Conventionally, a clip may be introduced into a body cavity through an endoscope to grasp living tissue of a body cavity for hemostasis, marking, and/or ligating. Such clips are often known as surgical clips, endoscopic clips, hemostasis clips and vascular clips. In addition, clips are now being used in a number of applications related to gastrointestinal bleeding such as peptic ulcers, Mallory-Weiss tears, Dieulafoy's lesions, angiomas, post-papillotomy bleeding, and small varices with active bleeding. Clips have also been attempted for use in closing perforations in the stomach
Gastrointestinal bleeding is a somewhat common and serious condition that is often fatal if left untreated. This problem has prompted the development of a number of endoscopic therapeutic approaches to achieve hemostasis such as the injection of sclerosing agents and contact thermo-coagulation techniques. Although such approaches are often effective, bleeding continues for many patients and corrective surgery therefore becomes necessary. Because surgery is an invasive technique that is associated with a high morbidity rate and many other undesirable side effects, there exists a need for highly effective, less invasive procedures.
Mechanical hemostatic devices such as clips have been used in various parts of the body, including gastrointestinal applications. One of the problems associated with conventional hemostatic devices and clips, however, is that many devices are not strong enough to cause permanent hemostasis. Further, clips have also been attempted for use in closing perforations in the stomach or gastrointestinal structures, but unfortunately traditional clips suffer from difficult placement and the capability to grasp a limited amount of tissue, potentially resulting in incomplete closure.
The invention may include any of the following aspects in various combinations and may also include any other aspect described below in the written description or in the attached drawings.
In a first aspect, a medical device is provided for engaging tissue, the medical device including a housing, first and second jaws, a driver, an elongated drive wire and an elongated tubular member. The housing defines an internal passageway and a longitudinal axis extending between proximal and distal ends of the housing. The first and second jaws are rotatable relative to the housing and have proximal and distal ends. The driver is engaged with the proximal ends of the first and second jaws, wherein longitudinal movement of the driver rotates the first and second jaws relative to the housing. The elongated drive wire is selectively connected to the driver for longitudinal movement therewith, and the drive wire has an enlarged portion proximate a distal end of the drive wire. The elongate tubular member defines a lumen sized to slidably receive a connection block. The connection block defines a bore slidably receiving the drive wire, wherein the enlarged portion of the drive wire has a size that is larger than the bore and is positioned on a distal side of the connection block. The connection block is operable between an extended position and a retracted position. The connection block projects from the tubular member in the extended position and is structured to engage a proximal end of the housing. The connection block is positioned within the lumen of the tubular member in the retracted position and disengaged from the housing. The enlarged portion of the drive wire engages the connection block upon proximal retraction of the drive wire to operate the tubular member from its extended position to its retracted position and disengage the connection block from the housing.
According to further detailed aspects, the connection block is preferably sized to frictionally engage the housing. The connection block may include a connection ring having a plurality of tabs, wherein the housing includes a plurality of slots extending to a proximal end of the housing that receive the plurality of tabs. The plurality of slots may each include a narrowed throat separating proximal and distal portions of the slots. The housing may further include a plurality of slits formed therein, the slits each connected to a distal portion of the slots to improve flexibility of the housing. The connection block includes a distal flange and a proximal flange defining a reduced diameter portion therebetween, and the tubular member includes one of a pin and a tab projecting into the lumen and positioned within the reduced diameter portion to limit longitudinal movement of the connection block. The connection block may also include a compressible member attached thereto and sized to be compressed between an interior of the housing and an exterior of the connection block.
According to further detailed aspects, the system may also include an attachment member attached to a distal end of the tubular member, the attachment member including a passageway in communication with the lumen of the tubular member. The attachment member preferably includes diametrically opposing openings between ends of the attachment member in communication with the passageway. The connection block includes a distal flange and a proximal flange defining a reduced diameter portion therebetween, and the attachment member preferably includes at least one tab projecting into the lumen and positioned within the reduced diameter portion to limit longitudinal movement of the connection block, the tab unitarily and integrally formed with the attachment member. The system may also include a locking pin having a forked strut defined by two tines having a slot therebetween. The slot is sized to receive the drive wire therein, and the forked strut sized to pass through the opposing openings in the attachment member and limit longitudinal movement of the connection block. The system may still further include an applicator having a left body slidably attached to a right body, the left and right bodies including channels sized and shaped to receive portions of the tubular member and attachment member and maintain their position relative to the applicator. The channels are also sized and shaped to receive portions of the locking pin, whereby relative translation of the left and right bodies positions the forked strut of the locking pin into, or out of, the opposing openings in the attachment member. Alternatively, the applicator may simply have a main body and a forked strut projecting from the main body, the forked strut defined by two tines having a slot therebetween, the slot sized to receive the drive wire therein, the forked strut sized to pass through the opposing opening in the attachment member and limit longitudinal movement of the connection block.
According to still further detailed aspects, the enlarged portion of the drive wire is an enlarged distal head, and the driver includes a socket facing proximally and receiving the distal head. The driver is constructed of a resilient material that flexes to adjust the size of the socket. The socket is sized to selectively receive the enlarged distal head of the drive wire. A locking tab may be positioned at an entrance to the socket and moves to vary the size of the entrance. Preferably, the driver includes two locking tabs on opposing sides of the socket, and the housing includes a guide surface guiding the longitudinal movement of the driver, the guide surface including two surfaces on opposing sides of the housing corresponding to the two locking tabs. The housing may also define a shoulder at the transition between the proximal portion and distal portion of the guide surface, wherein the locking tab is positioned to engage the shoulder to limit longitudinal movement of the driver. The shoulder preferably deflects the tab to a position into engagement with the shoulder when a distally directed longitudinal force on the driver reaches a predetermined force to permit longitudinal movement of the driver and the first and second jaws in a distal direction.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings:
The terms “proximal” and “distal” as used herein are intended to have a reference point relative to the user. Specifically, throughout the specification, the terms “distal” and “distally” shall denote a position, direction, or orientation that is generally away from the user, and the terms “proximal” and “proximally” shall denote a position, direction, or orientation that is generally towards the user.
An exemplary medical system 20 having a medical device 40 for engaging tissue T (
In the medical system 20, the drive wire 22 slidably extends through the catheter 24. Although the term “wire” is used to refer to the drive wire 22, it will be recognized that any elongate control member capable of transmitting longitudinal force over a distance (such as is required in typical endoscopic, laparoscopic and similar procedures) may be used, and this includes plastic rods or tubes, single filament or multi-filament wires and the like. A connection block 26 is slidably fitted within the distal end 23 of the catheter 24 and defines a bore 28 therethrough which slidably receives the drive wire 22. The exterior of the connection block 26 includes a recessed portion 27, and two pins 30 (e.g., formed from stainless steel wire) are connected to the catheter 24 and positioned within the recessed portion 27 to limit the longitudinal movement of the connection block 26.
A distal end of the drive wire 22 defines a distal head 32 that is sized larger than the drive wire 22, and likewise larger than the bore 28 in the connection block 26. As will be described later herein, the distal head 32 is used to slide the connection block 26 within the catheter 24 to disconnect the medical device 40 from the medical system 20. As also seen in
The internal passageway 43 of the housing 42 also receives the first and second jaws 44, 46 and a driver 48 which is used to interconnect the drive wire 22 to the jaws 44, 46. As best seen in
A distal portion of the driver 48 defines a rack 54 for engaging and operating the jaws 44, 46. In the depicted embodiment, the rack 54 includes a central spine 56 having teeth 58 projecting away from the central spine 56 and on opposite sides of the spine 56. One set of teeth 58 on one side of the spine 56 generally operate the first jaw 44 while the other set of teeth 58 on the other side of the spine 56 operate the second jaw 46. It will be recognized that the rack 54 may include a single set of teeth or other geared structures that interface with the jaws 44, 46.
As best seen in
In addition to the jaws 44, 46 being pivotally attached to the housing 42, the first and second jaws 44, 46 are also slidably attached to the housing 42. As best seen in
It can also be seen in
As also shown in
Operation of the medical device 40 will now be described with reference to
As shown in
In the tissue receiving configuration shown in
In order for the medical device 40 to serve as a clip and maintain its grasp on the tissue T, or to maintain the clipping of two layers of tissue against each other, the jaws 44, 46 may be locked in position and the drive wire 22 of the medical system 20 disconnected from the medical device 40. As shown in
As shown in
Turning now to
The elongated catheter 24 (or other elongate tubular member such as a sheath, tube, scope or the like), which slidably encases the drive wire 22, extends proximally therealong to a proximal end of the system 20, and has a length suitable for placing the device 40 at any desired location within the body, while the proximal ends of drive wire 22 and catheter 24 are positioned outside of the body for use by the medical professional. Control handles (not shown) for controlling relative translation of the drive wire 22 and catheter 24 are well known in the art, and may be employed at the proximal end of the system 20.
In another embodiment of a medical system 120 shown in
As best seen in
In yet another embodiment of a connection block 226 for a medical system 220, shown in
It will be recognized by those skilled in the art that the drive wire 22 and its distal head 32 could again be connected to the driver 48 and its socket 50, thus permitting additional manipulation of the medical device to adjust the clipped tissue T. Likewise, additional medical devices may be attached to the drive wire 22 and tubular connector 24 of the medical system 20 for deployment of the additional medical devices, e.g. multiple devices 40 for clipping the tissue T may be used to close a perforation or achieve hemostasis. Generally, the support ring 34 (
The large openings 334 in the catheter attachment 330 provide access to hold the connection block 126 in an extended position for attachment of another clip device 40. Turning to
Finally,
Additional embodiments of the connection/disconnection mechanisms and the medical system 20 may be found in copending US. Appl. No. 61/391,875 and Appl. No. 61/391,881, the disclosures of which are hereby incorporated by reference in their entirety.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
This application is a Continuation of U.S. patent application Ser. No. 15/915,749 filed on Mar. 8, 2018, which is a Continuation of U.S. patent application Ser. No. 14/568,841 filed on Dec. 12, 2014 (now U.S. Pat. No. 9,955,977), which is Divisional of U.S. patent application Ser. No. 13/270,834 filed on Oct. 11, 2011 (now U.S. Pat. No. 8,939,997), which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/391,878 filed on Oct. 11, 2010. U.S. patent application Ser. No. 13/270,834 is also a Continuation-In-Part of U.S. patent application Ser. No. 12/971,873 filed on Dec. 17, 2010 (now U.S. Pat. No. 8,771,293), which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/289,297 filed on Dec. 22, 2009, to which the benefit of and priority to are also claimed in the present application. All of the foregoing applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
720385 | Storle | Feb 1903 | A |
2384697 | Riccardi | Sep 1945 | A |
2598901 | Garland | Jun 1952 | A |
2614445 | Riordan | Oct 1952 | A |
3363628 | Wood | Jan 1968 | A |
3463156 | McDermott | Aug 1969 | A |
3481641 | Berger et al. | Dec 1969 | A |
3867944 | Samuels | Feb 1975 | A |
3924303 | Elliott | Dec 1975 | A |
3932918 | Paskert | Jan 1976 | A |
3958576 | Komiya | May 1976 | A |
4206632 | Suzuki | Jun 1980 | A |
4453756 | Haag | Jun 1984 | A |
4467802 | Maslanka | Aug 1984 | A |
4512345 | Green | Apr 1985 | A |
4519392 | Lingua | May 1985 | A |
4569131 | Falk et al. | Feb 1986 | A |
4697058 | Mueller | Sep 1987 | A |
4733664 | Kirsch et al. | Mar 1988 | A |
4763668 | Macek et al. | Aug 1988 | A |
4765335 | Schmidt et al. | Aug 1988 | A |
4805618 | Ueda et al. | Feb 1989 | A |
4822348 | Casey | Apr 1989 | A |
4950273 | Briggs | Aug 1990 | A |
4990152 | Yoon | Feb 1991 | A |
5029355 | Thai | Jul 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5100430 | Avellanet et al. | Mar 1992 | A |
5133727 | Bales et al. | Jul 1992 | A |
5141519 | Smith et al. | Aug 1992 | A |
5142113 | Miyata | Aug 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5152778 | Bales, Jr. et al. | Oct 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5174276 | Crockard | Dec 1992 | A |
5192298 | Smith et al. | Mar 1993 | A |
5201743 | Haber et al. | Apr 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5222961 | Nakao et al. | Jun 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5275608 | Forman et al. | Jan 1994 | A |
5275613 | Haber et al. | Jan 1994 | A |
5275615 | Rose | Jan 1994 | A |
5282806 | Haber et al. | Feb 1994 | A |
5304183 | Gourlay et al. | Apr 1994 | A |
5306283 | Conners | Apr 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5368606 | Marlow et al. | Nov 1994 | A |
5407243 | Riemann | Apr 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5471992 | Banik et al. | Dec 1995 | A |
5474569 | Zinreich et al. | Dec 1995 | A |
5499998 | Meade | Mar 1996 | A |
5501693 | Gravener | Mar 1996 | A |
5509923 | Middleman et al. | Apr 1996 | A |
5518257 | Breaker | May 1996 | A |
5520701 | Lerch | May 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5632764 | Beideman et al. | May 1997 | A |
5702407 | Kaji | Dec 1997 | A |
5766184 | Matsuno et al. | Jun 1998 | A |
5766189 | Matsuno | Jun 1998 | A |
5792165 | Kilieman et al. | Aug 1998 | A |
5797923 | Aiyar et al. | Aug 1998 | A |
5853559 | Tamaki et al. | Dec 1998 | A |
5925226 | Hurwitt et al. | Jul 1999 | A |
5951833 | Yamagata | Sep 1999 | A |
5964779 | Mayenberger et al. | Oct 1999 | A |
6059719 | Yamamoto et al. | May 2000 | A |
6139712 | Patton et al. | Oct 2000 | A |
6202655 | Yamagata | Mar 2001 | B1 |
6217734 | Uzoh | Apr 2001 | B1 |
6241591 | Jackson et al. | Jun 2001 | B1 |
6358197 | Silverman et al. | Mar 2002 | B1 |
6495007 | Wang | Dec 2002 | B2 |
6527926 | Wodoruff | Mar 2003 | B2 |
6569302 | Steinrucke | May 2003 | B1 |
6613214 | Dondi et al. | Sep 2003 | B2 |
6814742 | Kimura et al. | Nov 2004 | B2 |
6923818 | Muramatsu et al. | Aug 2005 | B2 |
6958113 | Mizohata et al. | Oct 2005 | B2 |
7011667 | Kobayashi et al. | Mar 2006 | B2 |
7022211 | Yoshioka et al. | Apr 2006 | B2 |
7041118 | Muramatsu et al. | May 2006 | B2 |
7081121 | Muramatsu et al. | Jul 2006 | B2 |
7223271 | Muramatsu et al. | May 2007 | B2 |
7223272 | Francese et al. | May 2007 | B2 |
7326221 | Sakamoto | Feb 2008 | B2 |
7402227 | Yoshioka et al. | Jul 2008 | B2 |
7452327 | Durgin et al. | Nov 2008 | B2 |
7488334 | Jugenheimer et al. | Feb 2009 | B2 |
7494461 | Wells et al. | Feb 2009 | B2 |
7601159 | Ewers et al. | Oct 2009 | B2 |
7722628 | Stokes et al. | May 2010 | B2 |
7727247 | Kimura et al. | Jun 2010 | B2 |
7736372 | Reydel et al. | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7740639 | Hummel et al. | Jun 2010 | B2 |
7744613 | Ewers et al. | Jun 2010 | B2 |
7766810 | Ohdaira | Aug 2010 | B2 |
7776057 | Laufer et al. | Aug 2010 | B2 |
7815652 | Messerly et al. | Oct 2010 | B2 |
8083668 | Durgin et al. | Dec 2011 | B2 |
8088061 | Wells et al. | Jan 2012 | B2 |
8172859 | Matsuno et al. | May 2012 | B2 |
8317820 | Surti | Nov 2012 | B2 |
8545519 | Aguirre et al. | Oct 2013 | B2 |
8771293 | Surti et al. | Jul 2014 | B2 |
20020000372 | Pedersen et al. | Jan 2002 | A1 |
20020029963 | Yoshioka et al. | Mar 2002 | A1 |
20020151916 | Muramatsu et al. | Oct 2002 | A1 |
20020173805 | Matsuno et al. | Nov 2002 | A1 |
20020177861 | Sugiyama et al. | Nov 2002 | A1 |
20030069592 | Adams et al. | Apr 2003 | A1 |
20030097146 | Montalvo et al. | May 2003 | A1 |
20040044363 | Fowler | Mar 2004 | A1 |
20050059985 | Kimura | Mar 2005 | A1 |
20050101991 | Ahlberg et al. | May 2005 | A1 |
20050234296 | Saadat et al. | Oct 2005 | A1 |
20050251183 | Buckman et al. | Nov 2005 | A1 |
20050272977 | Saadat et al. | Dec 2005 | A1 |
20060084886 | Reydel | Apr 2006 | A1 |
20060155308 | Griego | Jul 2006 | A1 |
20060258905 | Kaji et al. | Nov 2006 | A1 |
20060259045 | Damarati | Nov 2006 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070135678 | Suzuki | Jun 2007 | A1 |
20070239162 | Bhatnagar et al. | Oct 2007 | A1 |
20070250113 | Hegeman et al. | Oct 2007 | A1 |
20070287993 | Hinman et al. | Dec 2007 | A1 |
20080004656 | Livneh | Jan 2008 | A1 |
20080147113 | Nobis et al. | Jun 2008 | A1 |
20080171907 | Long et al. | Jul 2008 | A1 |
20080228199 | Cropper et al. | Sep 2008 | A1 |
20080228202 | Cropper et al. | Sep 2008 | A1 |
20080234703 | Cropper et al. | Sep 2008 | A1 |
20080234705 | Cropper et al. | Sep 2008 | A1 |
20080255427 | Satake et al. | Oct 2008 | A1 |
20080262539 | Ewers et al. | Oct 2008 | A1 |
20080269557 | Marescaux et al. | Oct 2008 | A1 |
20080269566 | Measamer | Oct 2008 | A1 |
20080275441 | Aue | Nov 2008 | A1 |
20080287963 | Rogers et al. | Nov 2008 | A1 |
20080294178 | Kortenbach et al. | Nov 2008 | A1 |
20080300461 | Shaw et al. | Dec 2008 | A1 |
20080300624 | Schwemberger et al. | Dec 2008 | A1 |
20090005638 | Zwolinski | Jan 2009 | A1 |
20090018602 | Mitelberg et al. | Jan 2009 | A1 |
20090043316 | Durgin et al. | Feb 2009 | A1 |
20090062792 | Vakharia et al. | Mar 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090138028 | Wells et al. | May 2009 | A1 |
20090143794 | Conlon et al. | Jun 2009 | A1 |
20090163934 | Raschdorf, Jr. et al. | Jun 2009 | A1 |
20090192344 | Bakos et al. | Jul 2009 | A1 |
20090221915 | Voegele et al. | Sep 2009 | A1 |
20090299385 | Stefanchik et al. | Dec 2009 | A1 |
20090306683 | Zwolinski et al. | Dec 2009 | A1 |
20090306686 | Ohdaira | Dec 2009 | A1 |
20090326518 | Rabin | Dec 2009 | A1 |
20090326578 | Ewers et al. | Dec 2009 | A1 |
20100042115 | Saadar et al. | Feb 2010 | A1 |
20100057078 | Arts et al. | Mar 2010 | A1 |
20100057085 | Holcomb et al. | Mar 2010 | A1 |
20100130817 | Conlon | May 2010 | A1 |
20100168787 | Surti | Jul 2010 | A1 |
20100179540 | Marczyk et al. | Jul 2010 | A1 |
20100198149 | Fox | Aug 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100211086 | Ewers et al. | Aug 2010 | A1 |
20100217151 | Gostout et al. | Aug 2010 | A1 |
20100217292 | Kimura et al. | Aug 2010 | A1 |
20100217293 | Kimura et al. | Aug 2010 | A1 |
20100217294 | Kimura et al. | Aug 2010 | A1 |
20100249498 | Wingardner et al. | Sep 2010 | A1 |
20100249700 | Spivey | Sep 2010 | A1 |
20100249808 | Harada et al. | Sep 2010 | A1 |
20120016391 | Aguirre | Jan 2012 | A1 |
20120089158 | Martenez et al. | Apr 2012 | A1 |
20120089176 | Sigmon, Jr. et al. | Apr 2012 | A1 |
20120109160 | Martenez et al. | May 2012 | A1 |
20120165863 | McLawhorn | Jun 2012 | A1 |
20120051200 | Martenez et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
4404766 | Aug 1995 | DE |
19534320 | Feb 1997 | DE |
19750878 | May 1999 | DE |
19906360 | Aug 2000 | DE |
102006003548 | Aug 2007 | DE |
0246087 | Nov 1987 | EP |
0541930 | May 1993 | EP |
0 650 181 | Apr 1995 | EP |
0738501 | Oct 1996 | EP |
790997 | Nov 1935 | FR |
57-156752 | Sep 1982 | JP |
60-103946 | Jun 1985 | JP |
63-6016 | Feb 1988 | JP |
63-267345 | Nov 1988 | JP |
63-288147 | Nov 1988 | JP |
2-6011 | Jan 1990 | JP |
2007950 | Jan 1990 | JP |
4-26091 | Mar 1992 | JP |
4102450 | Apr 1992 | JP |
5-212043 | Aug 1993 | JP |
5208020 | Aug 1993 | JP |
5212042 | Aug 1993 | JP |
6237939 | Aug 1994 | JP |
6254101 | Sep 1994 | JP |
06-310461 | Nov 1994 | JP |
7-211724 | Aug 1995 | JP |
8019548 | Jan 1996 | JP |
8126648 | May 1996 | JP |
8280701 | Oct 1996 | JP |
8308847 | Nov 1996 | JP |
9038093 | Feb 1997 | JP |
9-59795 | Mar 1997 | JP |
9289989 | Nov 1997 | JP |
11-200096 | Jul 1999 | JP |
2000-33090 | Feb 2000 | JP |
2000-335631 | Dec 2000 | JP |
2001-520069 | Oct 2001 | JP |
2002-224124 | Aug 2002 | JP |
2002-301082 | Oct 2002 | JP |
2002-360585 | Dec 2002 | JP |
WO 9614020 | May 1996 | WO |
WO 9920183 | Apr 1999 | WO |
99-54920 | Oct 1999 | WO |
WO 2004017839 | Apr 2004 | WO |
WO 2008005433 | Jan 2008 | WO |
WO 2010078163 | Jul 2010 | WO |
WO 2011087723 | Jul 2011 | WO |
WO 2012051188 | Apr 2012 | WO |
WO 2012051191 | Apr 2012 | WO |
WO 2012051200 | Apr 2012 | WO |
WO 2012083041 | Jun 2012 | WO |
Entry |
---|
International Search Report/Written Opinion for PCT/US2009/069270 (May 17, 2010). |
International Search Report/Written Opinion for PCT/US2010/061077 (Apr. 1, 2011). |
OLYMPUS Endo Therapy brochure on the QuickClip2 Long. |
CooperSurgical brochure on the Marlow Nu-Tip Laparoscopic Instruments. |
Medwork brochure,Endo Therapy for the Clipmaster 3. |
Boston Scientific Catalog on the Resolution Clip Device. |
Medicon Instrument Catalog, pp. 440, 441, 443, 451, 585, 686 (1986). |
V. Mueller, The Surgical Armamentarium, pp. F176-F177 (1988). |
Annex to Form PCT/ISA/206—Communication Relating to the Results of Partial International Search for PCT/US2011/055800 (Jun. 28, 2012). |
International Search Report and Opinion for PCT/US2011/055780 (Jun. 14, 2012). |
International Search Report and Opinion for PCT/US2011/055786 (Jun. 19, 2012). |
International Search Report and Opinion for PCT/US2011/065200 (Jun. 13, 2012). |
Office Action dated Dec. 24, 2013 U.S. Appl. No. 13/270,784 in related application. |
International Search Report and Opinion for PCT/US2011/055800 (Sep. 12, 2012). |
International Search Report and Opinion for PCT/US2012/046666 (Oct. 8, 2012). |
Office Action dated Jan. 18, 2012 for U.S. Appl. No. 12/645,004 in related application. |
Office Action dated May 29, 2012 for U.S. Appl. No. 12/645,004 in related application. |
Office Action dated Dec. 20, 2012 for U.S. Appl. No. 13/186,427 in related application. |
Office Action dated May 6, 2013 for U.S. Appl. No. 12/971,873 in related application. |
Office Action dated Nov. 6, 2013 for U.S. Appl. No. 12/971,873 in related application. |
Office Action dated Mar. 10, 2014 for U.S. Appl. No. 13/270,851 in related application. |
Office Action dated Mar. 17, 2014 for U.S. Appl. No. 13/270,834 in related application. |
Office Action dated Feb. 26, 2014 for U.S. Appl. No. 13/327,127 in related application. |
Product brochure entitled “Hemostatic Grasper,” 2014 Olympus America, Inc., Jul. 1, 2014, pp. 1-3 (https://medical.olympusamerica.com/products/coagrasper). |
Product brochure entitled “Titanium Hemostatic Clip”, Jorgensen Laboratories, Inc., Loveland, Colorado 80538. |
Number | Date | Country | |
---|---|---|---|
20220175386 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
61391878 | Oct 2010 | US | |
61289297 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13270834 | Oct 2011 | US |
Child | 14568841 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15915749 | Mar 2018 | US |
Child | 17409049 | US | |
Parent | 14568841 | Dec 2014 | US |
Child | 15915749 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12971873 | Dec 2010 | US |
Child | 13270834 | US |