 Jun 2003 WO
WO03047463 Jun 2003 WO
WO03051233 Jun 2003 WO
WO03055414 Jul 2003 WO
WO03061755 Jul 2003 WO
WO03072287 Sep 2003 WO
WO03077802 Sep 2003 WO
WO03083181 Oct 2003 WO
WO03094774 Nov 2003 WO
WO2004004602 Jan 2004 WO
WO2004004603 Jan 2004 WO
WO2004006491 Jan 2004 WO
WO2004006807 Jan 2004 WO
WO2004006976 Jan 2004 WO
WO2004006983 Jan 2004 WO
WO2004010900 Feb 2004 WO
WO2004014554 Feb 2004 WO
WO2004026177 Apr 2004 WO
WO2004028347 Apr 2004 WO
WO2004028587 Apr 2004 WO
WO2004043292 May 2004 WO
WO2004043298 May 2004 WO
WO2004043300 May 2004 WO
WO2004043509 May 2004 WO
WO2004043511 May 2004 WO
WO2004045464 Jun 2004 WO
WO2004045668 Jun 2004 WO
WO2004058100 Jul 2004 WO
WO2004060428 Jul 2004 WO
WO2004064911 Aug 2004 WO
WO2004071548 Aug 2004 WO
WO2004072104 Aug 2004 WO
WO2004073768 Sep 2004 WO
WO2004080579 Sep 2004 WO
WO2004087251 Oct 2004 WO
WO2004096176 Nov 2004 WO
WO2004105639 Dec 2004 WO
WO2004108021 Dec 2004 WO
WO2004108186 Dec 2004 WO
WO2004108346 Dec 2004 WO
WO2004110302 Dec 2004 WO
WO2005004754 Jan 2005 WO
WO2005006325 Jan 2005 WO
WO2005011529 Feb 2005 WO
WO2005014892 Feb 2005 WO
WO2005027794 Mar 2005 WO
WO2005032456 Apr 2005 WO
WO2005034806 Apr 2005 WO
WO2005042049 May 2005 WO
WO2005044361 May 2005 WO
WO2005049520 Jun 2005 WO
WO2005051450 Jun 2005 WO
WO2005053766 Jun 2005 WO
WO2005063318 Jul 2005 WO
2006020742 Aug 2005 WO
WO2005072437 Aug 2005 WO
WO2005082277 Sep 2005 WO
WO2005082283 Sep 2005 WO
WO2005086733 Sep 2005 WO
WO2005089825 Sep 2005 WO
WO2005091834 Oct 2005 WO
WO2005099621 Oct 2005 WO
WO2005099626 Oct 2005 WO
WO2005110285 Nov 2005 WO
WO2005115276 Dec 2005 WO
WO2005115496 Dec 2005 WO
WO2005117752 Dec 2005 WO
2006020742 Feb 2006 WO
WO2006014969 Feb 2006 WO
WO2006015161 Feb 2006 WO
WO2006020742 Feb 2006 WO
WO2006029364 Mar 2006 WO
WO2006029708 Mar 2006 WO
WO2006036801 Apr 2006 WO
WO2006055237 May 2006 WO
WO2006061598 Jun 2006 WO
WO2006063157 Jun 2006 WO
WO2006063158 Jun 2006 WO
WO2008063539 Jun 2006 WO
WO2006074549 Jul 2006 WO
WO2006083418 Aug 2006 WO
WO2006104644 Oct 2006 WO
WO2006104976 Oct 2006 WO
WO2006105256 Oct 2006 WO
WO2006107677 Oct 2006 WO
WO2006116752 Nov 2006 WO
WO2006124365 Nov 2006 WO
WO2007016961 Feb 2007 WO
WO2007034167 Mar 2007 WO
WO2007070666 Jun 2007 WO
WO2007095167 Aug 2007 WO
WO2007124137 Nov 2007 WO
WO2007126768 Nov 2007 WO
WO2007130786 Nov 2007 WO
WO2007133520 Nov 2007 WO
WO2007143433 Dec 2007 WO
WO2007145961 Dec 2007 WO
WO2007147246 Dec 2007 WO
WO2008002586 Jan 2008 WO
WO2008002778 Jan 2008 WO
WO2008024149 Feb 2008 WO
WO2008024477 Feb 2008 WO
WO2008024669 Feb 2008 WO
WO2008033711 Mar 2008 WO
WO2008034048 Mar 2008 WO
WO2008036549 Mar 2008 WO
WO2008039319 Apr 2008 WO
WO2008045184 Apr 2008 WO
WO2008057991 May 2008 WO
WO2008061017 May 2008 WO
WO2008082698 Jul 2008 WO
WO2008106223 Sep 2008 WO
WO2008108987 Sep 2008 WO
WO2008124513 Oct 2008 WO
WO2008124519 Oct 2008 WO
WO2008134493 Nov 2008 WO
WO2008140482 Nov 2008 WO
WO2008147848 Dec 2008 WO
WO2008147853 Dec 2008 WO
WO2009009627 Jan 2009 WO
WO2009009628 Jan 2009 WO
WO2009012353 Jan 2009 WO
WO2009014692 Jan 2009 WO
WO2009014696 Jan 2009 WO
WO2009020520 Feb 2009 WO
WO2009059081 May 2009 WO
WO2009059085 May 2009 WO
WO2009059086 May 2009 WO
WO2009059098 May 2009 WO
WO2009059129 May 2009 WO
WO2009059141 May 2009 WO
WO2009059146 May 2009 WO
WO2009059165 May 2009 WO
WO2009059166 May 2009 WO
WO2009059180 May 2009 WO
WO2009059196 May 2009 WO
WO2009089382 Jul 2009 WO
WO2009091384 Jul 2009 WO
WO2009094270 Jul 2009 WO
WO2009126766 Oct 2009 WO
WO2009135008 Nov 2009 WO
WO2009137786 Nov 2009 WO
WO2010030873 Mar 2010 WO
9710342 Jun 1998 ZA
Related Publications (1)
Number Date Country
20070224116 A1 Sep 2007 US