Medical devices having activated surfaces

Information

  • Patent Grant
  • 10167371
  • Patent Number
    10,167,371
  • Date Filed
    Thursday, November 3, 2016
    8 years ago
  • Date Issued
    Tuesday, January 1, 2019
    6 years ago
Abstract
Implantable biocompatible polymeric medical devices include a substrate with an acid or base-modified surface which is subsequently modified to include click reactive members.
Description
BACKGROUND

Technical Field


The present disclosure relates to surface-activated polymers and to a methods for preparation thereof. Medical devices made from or containing such surface-activated polymers are also described herein.


Related Art


Biocompatible and biodegradable materials have been used for the manufacture of prosthetic implants, suture threads, and the like. A relative advantage of these materials is that of eliminating the need for a second surgical intervention to remove the implant. The gradual biodegradability of such materials favors regeneration of the pre-existing tissues. There has been recent interest in using such devices for delivery of bioactive agents.


It would be advantageous to provide reactive functional groups on the surface of such biodegradable medical devices for a variety of purposes.


SUMMARY

Implantable biocompatible polymeric medical devices in accordance with the present disclosure include a substrate with an acid or base-modified surface which is subsequently functionalized to include click reactive members. The substrate of the medical devices described herein may be made from any biocompatible polymer and can be part of any medical device of being implanted at a target location. Acid or base treatment of the substrate may result in chemical modification of the material from which the substrate is made thereby facilitating functionalization of the surface or attachment of a linker compound which can be functionalized with click reactive members.







DETAILED DESCRIPTION OF THE EMBODIMENTS

Implantable biocompatible polymeric medical devices in accordance with the present disclosure include a substrate with an acid or base modified surface which is subsequently functionalized to include click reactive members.


The Polymeric Substrate


The substrate of the medical devices described herein may be made from any biocompatible polymer. The biocompatible polymer may be a homopolymer or a copolymer, including random copolymer, block copolymer, or graft copolymer. The biocompatible polymer may be a linear polymer, a branched polymer, or a dendrimer. The biocompatible polymer may be bioabsorbable or non-absorbable and may be of natural or synthetic origin.


Examples of suitable biodegradable polymers from which the substrate of the medical devices described herein may be made include, but are not limited to polymers such as those made from alpha-hydroxy acids (e.g. lactic acid, glycolic acid, and the like), lactide, glycolide, c-caprolactone, δ-valerolactone, carbonates (e.g., trimethylene carbonate, tetramethylene carbonate, and the like), dioxanones (e.g., 1,4-dioxanone), 1,dioxepanones (e.g., 1,4-dioxepan-2-one and 1,5-dioxepan-2-one), ethylene glycol, ethylene oxide, esteramides, hydroxy alkanoates (e.g. γ-hydroxyvalerate, β-hydroxypropionate, 3-hydroxybuterate, and the like), poly (ortho esters), tyrosine carbonates, polyimide carbonates, polyimino carbonates such as poly (bisphenol A-iminocarbonate) and poly (hydroquinone-iminocarbonate), polyurethanes, polyanhydrides, polymer drugs (e.g., polydiflunisol, polyaspirin, and protein therapeutics) and copolymers and combinations thereof. Suitable natural biodegradable polymers include collagen, cellulose, poly (amino acids), polysaccharides, hyaluronic acid, gut, copolymers and combinations thereof.


Examples of suitable non-degradable polymers from which the substrate of the medical devices described herein may be made include, but are not limited to fluorinated polymers (e.g.fluoroethylenes, propylenes, fluoroPEGs), polyolefins such as polyethylene, polyesters such as poly ethylene terepththalate (PET), nylons, polyamides, polyurethanes, silicones, ultra high molecular weight polyethylene (UHMWPE), polybutesters, polyaryletherketone, copolymers and combinations thereof.


The biocompatible polymeric substrate may be fabricated into any desired physical form. The polymeric substrate may be fabricated for example, by spinning, casting, molding or any other fabrication technique known to those skilled in the art. The polymeric substrate may be made into any shape, such as, for example, a fiber, sheet, rod, staple, clip, needle, tube, foam, or any other configuration suitable for a medical device. Where the polymeric substrate is in the form of a fiber, the fiber may be formed into a textile using any known technique including, but not limited to, knitting, weaving, tatting and the like. It is further contemplated that the polymeric substrate may be a non-woven fibrous structure.


The present biocompatible polymeric substrate can be part of any medical device of being implanted at a target location. Some non-limiting examples include monofilaments, multifilaments, surgical meshes, ligatures, sutures, staples, patches, slings, foams, pellicles, films, barriers, stents, catheters, shunts, grafts, coil, inflatable balloon, and the like. The implantable device can be intended for permanent or temporary implantation.


Treatment of the Substrate


Surface activation of the substrate is provided by acid or base hydrolysis.


In embodiments, the process of hydrolysis is conducted in the presence of an aqueous solution of a base or an acid to accelerate surface reaction, inasmuch as excessively long processes of activation can induce a reduction in molecular weight and thus in the mechanical properties of the material. Suitable bases for use in the present hydrolysis proceses include, for example, strong alkalis, such as LiOH, Ba(OH)2, Mg(OH)2, NaOH, KOH, Na2CO3, Ca(OH)2 and the weak bases, such as for example NH4OH and the amines such as methylamine, ethylamine, diethylamine and dimethylamine. Acids suitable for surface hydrolysis treatments can be chosen, for example, from among HCl, HClO3, HClO4, H2SO3, H2SO4, H3PO3, H3PO4, HI, HIO3, HBr, lactic acid, glycolic acid.


Surface activation by means of hydrolysis can be conducted at temperatures preferably comprised between 0 degrees Celsius and the material softening temperature or glass transition temperature.


Surface hydrolysis treatment is followed by careful washing to remove all traces of acid or base.


The present surface treatment can generate COONa groups which can be subsequently converted into COOH groups by treatment with strong mineral acids.


Further, the surface freeing of alcoholic groups by means of a hydrolysis process can be followed by reaction by means of the addition of a compound provided with functional group or groups able to react with surface alcoholic groups, such as for example by means of the addition of an anhydride such as succinic anhydride, with the conversion of —OH groups into —O—CO—CH2—CH2—COOH groups.


Addition of Reactive Members to the Treated Substrate


Once a surface of the substrate is acid or base treated, click reactive functional groups are provided on the surface.


Examples of the types of reactions that are known to have click reactivity include cycloaddition reactions. Cycloaddition reactions can be used to activate the substrates of the present disclosure. These reactions represent highly specific reactant pairs that have a chemoselective nature, meaning that they mainly react with each other and not other functional groups. One example of a cycloaddition reaction is the Huisgen 1,3-dipolar cycloaddition of a dipolarophile with a 1,3 dipolar component that produce five membered (hertero)cycles. Examples of dipolarophiles are alkenes, alkynes, and molecules that possess related heteroatom functional groups, such as carbonyls and nitriles. Specifically, another example is the 2+3 cycloaddition of alkyl azides and acetylenes. Other cycloaddition reactions include Diels-Alder reactions of a conjugated diene and a dienophile (such as an alkyne or alkene).


Other examples of the types of reactions that are known to have click reactivity include a hydrosilation reaction of H—Si and simple non-activated vinyl compounds, urethane formation from alcohols and isocyanates, Menshutkin reactions of tertiary amines with alkyl iodides or alkyl trifluoromethanesulfonates, Michael additions, e.g., the very efficient maleimide-thiol reaction, atom transfer radical addition reactions between —SO2Cl and an olefin (R1, R2—C═C—R3, R4), metathesis, Staudinger reaction of phosphines with alkyl azides, oxidative coupling of thiols, many of the procedures already used in dendrimer synthesis, especially in a convergent approach, which require high selectivity and rates, nucleophilic substitution, especially of small strained rings like epoxy and aziridine compounds, carbonyl chemistry like formation of ureas, and addition reactions to carbon-carbon double bonds like dihydroxylation. Therefore, attached functionality may be chosen from acetylene bond, an azido-group, a nitrile group, acetylenic, amino group, phosphino group. The click chemistry reaction may results in the addition of a functional group selected from amino, primary amino, hydroxyl, sulfonate, benzotriazole, bromide, chloride, chloroformate, trimethylsilane, phosphonium bromide or bio-responsive functional group including polypeptides, proteins and nucleic acids, to the polymer.


Thus, suitable reactive members that may be applied to the treated substrate include, for example, an amine, sulfate, thiol, hydroxyl, azide, alkyne, alkene, carboxyl groups aldehyde groups, sulfone groups, vinylsulfone groups, isocyanate groups, acid anhydride groups, epoxide groups, aziridine groups, episulfide groups, groups such as —CO2N(COCH2)2, —CO2N(COCH2)2, —CO2H, —CHO, —CHOCH2, —N═C═O, —SO2CH═CH2, —N(COCH)2, —S—S—(C5H4N) and groups of the following structures wherein X is halogen and R is hydrogen or C1 to C4 alkyl:




embedded image


The treated substrate can be provided with click reactive members using any variety of suitable chemical processes. Those skilled in the art reading this disclosure will readily envision chemical reactions for activating treated substrate to render them suitable for use in the presently described devices/methods.


For example, in embodiments, the acid or base treated substrate is functionalized with a halogen group to provide a reactive site at which a click reactive member can be attached. The halogenated sites on the surface of the treated substrate can be functionalized with a click reactive member, for example, by converting pendant chlorides or iodides on the core into azides by reaction with sodium azide. See, R. Riva et al., Polymer 49, pages 2023-2028 (2008) for a description of suitable reaction conditions.


Alternatively, the polymer or copolymer backbone may be halogenated using methods similar to those described by Nottelet et al., Biomaterials, 27, pages 4948-4954 (2006). Once halogenated, the backbone can be functionalized with a click reactive functionality by reacting it with a hydroxyacid under condition described by Shi et al. Biomaterials, 29, pages 1118-1126 (2008) followed by reaction with sodium azide. The halogen can also be converted directly to the alkyne by reacting it with an alcoholic alkine suck as propargyl alcohol.


Uses of Medical Devices Having an Activated Surface


Medical devices having an activated surface in accordance with the present disclosure can be used for a variety of purposes. For example, in embodiments they may be used for drug delivery. In such embodiments, the drug to be delivered is functionalized with one or more reactive member that are complementary to the reactive members provided on the surface of the substrate. By “complementary” it is meant that the reactive members on the drug to be delivered are able to interact with the reactive members provided on the surface of the substrate to covalently bond the drug to be delivered to the surface activated substrate.


In other embodiments, the medical device having an activated surface in accordance with the present disclosure can be attached to biological tissue by functionalizing tissue with one or more reactive member that are complementary to the reactive members provided on the surface of the substrate. Biological tissue can be provided with reactive member that are complementary to the reactive members provided on the surface of the substrate by conjugation of such groups to various components of tissue such as proteins, lipids, oligosaccharides, oligonucleotides, glycans, including glycosaminoglycans. In embodiments, the complementary groups are attached directly to components of the tissue. In other embodiments, the complementary groups are attached to components of the tissue via a linker. In either case, situating the complementary groups on the tissue can be accomplished by suspending the reactive member in a solution or suspension and applying the solution or suspension to the tissue such that the reactive member binds to a target. The solution or suspension may be poured, sprayed or painted onto the tissue, whereupon the reactive members are incorporated into the tissue.


Those skilled in the art reading this disclosure will readily envision other uses for the activated medical devices described herein.


It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A polymeric medical device having an acid or base-treated surface that is functionalized with one or more click reactive members to provide an activated surface on the polymeric medical device.
  • 2. The medical device of claim 1, wherein the medical device comprises a biodegradable polymer selected from collagen, cellulose, poly (amino acids), polysaccharides, hyaluronic acid, copolymers and combinations thereof.
  • 3. The medical device of claim 1, wherein the medical device comprises a non-degradable polymer selected from fluorinated polymers, polyolefins, nylons, polyamides, polyurethanes, silicones, ultra high molecular weight polyethylene, polybutesters, polyaryletherketone, copolymers and combinations thereof.
  • 4. The medical device of claim 1, wherein the one or more click reactive members are selected from the group consisting of thiols, azides, alkynes and alkenes.
  • 5. The medical device of claim 1, wherein the one or more click reactive members comprise a thiol.
  • 6. The medical device of claim 1, wherein the one or more click reactive members comprise an azide.
  • 7. The medical device of claim 1, wherein the one or more click reactive members comprise an alkyne.
  • 8. The medical device of claim 1, wherein the one or more click reactive members comprise an alkene.
  • 9. The medical device of claim 1, wherein the medical device is selected from the group consisting of monofilament sutures, multifilament sutures, surgical meshes, ligatures, staples, slings, patches, foams, pellicles, films, barriers, stents, catheters, and inflatable balloons.
  • 10. The medical device of claim 1, wherein the medical device comprises a surgical mesh.
  • 11. The medical device of claim 1, wherein acid or base-treated surface is hydrolyzed prior to being functionalized with the at least one click-reactive member.
  • 12. The medical device of claim 1, wherein the acid treated surface is treated with an acid selected from the group consisting of HCl, HCl3, HCl4, H2SO3, H2SO4, H3PO4, HI, HIO3, HBr, lactic acid and glycolic acid.
  • 13. The medical device of claim 1, wherein the base treated surface is treated with a base selected from the group consisting of LiOH, Ba(OH)2, Mg(OH)2, NaOH, KOH, Na2CO3, Ca(OH)2, and NH4OH.
  • 14. The medical device of claim 1, further comprising a drug functionalized with one or more complementary click reactive members, wherein the one or more click reactive members of the medical device and the one or more complementary click reactive members of the drug interact to covalently bond the drug to the activated surface of the medical device.
  • 15. The medical device of claim 14, wherein the one or more click reactive members comprise a thiol and the one or more complementary click reactive members comprise an alkene.
  • 16. The medical device of claim 14, wherein the one or more click reactive members comprise an alkene and the one or more complementary click reactive members comprise a thiol.
  • 17. The medical device of claim 14, wherein the one or more click reactive members comprise an alkyne and the one or more complementary click reactive members comprise an azide.
  • 18. The medical device of claim 14, wherein the one or more click reactive members comprise an azide and the one or more complementary click reactive members comprise an alkyne.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/621,493 filed Feb. 13, 2015, now U.S. Pat. No. 9,517,291, which is a divisional of U.S. patent application Ser. No. 13/202,373 filed Oct. 26, 2011, now U.S. Pat. No. 8,968,818, which is a National Stage Application of PCT/US10/24737 filed Feb. 19, 2010, now expired, which claims benefit of U.S. Provisional Application No. 61/154,376 filed Feb. 21, 2009, now expired, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.

US Referenced Citations (203)
Number Name Date Kind
3767085 Cannon et al. Oct 1973 A
4326532 Hammar Apr 1982 A
4359049 Redl et al. Nov 1982 A
4464321 Pitfalls et al. Aug 1984 A
4538920 Drake Sep 1985 A
4753536 Spehar et al. Jun 1988 A
4839345 Doi et al. Jun 1989 A
4857403 De Lucca et al. Aug 1989 A
4880662 Habrich et al. Nov 1989 A
5021207 De Lucca et al. Jun 1991 A
5372585 Tiefenbrun et al. Dec 1994 A
5455308 Bastiaansen Oct 1995 A
5562946 Fofonoff et al. Oct 1996 A
5578662 Bennett et al. Nov 1996 A
5582955 Keana et al. Dec 1996 A
5612050 Rowe et al. Mar 1997 A
5804318 Pinchuk et al. Sep 1998 A
5911942 Fofonoff et al. Jun 1999 A
6099563 Zhong Aug 2000 A
6107365 Bertozzi et al. Aug 2000 A
6107453 Zuccato et al. Aug 2000 A
6312725 Wallace et al. Nov 2001 B1
6342591 Zamora et al. Jan 2002 B1
6451032 Ory et al. Sep 2002 B1
6461665 Scholander Oct 2002 B1
6534611 Darling et al. Mar 2003 B1
6552103 Bertozzi et al. Apr 2003 B1
6559132 Holmer May 2003 B1
6570040 Saxon et al. May 2003 B2
6576000 Carrison Jun 2003 B2
6624245 Wallace et al. Sep 2003 B2
6881766 Hain Apr 2005 B2
6958212 Hubbell et al. Oct 2005 B1
7012126 Matsuda et al. Mar 2006 B2
7037527 Bide et al. May 2006 B2
7105629 Matsuda et al. Sep 2006 B2
7122703 Saxon et al. Oct 2006 B2
7144976 Matsuda et al. Dec 2006 B2
7172877 Ting Feb 2007 B2
7247692 Laredo Jul 2007 B2
7294357 Roby Nov 2007 B2
7371719 Stupp et al. May 2008 B2
7375234 Sharpless et al. May 2008 B2
7560588 Breitenkamp et al. Jul 2009 B2
7618944 Breitenkamp et al. Nov 2009 B2
7638558 Breitenkamp et al. Dec 2009 B2
7667012 Saxon et al. Feb 2010 B2
7795355 Matyjaszewski et al. Sep 2010 B2
7807619 Bertozzi et al. Oct 2010 B2
7981444 Tomalia et al. Jul 2011 B2
7985424 Tomalia et al. Jul 2011 B2
8034396 Kapiamba et al. Oct 2011 B2
8182890 Zheng et al. May 2012 B2
8241654 Stopek Aug 2012 B2
8877170 Ladet Nov 2014 B2
8968818 Belcheva et al. Mar 2015 B2
9510810 Ladet Dec 2016 B2
9517291 Belcheva et al. Dec 2016 B2
9555154 Belcheva Jan 2017 B2
20020016003 Saxon et al. Feb 2002 A1
20020161170 Matsuda et al. Oct 2002 A1
20020169275 Matsuda et al. Nov 2002 A1
20020173616 Matsuda et al. Nov 2002 A1
20030100086 Yao et al. May 2003 A1
20030135238 Milbocker Jul 2003 A1
20030162903 Day Aug 2003 A1
20030199084 Saxon et al. Oct 2003 A1
20030205454 Hlavinka et al. Nov 2003 A1
20030216524 Bide et al. Nov 2003 A1
20040170752 Luthra et al. Sep 2004 A1
20040185053 Govindan Sep 2004 A1
20040209317 Ting Oct 2004 A1
20040249438 Lefranc et al. Dec 2004 A1
20050032081 Ju et al. Feb 2005 A1
20050038472 Furst Feb 2005 A1
20050060028 Horres et al. Mar 2005 A1
20050148032 Saxon et al. Jul 2005 A1
20050222427 Sharpless et al. Oct 2005 A1
20050233389 Ting et al. Oct 2005 A1
20050244453 Stucke et al. Nov 2005 A1
20060018948 Guire et al. Jan 2006 A1
20060036022 Callaghan et al. Feb 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060108393 Heinrich et al. May 2006 A1
20060110782 Bertozzi et al. May 2006 A1
20060142404 Berge et al. Jun 2006 A1
20060147963 Barone et al. Jul 2006 A1
20060193865 Govindan Aug 2006 A1
20060228300 Chang et al. Oct 2006 A1
20060228357 Chang et al. Oct 2006 A1
20060240092 Breitenkamp et al. Oct 2006 A1
20060276658 Saxon et al. Dec 2006 A1
20070020620 Finn et al. Jan 2007 A1
20070037964 Saxon et al. Feb 2007 A1
20070060658 Diaz et al. Mar 2007 A1
20070077564 Roitman et al. Apr 2007 A1
20070086942 Chang et al. Apr 2007 A1
20070087001 Taylor et al. Apr 2007 A1
20070099251 Zhang et al. May 2007 A1
20070140966 Chang et al. Jun 2007 A1
20070178133 Rolland Aug 2007 A1
20070178448 Tsao et al. Aug 2007 A1
20070190597 Agnew et al. Aug 2007 A1
20070212267 Organ et al. Sep 2007 A1
20070244265 Matyjaszewski et al. Oct 2007 A1
20070244296 Tomalia et al. Oct 2007 A1
20070249014 Agnew et al. Oct 2007 A1
20070254006 Loose et al. Nov 2007 A1
20070258889 Douglas et al. Nov 2007 A1
20070269369 Gegg et al. Nov 2007 A1
20070272122 Lahann et al. Nov 2007 A1
20070275387 Ju Nov 2007 A1
20070298006 Tomalia et al. Dec 2007 A1
20080015138 Hamilton et al. Jan 2008 A1
20080021486 Oyola et al. Jan 2008 A1
20080035243 Breitenkamp et al. Feb 2008 A1
20080038472 Suzuki et al. Feb 2008 A1
20080045686 Meagher et al. Feb 2008 A1
20080050731 Agnew et al. Feb 2008 A1
20080051562 Chaikof et al. Feb 2008 A1
20080103564 Burkinshaw et al. May 2008 A1
20080121657 Voegele et al. May 2008 A1
20080138317 Fung Jun 2008 A1
20080160017 Baker et al. Jul 2008 A1
20080166329 Sung et al. Jul 2008 A1
20080166363 Govindan et al. Jul 2008 A1
20080171067 Govindan et al. Jul 2008 A1
20080187956 Carrico et al. Aug 2008 A1
20080199736 Gadeken et al. Aug 2008 A1
20080200628 Gadeken et al. Aug 2008 A1
20080207913 Breitenkamp et al. Aug 2008 A1
20080214436 Yu et al. Sep 2008 A1
20080214801 Saxon et al. Sep 2008 A1
20080214831 Sharpless et al. Sep 2008 A1
20080221043 Harth et al. Sep 2008 A1
20080241856 Wong et al. Oct 2008 A1
20080241892 Roitman et al. Oct 2008 A1
20080242171 Huang et al. Oct 2008 A1
20080248126 Cheng et al. Oct 2008 A1
20080267878 Robillard et al. Oct 2008 A1
20080283572 Boyden et al. Nov 2008 A1
20080311412 Fokin et al. Dec 2008 A1
20080317861 Guan Dec 2008 A1
20090012457 Childers et al. Jan 2009 A1
20090018646 Zhao Jan 2009 A1
20090024086 Zhang et al. Jan 2009 A1
20090024096 Hai et al. Jan 2009 A1
20090027603 Samulski et al. Jan 2009 A1
20090038701 Delmotte Feb 2009 A1
20090053139 Shi et al. Feb 2009 A1
20090054619 Baker et al. Feb 2009 A1
20090061010 Zale et al. Mar 2009 A1
20090069561 Fokin et al. Mar 2009 A1
20090082224 Haddleton et al. Mar 2009 A1
20090099108 Jones Apr 2009 A1
20090124534 Reineke May 2009 A1
20090137424 Tsao et al. May 2009 A1
20090181402 Finn et al. Jul 2009 A1
20090182151 Wu et al. Jul 2009 A1
20090202433 Chang et al. Aug 2009 A1
20090203131 Reineke et al. Aug 2009 A1
20090214755 Armani et al. Aug 2009 A1
20090220607 Kiser et al. Sep 2009 A1
20090240030 Ju et al. Sep 2009 A1
20090247651 Kapiamba et al. Oct 2009 A1
20090250588 Robeson et al. Oct 2009 A1
20090253609 Fleury et al. Oct 2009 A1
20090259016 Johnson et al. Oct 2009 A1
20090263468 McAnulty et al. Oct 2009 A1
20090269277 Chang et al. Oct 2009 A1
20090281250 DeSimone et al. Nov 2009 A1
20090297609 Shoichet et al. Dec 2009 A1
20090306310 Wu et al. Dec 2009 A1
20090306335 Harth et al. Dec 2009 A1
20090312363 Bradner et al. Dec 2009 A1
20090325292 Baker et al. Dec 2009 A1
20100011472 Hugel et al. Jan 2010 A1
20100015046 Govindan et al. Jan 2010 A1
20100021391 Douglas et al. Jan 2010 A1
20100034862 Laronde et al. Feb 2010 A1
20100047258 Wang et al. Feb 2010 A1
20100048738 Fleury et al. Feb 2010 A1
20100069578 Faust et al. Mar 2010 A1
20100098640 Cohen et al. Apr 2010 A1
20100104589 Govindan et al. Apr 2010 A1
20100104608 Abuzaina et al. Apr 2010 A1
20100121022 Musa et al. May 2010 A1
20100159508 Yang et al. Jun 2010 A1
20100160299 Baker, Jr. et al. Jun 2010 A1
20100247433 Tirrell et al. Sep 2010 A1
20100260676 Hanson Oct 2010 A1
20100286405 Fokin et al. Nov 2010 A1
20100291171 Crescenzi et al. Nov 2010 A1
20100303754 Turpin et al. Dec 2010 A1
20110008251 Chang et al. Jan 2011 A1
20110008404 Lyon et al. Jan 2011 A1
20110052696 Hult et al. Mar 2011 A1
20110060107 Matyjaszewski et al. Mar 2011 A1
20110143387 Patsenker Jun 2011 A1
20110143435 Stayton et al. Jun 2011 A1
20110177156 Szoka, Jr. et al. Jul 2011 A1
20110183417 Reineke Jul 2011 A1
20110213123 Bertozzi et al. Sep 2011 A1
Foreign Referenced Citations (18)
Number Date Country
1008260 Feb 1996 BE
10106230 Aug 2002 DE
0490854 Jun 1992 EP
1790702 May 2007 EP
1795563 Jun 2007 EP
1975230 Oct 2008 EP
2014308 Jan 2009 EP
2090592 Aug 2009 EP
2006012569 Feb 2006 WO
2007041394 Apr 2007 WO
2007121055 Oct 2007 WO
2008013618 Jan 2008 WO
2008075955 Jun 2008 WO
2008077406 Jul 2008 WO
2008108736 Sep 2008 WO
2008115694 Sep 2008 WO
2008120016 Oct 2008 WO
2010095049 Aug 2010 WO
Non-Patent Literature Citations (44)
Entry
Q Shi, et al., “The Immobolization of Proteins on Biodegradable Polymer Fibers via Click Chemistry”, Biomaterials, 29, (2008), pp. 1118-1126.
Jerome, et al., “Recent Advances in the Synthesis of Alipathic Polyesters Ring-Opening Polymerization”, Advanced Drug Delivery Reviews, 60, (2008), pp. 1056-1076.
Zhang, et al., “2-Azido-2-deoxycellulose: Synthesis and 1, 3-Dipolar Cycloaddition”, Helvetica Chimica Acta, vol. 91, pp. 608-617 (2008).
R. Riva, et al., “Contribution of “Click Chemistry” to the Synthesis of Antimicrobial Alipathic Copolyester”, Polymer 49, (2008), pp. 2023-2028.
Baskin, et al., “Copper Free Click Chemistry for Dynamic in Vivo Imaging”, PNAS, vol. 104, No. 43, (Oct. 23, 2007), pp. 16793-16797.
Codelli, et al., “Second Generation Difluorinated Cyclooctynes for Copper-Free Chemistry”, J. Am. Chem. Soc., vol. 130, No. 34, (2008), pp. 11486-11493.
Sletten and Bertozzi, “A Hydrophilic Azacyclooctyne for Cu-free Click Chemistry”, Org. Lett. (2008) 10(14), pp. 3097-3099.
Cazalis, et al., “C-Terminal Site-Specific PEGylation of Truncated Thrombomodulin Mutant with Retention of Full Bioactivity”, Bioconjugate Chem., (2004), 15, pp. 1005-1009.
Haridas, et al., “Design and Synthesis of Triazole-based Peptidedendrimers” Tetrahedron Letters, vol. 48, (2007), pp. 1719-4722.
Raghavan, et al., “Chemical Probes for Profiling Fatty Acid-associated Proteins in Living Cells”, Bioorg. Med. Chem. Lett., 18 (2008), pp. 5982-5986.
LeDevedec, et al., “Separation of Chitosan Oligomers by Immobilized Metal Affinity Chromatography”, Journal of chromatography A., 2008, 1194(2), pp. 165-171.
Hartgerink, et al., “Peptide-amphiphile Nanofibers: A Versatile Scaffold for the Preparation of Self Assembling Materials”, PNAS, 2002; 99(2), pp. 5133-5138.
Van Berkel, et al., “Metal-Free Triazole Formation as a Tool for Bioconjugation” Chem Bio Chem, 8, (2007), pp. 1504-1508.
Nottelet, et al., Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly (.epsilon.-caprolactone) Biomaterials, 27, (2006), pp. 4943-4954.
Smith, et al., “Synthesis and Convenient Functionalization of Azide-labeled Diacyglycerol Analogues for Modular Access to Biologically Active Lipid Probes”, Bioconjugate Chem, 19(9), (2008). pp. 1855-1863.
Skierka, et al., “The Influence of Different Acids and Pepsin on the Extractability of Collagen From the Skin of Baltic Cod (Gadus morhua)”, Food Chemisty, 105, (2007), pp. 1302-1306.
Eastoe, “The Amino Acid Composition of Mammalian Collagen and Gelatin”, vol. 61, (1955), pp. 589-600.
Sicherl, et al., “Orthogonally Protected Sugar Diamino Acids as Building Blocks for Linear and Branched Oligosaccharide Mimetics”, Angew. Chem. Int. Ed. 44, (2005), pp. 2096-2099.
Laughlin, et al., “In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish”, Science, 320, (2008), pp. 564-667.
Worch and Wittmann, “Unexpected Formation of Complex Bridged Tetrazoles via Intramolecular 1,3-dipolar Cycloaddition of 1,2-0-Gyanoalkylidene Derivatives of 3-azido-3-deoxy-D-allose”, Carbohydrate Research, 343, (2008), pp. 2118-2129.
Witczak et al., “A Click Chemistry Approach to Glycomimetics: Michael addition of 2,3,4,6-tetra-O-acetyl-1-thio-.beta.-D-glucopyranose to 4-deoxy-1,2-0-isopropylident-L-glycero-pent-4-enopyranos-3-ulose-a convenient route tonovel4-deoxy-(1.fwdarw.5)-5-C-thiodisaccharides”, Carbohydrate Research, 342, (2007), 1929-1933.
Marra, et al., “Validation of the Copper(1)-Catalyzed Azide-Alkyne Coupling in Ionic Liquids, Synthesis of a Triazole-Linked C-Disaccharide as a Case Study”, J. Org. Chem (2008), 73(6), pp. 2458-2461.
Srinivasachari, et al., “Versatile Supramolecular pDNA Vehicles via “Click Polymerization” of .beta.-cyclodextrin with oligoethyleneamines”, Biomaterials, 30, (2009), pp. 928-938.
Arora, et al., “A Novel domino-click approach for the synthesis of sugar based unsymmetrical bis- 1,2,3-triazoles”, Carbohydrate Research, 343, (2008), 139-144.
Chen et al. “Synthesis of a C.sub.3-symmetric (1.fwdarw.6)-N-acetylbeta.-D-glucosamine Octadecasaccharide using Click Chemistry”, Carbohydrate Research, 340, (2005), pp. 2476-2482.
Gouin, et al., “Multi-Mannosides Based on a Carbohydrate Scaffold: Synthesis, Force Field Development, Molecular Dynamics Studies, and Binding Affinities for Lectin Con A”, J. Org. Chem., 2007, 72(24), pp. 9032-9045.
Srinivasachari, etal., “Effects of Trehalose Click Polymer Length on pDNA Complex Stability and Delivery Efficacy”, Biomaterials, 28, (2007), pp. 2885-2898.
Godeau, et al., Lipid-Conjugated Oligonucleotides via “Click Chemistry” Efficiently Inhibit Hepatitis C Virus Translation, J. med. Chem., 2008, 51(15), pp. 2374-4376.
Zou et al., “Cu-free Cycloaddition for Identifying Catalytic Active Adenylation Domains of Nonribosomal Peptide Synthesis by phage display”, Bioorganic & Medicinal Chemistry Letters, 18 (2008), pp. 5664-5667.
Cantel, et al., “Synthesis and Conformational Analysis of a Cyclic Peptide Obtained via i to i ∝Intramolecular Side-chain to Side-chain Azide-Alkyne 1,3-Dipolar Cycloaddition” J. Org. Chem., 2008, 73 (15), pp. 5663-5614.
Dijk, et al., “Synthesis of Peptide-Based Polymers by Microwave-Assisted Cycloaddition Backbone Polymerization,”Biomacro molecules, 2007, 8(2), pp. 327-330.
Koster, et al., “Spectroscopic and Electrochemical Studies of Ferroceryl Triazole Amino Acid and Peptide Bioconjugates Synthesized by Click Chemistry”, Organometallics, 2008, 27(23) pp. 6326-6332.
Dijk, et al., “Synthesis and Characterization of Biodegradable Peptide-Baed Polymers Prepared by Microwave-Assisted Click Chemisty”, Biomacromolecules, 2008, 9(10), pp. 2834-2843.
Jiang, et al., “Amphiphilic PEG/alkyl-grafted comb polylactides”, J. Polymer Science Part B: Polymer Physics, 45(22), 2007, pp. 5227-5236.
Ochs, et al., “Low-Fouling, Biofunctionalized, and Biodegradable Click Capsules”, Biomacromolecules, 2008, 9(12), pp. 3389-3396.
Beatty and Tirrell, “Two-color Labeling of Temporally Defined Protein Populations in Mammalian Cells”, Bioorg. Med. Chem. Lett., 18 (2008), pp. 5995-5999.
Kolb, et al., “Click Chemistry: Diverse Chemical Function from a Few Good Reactions”, Angewandte Chemie, International Edition, Jun. 2001, pp. 2004-2021.
Krouit, et al., “Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry”, European Polymer Journal 44, Dec. 2008, pp. 4074-4081.
Islandivada, et al. “Reactive polymer coatings that ‘Click’.”, Angewandte Chemie, International Edition 45, Apr. 2006, pp. 3360-3363.
Ossipov and Hilborn, Poly(vinyl alcohol)-Based Hydrogels Formed by “Click Chemistry”, Macromelecules 2006, 39, pp. 1709-1718.
Binder and Sachsenhofer, “Click Chemistry in Polymer and Materials Science”, Macromolecular Rapid Commun. 2007, 28, pp. 15-54.
European Search Report, Application No. 10 74 4359 dated Mar. 13, 2014.
EP Office Action issued in corresponding EP Patent Application No. 10744359.0 dated Jan. 5, 2016, 7 pages.
International Search Report for application No. PCT/US2010/24737 dated Apr. 8, 2010 (2 pages).
Related Publications (1)
Number Date Country
20170073486 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
61154376 Feb 2009 US
Divisions (1)
Number Date Country
Parent 13202373 US
Child 14621493 US
Continuations (1)
Number Date Country
Parent 14621493 Feb 2015 US
Child 15342488 US